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The principal objective of this paper is to provide a torsor theory of jgayguantities and basic operations thereon. Torsors are introduced in
a bottom-up fashion as actions of scale transformation groups onsspiagaitized quantities. In contrast, the shortcomings of other accounts
of quantities that proceed in a top-down axiomatic manner are also distuBsthis paper, quantities are presented as dual counterparts
of physical states. States serve as truth-makers of metrological stdteat®ut quantity values and are crucial in specifying alternative
measurement units for base quantities. For illustration and ease ohfase, the classical notions of length, time, and instantaneous
velocity are used as primordial examples. It is shown how torsordge@n éfective description of the structure of quantities, systems of
quantities, and transformations between them. Using the torsor frakeime-dependent quantities and their unitized derivatives are also
investigated. Lastly, the torsor apparatus is applied to deterministic messuref quantities.
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1. INTRODUCTION AND OVERVIEW scalar product of a rational scalaand a dimensionful quan-

This paper presents a torsor-theoretic framework for fives tity @ is written in the form of the-th rational powei@" of
gating the basic structure of physical quantities togetiigtr Q. Drobot's axioms governing these operations in a quan-
their units, dimensions and measurement. The notiging$-  tity space are basically the multiplicatively reformuliax-
ical quantity(commonly thought of as a quantifiable attributeloms of a rational (or real) vector space. The problem ofescal
instantiated by particular physical systems and charaegtr change of quantit to quantitye - Q under (say) a positive
by unit-dependent numerical values that can be estimated B§@la > 0 is handled by including all positive reals as special
measurement) occupies a central place in the natural ssienélimensionleselements of Drobot’s quantity space.
and engineering. Quantities and their dimensions have beenQuantities@; and Q, in a quantity space are said to
treated many times before (see, for exampt,[17], [11], have the sam@hysical dimensioprovided that the equal-
[10] and references therein), but their intrinsic algebraigst ity Ql-le = « holds for some positive real number In
ture has not received a clear and precise formulation thttis way the quantity space can be partitioned into disjoint
meets the standards of rigor of modern physical theories amthe-dimensional subspaces of quantities sharing the same d
contemporary measurement practices. mension, where each partition subspace supports the usual
Drobot’s great contribution in] was to translate the prob- addition operatio®; + Q2 = (1+ ) -Q1 (with some scale con-
lems of physically dimensioned scalar quantities (e.girth version factor > 0) on quantities of the same dimension, and
dimensional independence) into a problem of linear algebr& equipped with scalar multiplication.

Specifically, Drobot treats the intuitively given lengtheoti- Pondering these and related subsequent achievements in
ties (for us the length quantity’s unitized magnitudes)he t physical quantity theory, it becomes apparent that théainit
sort 5m and 10km as members of quantity spaceSimilarly,  tors (including B],[17], and [L1]) of the foregoing linear alge-
physical mass quantities, such akg2zand 40mg, and mean bra approach have not given much attention to the following
velocities of the kind /s and 9m/s, are all members of three fundamental issues:
the same quantity space.

A quantity space is modeled bynaultiplicativelypresented (i) Firstly and most essentially, the advocates of the tradi
finite dimensional vector space over the field of rational (or  tional algebraic approach have side-stepped in their for-
real) numbers. In more detail, the standard vector spade add  mal treatments the problem @iuth conditionsfor ele-

tion for two dimensionful quantitieQ; and@, is symbolized mentary metrological statements about quantity values,
and understood to be the product quangye Q> (including understood to depend on the crucial notiorpb§sical-
the counterpar«;}loQgl of the diference quantity). And the geometric statesf quantity-carrying target systems.
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Clearly, recording the target quantity’s values and rea- The simplest spatial and cognitively privileged example of
soning about them relies on a suitable Boolean algebraconcrete continuous geometric scalar quantity idettgh

of propositions that is needed also for the introduction obf, say, a flagpole, illustrated by the metrological protiosi
probability measures underlying statistical reasoning. “Length(flagpole)=5.347meters,” where the numerical factor

(i) Secondly, followers of the Drobot paradigm leave outS SPecified by the real numbg@} = 5.347 and the unitd]
in their investigation the formal structure dépendent IS 1000meter or simply 1m (metre) according to thesl (ab-
quantities — dependent on or varying with spatial, tembrewgted from the Frendbe Systéme International d’Unitgs
poral and other dimensionful quantities, crucial in signaf‘o'[""t'on-2
theory, and the construction of various derivatives and The basic structure upon which the assumptions and condi-
integrals of quantities. tions of the classical view are based is a Drobot style fipitel

