
 

 

 

MEASUREMENT SCIENCE REVIEW, 17, (2017), No. 2, 83-92 

_________________ 

DOI: 10.1515/msr-2017-0011 

83 

 
 

    

Interactions and Optimizations Analysis between Stiffness and 

Workspace of 3-UPU Robotic Mechanism  

Dan Zhang, Bin Wei 

Department of Mechanical Engineering, Lassonde School of Engineering, York University, 4700 Keele Street, Toronto ON. 

M3J 1P3 Canada, dzhang99@yorku.ca, binwei28@yorku.ca 

 

The interactions between stiffness and workspace performances are studied. The stiffness in x, y and z directions as well as the workspace 

of a 3-UPU mechanism are studied and optimized. The stiffness of the robotic system in every single moveable direction is measured and 

analyzed, and it is observed that in the case where one tries to make the x and y translational stiffness larger, the z directional stiffness will 

be reduced, i.e. the x and y translational stiffness contradicts with the one in z direction. Subsequently, the objective functions for the 

summation of the x and y translational stiffness and z directional stiffness are established and they are being optimized simultaneously. 

However, we later found that these two objectives are not in the same scale; a normalization of the objectives is thus taken into 

consideration. Meanwhile, the robotic system’s workspace is studied and optimized. Through comparing the stiffness landscape and the 

workspace volume landscape, it is also observed that the z translational stiffness shows the same changing tendency with the workspace 

volume’s changing tendency while the x and y translational stiffness shows the opposite changing tendency compared to the workspace 

volume’s. Via employing the Pareto front theory and differential evolution, the summation of the x and y translational stiffness and the 

volume of the workspace are being simultaneously optimized. Finally, the mechanism is employed to synthesize an exercise-walking 

machine for stroke patients.  
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1.  INTRODUCTION 

Parallel mechanisms have been utilized in different fields 

such as conduct manufacturing machining [1]-[3], medical 

devices [4]-[7], sensor applications [8], etc., contributing to 

parallel mechanisms’ parallel structure arrangement (i.e. 

high rigidity, high accuracy, high speed and acceleration, 

and no cumulative joint/link error). Stiffness and workspace 

analysis are widely addressed topics. There are numerous 

resources dealing with stiffness and workspace of parallel 

mechanisms [9]-[13]. Due to the space limitation, here the 

authors just list some typical examples of them. Stiffness 

can be one of the most critical factors to be considered as 

high stiffness can result in better precision. For example, in 

machine tools applications, if the machine tools have poor 

stiffness performance, the machined piece will be very 

rough. The main diagonal items of the stiffness matrix are 

the stiffness in each corresponding direction and they can 

represent the pure stiffness more clearly, this has been 

proved by the FEA examination [14], and these items can be 

the primary components when one analyzes and optimizes 

the stiffness. In [15], the average value and standard 

deviation of the compliance matrix’s main diagonal items 

for a parallel mechanism were employed to describe and 

optimize the kinetostatic performance. However, the authors 

did not consider the  unit  incompatibility of each element of 

the compliance matrix when determining the average value 

and the standard deviation of the compliance matrix’s main 

diagonal items. In [16], the main diagonal items of the 

stiffness matrix were utilized as an objective function to 

analyze a parallel manipulator’s stiffness; this study 

followed the study in [15]. In [17], the stiffness in z 

direction was employed as a factor to represent the entire 

machine’s overall stiffness. In [18], a general performance 

index was used for optimizing the stiffness of a robotic 

manipulator. The drawback of parallel manipulators, 

compared to their serial ones, is that parallel mechanisms 

reach smaller workspace. For a parallel manipulator, its 

workspace is the space to which the moving platform’s 

center is able to reach. One usually desires a large 

workspace for parallel mechanisms, for example, having a 

large workspace capacity for parallel mechanisms used in 

machine tools usually indicates that the machine tool-head is 

able to stretch out to every corner of the work-piece when 

one is running milling, cutting, deburring, drilling, and 

finishing operations. In [19], a condition index was put 

forward as a criterion for optimizing the workspace for a 

three degree-of-freedom robotic mechanism for achieving a 

“well-conditioned” workspace performance. In [20] and 

[21], the volume of the workspace of robotic mechanisms 

was employed as a criterion for optimizing the workspace. 
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For the majority of cases, the workspace volume of robotic 

mechanisms is usually employed as a criterion for assessing 

and optimizing the workspace performance. 