(i) And thirdly, the initiators of the linear algebra viemave ~generated quantity space of abstractly conceived physi-
not considered the underlyinguantity-theoreticstruc- ~ ¢al quantities, closed under syntactically specified pcodu
ture of the target quantity’s measurement process itsefnd rational-power operations, together with unit-cosicer
involving pointer or indicator quantities of measuring transformations between them.
instruments, associated uncertainties, confidence levelssince here everything hinges on what definitions and inter-
or coverage probabilities. pretations one adopts, the first thing that needs to be done is

In this paper, these issues are addressed in the frameworktofexplain exactly how the central ideas of physical qugntit

torsors over commutative groups. Before getting to torebrs its value, and measurement unit fit into the classical frame-

quantities, we give a quick reminder on the classical aggroa work. Following Maxwell, the concept of quantity is intu-

to quantities and some of its shortcomings. itively characterized but not defined. In the classical tiieo

a unit of measurement is viewed as a reference quantity, cho-

1.1. Classical approach to quantities and their measuremé§n and specified by convention. Given these notions, mea-

In recent years, two prominent foundational conceptions (ﬁurement is usually conceived as a procesestimationor

guantities and their measurement have been the subjectaé?lproé'mﬁtr']omf the nu dmerlcatratlo {th}h_ QI bet\;veen the
considerable research interest (see, for exam@ld,15], and values: otthe€ measured quan 'tY and the valdg bf a com-
[12)): (a) the so callectlassicaland (b)representationathe- mensurate reference unit quantity. Supporters of theickdss

ories of measurement. The history of these rival theories %oproach tend to fasten on the idea of ratios of quantity val-

complex and we can only recall some of the central technic%les’ because it accords with an old account of what real num-

results, and express our reservations regarding theiraorm ers _mlght be_. Accordm_g to the classical view, real numbers
articulation and interpretation. At a more basic level, e are simply ratio-typeelationsbetween the values of contin-

tory of quantities and their measurement is the story ofchear uous quanities instantiated by phy_sica_l systems. Thmfef(_)_
for the intrinsic algebraic structures underlying dimensil numt.)ers.should be thought of as being internal to the empiri-
analysis, measurement units, and measurement uncelcb:faint)f"’lI situation?
guantity values. Since the representational approd&hghd It is important to note that in the basic classical settimg, e
[16]) skirts the issue of physical quantities and measurememntrs and uncertainties that regularly obfuscate measureme
units} we shall not review it here. results are not given any technical (deterministic or stiati

In the classicalapproach, following Maxwell14], there is ~ cal) formulation. For example, even in a single direct deter
a well-established tradition to express tmlue of a phys- ministic measurement of the length of the target flagiopy
ical quantity under consideration as the product of a nu meter stick, due to limited precision, accuracy, resofuyti
merical factor and a suitable unit of measurement (normaligalibration, and other perturbing physical factors andugin-
thought of as a particular reference quantity of the same kirstances, the measurement result is not exact. In simple ide-

as the target quantity). From this perspective, liiterna-
tional Standard Organizatiofi8] recommends to formulate
thevalueof a static deterministic scalar quant®of interest
in terms of equational statements having the form

Q=1{Q}-[q].

1The key representational measurement-theoretic motto issilement
is a process of assigning numbers to empirical entities ioglies, particles,
fields, commodities, events, and so forth) in terms of faithfuherical rep-
resentations of the underlying measurement model of the tatgatribute,
manifested by instantiating various entities. It should beed that “faith-
ful numerical representations” can be used to define quesiis appropriate
mappings of empirical entities to the real line. However, ithegtrological
interpretations in physics and engineering are far fromais; Specifically,
it is not clear how the representational approach treadymts and inverses
of quantities.

alized deterministic situations, a single geometric mesasu
ment reading from the instrument includes the availaide
nificant digitsand one estimated digit, given bytalerance
interval orround-gf to the nearest significant didit. With
regard to validating the deterministic length-theoretietro-
logical proposition Length(f) = 5.3470meters,” if the mea-
surement is made with a perfectly calibrated metric rulat th
has a Imillimeter precision, specified by unifordeast count

2For ease of exposition, we use length as our running examplseter,
there will be other examples as we proceed.

3We revisit the ontology and role of real numbers in quantitgwas and
measurement below.