Through analyzing, it is observed that the parallel 

mechanisms’ stiffness can get affected during the time one 

optimizes the workspace. Usually both the stiffness and 

workspace performances need to be taken into consideration 

in some applications; hence, performing a multi-objective 

optimization on these two terms is necessary. In this study, 

the stiffness and workspace are single optimized and 

analyzed firstly; subsequently these two terms are optimized 

and analyzed simultaneously.  

Numerous optimization approaches can be employed, for 

example, differential evolution, particle swarm optimization, 

ant colony optimization, and genetic algorithm. In [14], an 

approach that is based on the particle swarm optimization 

was employed for optimizing the dexterous stiffness and 

reachable workspace of the 4UPS-PU robotic mechanism 

simultaneously. In [22], the authors optimized the dexterity 

and the workspace of a tripod machine structure at the same 

time by resorting to the combination of the Pareto frontier 

sets and evolutionary algorithm. In [23], a multi-objective 

optimization problem was transformed to a single-objective 

optimization issue. The average vertical stiffness, volume of 

the workspace and average dexterity for a hybrid robotic 

mechanism that is reconfigurable were optimized 

simultaneously via employing the sequential simplex 

approach. In [24], the GA and Pareto front set approach 

were individually utilized for optimizing a tripod based 

parallel manipulator’s stiffness and its workspace.  

The differential evolution algorithm usually performs 

better than particle swarm optimization in the aspects of 

solution accuracy, robustness and time cost. In most cases, 

differential evolution is easier to be implemented as 

compared to other algorithms. In addition, differential 

evolution is much more efficient and robust in terms of 

convergent ability and producing the same results in 

multiple runs as compared to other evolution algorithms; the 

above conclusion was proved in [25]. Interestingly, to the 

best of the authors’ knowledge, differential evolution 

algorithm is not often utilized in the area of optimization for 

parallel mechanisms; meanwhile the normalization of 

stiffness in every moveable direction was not taken into 

consideration in most cases. Here with respect to the single-

objective optimization problem, the authors employ the 

differential evolution algorithm for optimizing the stiffness 

and workspace of the 3-UPU parallel mechanism. With 

respect to the multi-objective optimization issue, the 

summation of the x and y translational stiffness and the 

volume of the robotic mechanism’s workspace are being 

optimized simultaneously through respectively employing 

the Pareto front theory and differential evolution algorithm. 

The organization of this paper is as follows: Section 2 

presents the Jacobian matrix analysis of the 3-UPU parallel 

mechanism; the stiffness analysis of the mechanism and 

single-objective optimization and some issues are studied in 

Section 3; Section 4 analyzes the workspace of the 

mechanism and single-objective optimization and some 

issues are also discussed the multi-objective optimization for 

stiffness and workspace is discussed and analyzed in 

Section 5, and the motivation for choosing the objective 

functions, the used optimization algorithm and the 

computational costs are presented as well; Section 6 

presents a potential application of the mechanism used in the 

medical field finally conclusion is given in Section 7.  

 

2.  JACOBIAN OF THE MECHANISM  

Determination of the robotic mechanism’s Jacobian matrix 

is essential for the following analysis. The 3-UPU robotic 

mechanism possesses three translational degrees of freedom 

(DOF). Three identical limbs connect the moving platform 

and the base, as illustrated in Fig.1. For the purpose of 

analysis, two frames O(X, Y, Z) and P(x, y, z) are attached 

to the base B1B2B3 and moving platform P1P2P3 center, 

respectively. Angle bα  is from X axis to OB1; angle pα  is 

from x axis to OP1. 

 

  
 

Fig.1.  Schematic representation of 3-UPU manipulator  

and its model. 

 
The velocity of Pi can be written as: 

 

iPi i i iv s L sω
•

= × +                            (1) 

 

where si represents the unit vector along the i-th leg, wi 

represents the angular velocity of the i-th leg relative to the 

base, and Li represents the length of each leg that is able to 

be determined via the vector loop equation. Through 

multiplying si in both sides of formulation (1) results (2): 

 

PJv q
•

=                                      (2) 

 

where vp represents the moving platform center’s velocity. 

The Jacobian matrix of the 3-UPU robotic mechanism is 

thus determined: 

 

1 2 3

T
T T TJ s s s =                             (3) 
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3.  STIFFNESS OF THE MECHANISM AND SINGLE-OBJECTIVE 

OPTIMIZATION  

The stiffness can be considered as a “bridge” between the 

displacement of the moving platform and a force acting on 

it, and the 3-UPU robotic mechanism’s stiffness at a given 

spot inside the workspace can be portrayed by a stiffness 

matrix [26]. The stiffness matrix is determined through 

employing the kinematic and static formulations:  
 

T T

JK J K J kJ J= =                         (4) 

 

The main diagonal items of the stiffness matrix are each 

corresponding direction’s stiffness. As a case study, when 

Rb = 3 cm, Rp = 1 cm, x = 0, y = 0, z = 5 cm, the changing 

trends of the x, y and z translational stiffness with respect to 

bα  (rad) and pα  (rad) are illustrated in Fig.2. 
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Fig.2.  Stiffness in three directions when 3bR = , 1pR = . 

In the case where x = 0, y = 0, z = 5 cm, bα  = 0.5 rad, 

pα = 0.25 rad, the changing trends of the x, y and z 

translational stiffness with respect to Rb and Rp are 

demonstrated in Fig.3. 

 

15

20

25

6

8

10

12
600

800

1000

1200

1400

1600

RbRp

s
ti
ff

n
e
s
s
 i
n
 x

 
 

15

20

25

6

8

10

12
600

800

1000

1200

1400

1600

RbRp

s
ti
ff

n
e
s
s
 i
n
 y

 
 

15

20

25

6

8

10

12
0

500

1000

1500

2000

RbRp

s
ti
ff

n
e
s
s
 i
n
 z

 
 

Fig.3.  Stiffness in x, y and z direction when  

30bα = o , 15pα = o . 

 
It can be observed that the x and y translational stiffness 

present the same changing fashion while the z translational 
stiffness presents the reverse changing fashion as compared 
to the x and y stiffness case. This indicates that in the case 
where the x and y translational stiffness increase, the z 
translational stiffness decreases, i.e. these two types of 
stiffness conflict with one another. 

The weighted aggregation function as illustrated below 
will be employed for optimizing the x, y and z translational 
stiffness. It transforms a multi-objective optimization issue 
to a single-objective optimization case through integrating 
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multiple objective functions into a single objective function 
[27]. However, in the case where the objectives are not in 
the same scale, a normalization of the different objectives 
needs to be taken into consideration. The formulation shown 
below is able to be determined via joining two objectives to 
one: 

min
1

max min

min
2

max min

1 1

1 1

2 2

2 2

ObjF ObjF
ObjF

ObjF ObjF

ObjF ObjF

ObjF ObjF

λ

λ

−
=

−

−
+

−

              (5) 

 

1 (1,1) (2, 2)ObjF K K= +                      (6) 

 

2 (3,3)ObjF K=                              (7) 

 
where ObjF represents the objective function, 1ObjF  

represents the summation of x and y directional stiffness, 

2ObjF  represents the z directional stiffness, 
maxObjFi  

represents the top limit of the corresponding objectives, 

minObjFi  represents the low limit of the objectives, and iλ  

represents the weight. 

The design variables are as follows: Rb, Rp, bα , pα , 

where Rb is the base radius, Rp is the moving platform 

radius, angle bα  is from X axis to line OB1, angle pα  is 

from x axis to line OP1. The design variables’ constraints are 

set as follows: Rb ∈  [15, 20] cm, Rp ∈  [6,12] cm, bα  ∈  

[0.35, 0.7] rad, pα  ∈  [0, 0.35] rad. 

The differential evolution algorithm is employed here for 
optimizing the above objective function. The reason that 
differential evolution was chosen over the particle swarm 
optimization algorithm is that the differential evolution 
algorithm performs better than particle swarm optimization 
with regard to the solution accuracy, robustness and time 
cost. Furthermore, differential evolution can be 
implemented without great effort as compared to the other 
algorithms, and also differential evolution is much more 
efficient and robust in terms of convergent ability and 
producing the same end results in multiple runs as compared 
to other evolution algorithms. Storn and Price put forward 
the differential evolution in the year 1996. It is a stochastic 
and population-based optimization algorithm. Three main 
operations exist in differential evolution: mutation, 
crossover, and selection. 