“Note that here the choice of thaxleter measurement unit precedes the
consideration of deterministic uncertainties expressediihmeter or other
measurement subunits.
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marks spaced iillimeter apart, then the measurement stateeourse, is "None of the above.” In order for the mathemat-
ment about the flagpole’s length in a single measurement ofgal laws of science to be applicable to target physical sys-

eration acquires a new form tems, they must be formulated in equational forms that em-
body reference-frame invariance, quantity scale invagan
Lengthmead{) — & < Length(f) < Lengthpead) +& and empirical compatibility between predictions and mea-

surement results. And these conditions are best handled an-
alytically and universally in terms of “pure” numbers, trad
tionally specified by theatios between quantities and their

So after measurement, the actual lengthgth(f) of the flag-
pole { is determined by the measured lengiéngthea47)
and a deterministic uncertainty (errar)around it. For ex- . i
ample, if the measured length pfs Lengthy,eo{ flagpold = units, and functions thereon. )
5.347 meters and the “doubtful” digit (typically estimated by !N the next subsection we raise a couple of problems for the
the measurer) representing the deterministic intervatia classical approach and sketch a background for their soluti
uncertainty iss = 0.0005meters, then the actual length df
is inferred to be an element of the interval§8655.3475].  1.2. Some shortcomings of the classical approach to quan-
In single-case deterministic measurements the number of tities and their measurement
significant digits accompanied with measurement uncdytainThere are many questions that can be asked about the limi-
is regularly used in ranking the overall precision and aacyr tations of the classical framework but at this point we shall
of measuring instruments and measurement methods. Fabnsider only a couple of simple conceptual subtleties.
lowing along these lines, it is crucial to enrich the claakic  First, after a closer perusal of Maxwell's familiar formpla
framework with data models that take account of tileas discussed in14] and recalled at the top of the previous sub-
of errors and statistical uncertainties in analyzing thesne-  section, it should be noted that the numerical fa¢@rused
and’'s measurement results and alternative methods. in the equational statement strictly depends on the chosen
Also, it is to be emphasized that in contrast to the largelynit U =4; [@], and therefore the popular notation for fac-
autonomous character of units of measurement, the concepts is ambiguous and ill-formetit should be changed into
of quantity must be fitted to the scientific theory in which ita parametrized expression of the fo@g or something sim-
is usec® Curiously, quantities employed by classical conilar, resulting in the revised equatiéd= Qq, - U. Better yet,
tinuum mechanics, thermodynamics and space-time theorifess any quantity value and any reference unit quantiéy/
do not fit easily into the foregoing equational formulation i of the same kind there exists a unique non-zero real number
volving quantity values. One reason is that physical systenw such thatQ = @ - U. More generally, since for any pair of
and their behavior often exhibit two complementary strucquantity valuesQ and U one can be expressed in terms of
tures: (i) thelocal infinitesimal structure that is studied in the other a®? = « - U with a unique scale conversion factor
(time-dependent, space-dependent, etdfeidintial quantity « # 0, the revised equation is nothing more than a siropie
calculus, and (ii) thelobal structure that utilizes thbundle tized quantity conversiomle. Knowing thatr # 0 is uniquely
formalism ofvariable quantities, continuously varying with determined byQ and/, we can conveniently denote it by the
respect to time, space and environmental factors, sucheas tatio expressior% =qf @ and rewrite Maxwell’s equation into

ambient temperature or pressure. a well-formed equational statement
Additionally, we must not forget theamphibiouscharacter

of quantities, exemplified by belonging to both the equation Q= Q .

of abstractly presented scientific laws and concrete observ u

friendly measurement arrangements. In their “double’life,Mathematically, it is also true that for each quantityand
quantities are flexible enough to exhibit both continuous anscalare # 0 there exists a unique quanti§y of the same
discrete qualities, and encompass both unit-free andzeuiti kind such thaQ = o -Q'.
embodiments. Starting in Section 2, we shall deliberately use the ratio
At this point we may wonder which notions of classicalnotation & instead of@, because it suggests a direct ac-
quantity calculus are used in the equations of scientifio-the cess to the familiar algebraic structure of real numbersteMo
ries vs. measurement. This is a good moment to be specifipecifically, for ratios we have the obvious multiplicatlaw
and raise the following question: does continuum mechariy - % = &, capturing the change of quantity values obtained
ics use in its equations the abstractly conceived general nby passing from measurement ufii to unit V. And of
tions of length, time, and mass or rather the equationgaetili course we have the trivial identity condition: § = 1, then
the unitized values of these quantities? The quick ansver, & = U, together with its converse. The notion of ratio is de-
5Keep in mind the radically dierent methods of calculation and measure—5|gne-c-i to (I) accommodate Maxwell’s idea as its CI.O.Se (?Qusm
ment of length or velocity in Newtonian vs. relativistic frawarks. And re- and (“) to treat the underlymg structure of quantities e t