Mutation: In differential evolution algorithm, three vectors 
Xa,G, Xb,G and Xc,G are chosen arbitrarily from the current 
population in order to perform the operation mutation. 

 

Vi, G=Xa, G+F(Xb, G- Xc, G) 
 

Usually, F is a constant value ranging from zero to two 
and it determines the amplification of (Xb,G –Xc,G). Larger F 
value results in better diversity while lower value leads to 
faster convergence. 

Crossover: New results can be produced through shuffling 
competing vectors and it is also possible to expand the 

population’s diversity. The trial vector is defined as follows 
[28]: 

, 1 , 2 , 3 , ,( , , ,..., )i G i G i G i G Di GU U U U U=  

 

,

,

,

( ) ( )ji G rand

ji G

ji G

V if rand Cr or j j
U

X otherwise

≤ =
= 


 

 

where D is the problem’s dimension, randj  is a randomly 

selected factor to make sure that at least one parameter can 

be always chosen from 
,ji GV . (0,1)Cr∈  represents the 

crossover rate. rand  represents a random value ranging 

from 0 to 1. 
Selection: The vector with better objective function value 

will be chosen and entered to the following iteration from 
the trial vector. For instance, for a minimum optimization 
issue, the vector that has the smallest objective function 
value will be chosen. 
 

'
( ( ) ( ))i i i

i

i

U if fitness U fitness X
X

X otherwise

≤
= 


 

 

For the problem in this study, the below results can be 
obtained after optimization through employing the 
differential evolution algorithm: 

 

 
a)  First trial 

 

 
b)  Second trial 

 
Fig.4.  Optimization results of stiffness employing  

differential evolution.  
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The objective function’s value converges to one after 
approximately 500 iterations. The performance graph 

illustrated in Fig.4. vibrates because 
maxObjFi  and 

minObjFi  

change in every single iteration. The x axis represents the 
number of iterations and the y axis represents the best value 
discovered for the objective function in every single 
iteration. After performing the optimization, the base radius 
Rb = 20 cm, the moving platform radius Rp = 6 cm, the angle 

bα  from X axis to OB1 is 0.6981rad, and the angle pα  

from x axis to OP1 is zero. The summation of the x and y 
translational stiffness 1ObjF = 2729.4, and the z 

translational stiffness 2ObjF = 270.6122. 

 
4.  WORKSPACE OF THE MECHANISM AND SINGLE-OBJECTIVE 

OPTIMIZATION 

Regarding the optimization for the workspace, as 
mentioned earlier, the robotic mechanisms’ workspace 
volume is usually employed to be an objective function to 
perform the optimization. One is able to calculate the 
volume through employing the fast search approach [21]. 

Under the case bα  = 0.5 rad, pα  = 0.25 rad, the volume 

changing trend with respect to Rb and Rp is shown in Fig.5. 
 

2

3

4

5

1

1.5

2

2.5

3
10

20

30

40

50

60

70

RbRp

W
o
rk

s
p
a
c
e
 v

o
lu

m
e

 
 

Fig.5.  Workspace distribution along Rb and Rp  
when 30bα = o , 15pα = o . 

 
When Rb = 4 cm, Rp = 2 cm, the volume changing trend 

with respect to bα  and pα  is shown in Fig.6. 
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Fig.6.  Workspace distribution with respect to bα  and pα   

when 4bR = , 2pR = . 

 

From Fig.5. and Fig.6., it is observed that the base radius, 

moving platform radius and angles on the two platforms all 

make a dent on the robotic mechanism’s workspace volume. 

In the scenario where these four parameters alter at the same 

time, it will be very difficult to determine which parameters 

should be selected to produce the maximum volume of the 

workspace. Now the single-objective optimization is 

conducted through employing the differential evolution via 

adjusting the four design variables to generate the maximum 

volume for the workspace. The variables and its constraints 

are listed below: Rb ∈  [2, 5] cm, Rp ∈  [1, 3] cm, bα  ∈  

[0.35, 0.7] rad, pα  ∈  [0, 0.35] rad. After performing the 

optimization, the results shown below are generated: 
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a)  First time trial 
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b)  Second time trial 

 
Fig.7.  Optimization results of workspace volume employing DE. 

 
From Fig.7., it is observed that the objective function is 

converging to 70.25 after approximately 50 iterations and 

the design variables are determined as Rb = 2.1163 cm, 

Rp = 2.1244 cm, bα  = 0.36 rad, pα  = 0.35 rad after 

optimization. Prior to performing the optimization, the 

volume of the workspace is 49.8384. Fig.8. illustrates the 

comparison among the workspaces, one is after optimization 

case and another one is before optimization case. One can 

see that the volume of the workspace turns larger as 

compared to the one before optimization, and it is improved 

about 1.4 times. 
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Fig.8.  Workspace comparison after optimization and prior to 

optimization. 

 

5.  MULTI-OBJECTIVE OPTIMIZATION FOR STIFFNESS AND 

WORKSPACE  

Usually in most scenarios for the parallel mechanisms, 

when the stiffness increases, the workspace is influenced by 

that. Here, the changing trends for the stiffness and 

workspace with respect to Rb, Rp, bα  and pα  are firstly 

investigated in order to see if these two terms conflict or not. 

In the case where bα  = 0.5 rad, pα  = 0.25 rad, the 

changing trends for the summation of the x and y directional 

stiffness, z directional stiffness and the volume of the 

workspace with respect to Rb and Rp are illustrated in Fig.9. 

When Rb = 4 cm, Rp = 2 cm, the changing trends for the 

summation of the x and y translational stiffness and the 

volume of the workspace with respect to bα  and pα are 

demonstrated in Fig.10. 

From Fig.9. and Fig.10., one can see that the z 

translational stiffness and the volume of the workspace 

possess the same changing trend while the summation of x 

and y translational stiffness and the volume possess the 

reversing changing trend. In the case where the z 

translational stiffness increases, the volume of the 

workspace increases as well, this is what is desired. 

However, in the case where the x and y translational 

stiffness increase, the volume decreases, which is not what 

is wanted, these two conflict with each other. Thus, one can 

employ the differential evolution to single-objective 

optimize the z translational stiffness independently without 

taking the performance of the workspace into consideration. 

However, the z translational stiffness has the reverse 

changing trend with the x and y translational stiffness, when 

one resorts to the differential evolution to optimize the z 

translational stiffness, the x and y translational stiffness will 

get influenced. Thus, in practical applications, engineers 

need to take into consideration what factor is more 

important to them in order to select one to perform the 

optimization, i.e. z translational stiffness or x and y 

translational stiffness. As mentioned earlier, the reason the 

differential evolution is preferably selected here is that it is 

more efficient and robust in terms of convergent ability and 

produces the same results in multiple trails as compared to 

other evolutionary algorithms. Additionally, the differential 

evolution algorithm generally performs better than the 

particle swarm optimization with respect to solution 

accuracy, robustness and time cost. Furthermore, the 

differential evolution is easier to be implemented as 

compared to the other algorithms [25]. The authors here 

deem that the x and y translational stiffness is more critical 

than z translational stiffness. The summation of the x and y 

translational stiffness and the volume of the workspace are 

being optimized at the same time through employing the 

Pareto front theory. 
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Fig.9.  Summation of x and y directional stiffness, z directional 

stiffness and volume of workspace along 
bR  and 

pR  when 

30bα = o , 15pα = o
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Fig.10.  Summation of x and y directional stiffness and the volume 

of the workspace along with 
b

α  and 
pα  when 4bR = , 2pR = . 

 

Objective function 1: 

 

1 (1,1) (2, 2)ObjF K K= +                    (8) 

 

where ObjF1 represents the summation of the x and y 

directional stiffness. Maximizing ObjF1 is equivalent to 

minimize -ObjF1.  

Objective function 2: 

 

2ObjF WorkspaceVolume=                  (9) 

 

where ObjF2 represents the volume of the workspace for the 

robotic mechanism. Similarly, maximizing ObjF2 is 

equivalent to minimizing -ObjF2. 

Design variables are Rb, Rp, bα  and pα . The constraints 

are listed below: Rb ∈  [2, 5] cm, Rp ∈  [1, 3] cm, bα  ∈  

[0.35, 0.7] rad and pα  ∈  [0, 0.35] rad. The authors chose 

the population size to be 50, the maximum of generations to 

be 100, the selection strategy as tournament, the tournament 

size to be 2, the crossover type as intermediate, the 

crossover ratio to be 1, the mutation function to be as 

adaptive feasible, and the Pareto front population fraction to 

be 0.35. After performing the optimization, the Pareto front 

of the objective functions 1 (summation of x and y 

translational stiffness) and 2 (volume of workspace) is 

generated (illustrated in Fig.11.). It can be observed that the 

summation of the x and y translational stiffness and the 

volume of the workspace do conflict with one another. 

When the summation of the x and y translational stiffness is 

increasing, the volume of the workspace is decreasing and 

vice versa. 

 

 
 

Fig.11.  Pareto front sets between stiffness and workspace. 

 

There is not one optimal solution as it is the case for the 

single-objective case, but multiple solutions, to which they 

are non-dominate. Some of the objective values and values 

for the design variables are recorded in Table 1. Here, the 

authors will not enumerate all of them as there are too many. 

Engineers are able to select specific ones that are based on 

their own requirements. In the scenario where engineers 

demand larger stiffness and the volume of the workspace is 

not vital, the one that has larger value for the stiffness can be 

selected and some workspace can be compromised to some 

extent. In the scenario where engineers deem workspace 

critical, they can select a larger value for workspace and 

compromise some stiffness. 

 
Table 1.  Pareto front solutions.  

 

1ObjF  2ObjF  
bR  pR  bα  pα  

-4.0869 -67.3870 2.1198 2.0068 0.3950 0.3242 

-1004.638 -16.2115 4.7256 1.3232 0.6025 0.1977 

-269.7363 -41.1384 2.8959 1.3991 0.5062 0.2676 

 

The Pareto front theory was employed to multi-objective 

optimize the summation of the x and y translational stiffness 

and the volume. Here the authors are also able to transform 

the multi-objective optimization issue into a single-objective 

case via the formulation below: 

 

1 2ObjF ObjF ObjF= ⋅                      (10) 
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Through Equation (10), the multi-objective case becomes 

a single-objective case. The design variables are Rb, Rp, bα  

and pα , and the constraints are listed below: 

Rb ∈  [2, 5] cm, Rp ∈  [1, 3] cm, bα  ∈  [0.35, 0.7] rad, 

pα  ∈  [0, 0.35] rad. After performing the optimization, the 

following are generated: 
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Fig.12.  Optimization results employing DE. 

 

It can be seen that the objective function is converging to 
41.704 10×  after about 100 generations, and the values for 

the design variables are 4.2876 cm=bR ,  1.7948 cm=pR , 

0.6267=b radα  and 0.0629=
p

radα  after the 

optimization. Prior to the optimization, 3 cm=bR , 

2 cm=pR , 0.523=b radα , 0.3=p radα  and 

36.7516 10ObjF = × . ObjF  has improved approximately 

2.5 times after the optimization. It is observed that the 

single-objective optimization possesses only one optimal 

solution while the multi-objective case possesses multiple 

solutions, from which engineers are able to select based on 

their specific requirements and preferences, thus the final 

selection is depending on engineers. 

 

6.  POTENTIAL APPLICATION - PARALLEL ROBOTIC BASED 

ASSISTED MACHINE FOR STANDING AND WALKING EXERCISE 

FOR STROKE PATIENTS 

A.  Background  

Nowadays, unfortunately many people have suffered from 

stroke, which causes people to have lasting consequences, 

i.e. people who suffer from stroke have physical disabilities 

or even worse (become vegetable person). Our study focuses 

on how to help those patients exercise so that patients with 

disabilities can be prevented from organ deterioration and 

muscle shrinks. In this section, the authors propose an 

assisted exercise standing and walking machine based on the 

parallel robotic structure for those patients. To the best of 

the authors’ knowledge, this will be the first exercise 

machine for patients with stroke disability based on the 

parallel robotic structure.  

When people suffer from stroke, sometimes the patients 

will not have any lasting consequences and act like a normal 

person, but sometimes people will have severe disabilities, 

the symptom can be that patients lose walking and standing 

abilities, or sometimes patients become vegetable persons. 

For the latter case, if the patients are bed ridden for a long 

time, their organs will deteriorate and their muscles will 

shrink. In most cases, in second world countries, such as in 

China and India, etc., where a large number of stroke 

patients reside, two or three family members just hold the 

patients and help the patients stand and walk, which is 

extremely energy consuming for the helpers.  

 

B.  Solution - Parallel robotic based exercise machine 

To overcome the above problem, the authors designed an 

exercise standing and walking machine for the patients with 

stroke disabilities based on the parallel robotic structure, as 

shown in Fig.1. The machine can not only help patients 

stand, but also can help patients walk, so as to act as an 

exercise machine in order to prevent patients from organ 

deterioration and muscle shrink. The machine consists of 

two main parts, the lower component and upper component. 

The lower component mainly consists of three 3-UPU 

parallel robotic mechanisms, U stands for the universal 

joint, P stands for the prismatic joint. Each 3-UPU parallel 

robotic mechanism has three translational degrees of 

freedom. These translational degrees of freedom enable the 

patients’ legs to move up and down and move forward and 

backward. The upper component can prevent the patients’ 

upper body from falling, and the lower component makes 

the patients move around.  

The machine consists of the following components: part 1 

is the moving platform used to support the neck section of a 

human body, the middle platform 3 is connected to the 

moving platform 1 with several links, and they are denoted 

as part 2. The middle platform is used to support the waist of 

a human body. The middle platform is connected to the base 

platform (part 11) through universal joints (part 4), actuated 

prismatic joints (part 6) and links (parts 5 and 7). There are 

two wheels (part 8) in the base platform, which is used to 

move the whole machine when a patient finishes a single 

step cycle. Part 9 is the opening section that allows patients 

to get into this machine. Part 10 is a motor that is used to 

actuate the prismatic joints. There are another two 3-UPU 

mechanisms in the middle, which are used to move the legs 

of the patients, i.e. lift up the legs of the patients, move 

forward the legs and put down the legs on the floor. In the 

meantime, the large 3-UPU mechanism is used to move the 

waist section of a human body to move along with the legs. 

When the patients wear this machine, we only need to 

slightly move the machine when the patients finish a step 

cycle, which can greatly alleviate our helpers. The proposed 

parallel robotic based assisted machine will be prototyped 

according to the optimized results in the previous section 

and it will be further tested by the patients in terms of 

suitability of the proposed machine in the near future.  
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Fig.13.  Parallel robotic based assisted machine. 

 

7.  CONCLUSION 

The interactions between stiffness and workspace 

performances are investigated in this paper, and also the 

stiffness and workspace of a 3-UPU robotic mechanism are 

optimized, respectively. Since the summation of the x and y 

directional stiffness and the z directional stiffness are not in 

the same scale, a normalization of the two objectives is 

performed. Furthermore, via analyzing it was observed that 

the changing trends for the x and y translational stiffness 

and the volume of the workspace are reversing whereas the 

z translational stiffness and the volume of the workspace 

possess the same changing trends. One can single-objective 

optimize the z translational stiffness independently without 

taking into consideration the volume of the workspace. 

However, the z translational stiffness shows a reversing 

changing trend with respect to the x and y directional 

stiffness. Thus, in the case where one optimizes the z 

translational stiffness, the x and y directional stiffness get 

affected. In practical applications, engineers need to 

determine which factor is more critical to them in order to 

select one factor to perform the optimization. As an 

example, through employing the Pareto front theory and also 

via employing the differential evolution algorithm by 

transforming the multi-objective optimization issue to the 

single-objective optimization issue, respectively, the 

summation of the x and y translation and the volume of the 

workspace for the robotic mechanism are being optimized at 

the same time. The results indicate the kinematic 

performances are able to be improved after performing the 

optimization. Furthermore, it is observed that the multi-

objective optimization possesses multiple solutions in the 

Pareto front, to which they are non-dominate, and engineers 

are able to select one solution based on their specific 

requirements and preferences, while the single-objective 

optimization possesses only one optimal solution. The 

mechanism can be potentially used in integrating the 

exercise-walking machine for stroke patients. As for the 

future work, the global stiffness will be considered. Due to 

the space limitation, some comparison studies will be 

conducted in the next step. In addition, the proposed parallel 

robotic based assisted machine will be prototyped according 

to the optimized results and the patients will try it out in 

order to further test the suitability of the proposed machine.   
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