call that quantum theory treats the time quantity as a pararaetequantum f_ramework oftorsors over groups, i.e., special kinds of ac-
gravity theory posits a Planck scale granularity of spamet In physical tions of scale-transformation groups on spaces of unitized

geometry, length of the circumference of an ellipse on a tdensional quantities. Torsors are to groups #Bree spaces are to vector
sphere strictly depends on the sphere’s underlying eliptieometry. Sim-

ply, the concept of length as well as all the other physieargetric quanti- 6Here and below we use the expressiegy to indicateequality by defi-
ties tend to be theory-laden. nition.
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spaces, and they are known to be highfieetive tools both It is not clear how these constructions of new quantitiesfro
in algebraic geometry and modern physics. As it turns ougld fit into the classical framework. More will be said about
torsors are also fundamental in modelirgjative physical- each of these problems later.
geometric quantities, such as position, time, temperapoe  Up to now, we have provided a concise summary of
tential diference, energy fierence, and many other quanti-the classical approach to quantities and their measurement
ties that depend on the notion ofidirence between two states\we have also outlined our reservations regarding the clas-
of the target quantity-bearing system. sical syntactic formulation and interpretation of quaesit

As we shall see in the next section, from a formal standand their values, and quantity calculus in general. We take
point, the starting point for torsors of quantities is a fixedhese criticisms to be good reasons for developing an alter-
commutative group of scale or state transformations, &.e., native metrological framework that circumvents the earlie
nonempty seg furnished with a binary operation that is com-discussed pitfalls and interpretativefftiulties surrounding
mutative, associative, invertible, and has a unit. Giveroalg  quantity calculus and measurement.
G, atorsor overg is a nonempty sép equipped with a free
and transitive “dynamical” action @ on Q, which is a spe-

cial case of the familiar coordinate change transformation In this section we introduce four basic ingredients for tet

One major justification for the choice of the torsor frame—Ory of unital quantities: physical-geometstatesof quantity-
work is the fact that the fundamental structure of phySiC%earing systems with one degree of freedom, torsormof
quantities of a given kind in spa€g can be derived from the 5| quantities andscaleandstatetransformation groups un-
action of the scale transformation group. For example, foferying torsors. Our main objective is to bring the concep-
any pair of physical quantitieQ andQ’ of the same kind in 5| structure of quantities into agreement with the resuir
Q we can always find a reference quantiand unique scale mens of modern physical theories and associated measure-

transformationsr ande” in G such thaQ = o U andQ’ = nant practices, and to circumvent the problems discussed ea
a’-U. And theiradditionis given byQ + Q' =4t (@ +a’)-U. g,
One of the main assets of using torsors in quantity calculus Modern theoretical physics utilizes an extremeljee-

s that all prewously_d|scussexyntact|callyg|ven qperatlons tive framework for the mathematical description of classi-
have naturakemanticcounterparts, formulated in terms of - . . .
cal, quantum and statistical physical systems in which the

operations on torsors of quantities. Additional justificas basic concepts astatesandquantities(a.k.a. observables)
will be provided in the next section, after we recall the rel- ; . ; R i e
evant mathematical tool kit and make the torsor structure c‘)l'fh'ese em|r'1ently fruitful n'otlons .S.t anq n a.duahty rglgao
physical quantities concrete. ship, meaning that there is a pairing in Wh|ch quant'me_s are
... evaluated on states and collectively quantity values iddiv

Second, we ought to be able to make a careful distinctiofye states. The theory of unital quantities we present & thi
between a physical quanti@ per seand its potentiabal-  ggction fits seamlessly into the adopted physical frameork
uesQ, &, ---, referred to in Maxwell's equation. In this set- The oniy diterence is in the geometric dimensionality of state
ting, one should posit a separatdue spacéor each physical gpaces” Whereas in models of theoretical physics and sys-
quantityQ, along with suitable algebraic operations thereonemg science the underlying state spaces are generally mult
In addition, one must also provide product and exponeotiati 4imensional, in the theory of deterministic scalar (as sggo
operations on the abstractly granted quantities themseMe 1, yector or tensor) unitized quantities these spaces ata-ex
answer this, we need specific definitions of these operzatlongi\/e|y one-dimensional, characterizing systems with qurt

And lastly, in the classical theory there is no rigorous ehargegree of freedom. For mathematical reasons not relevant
acterization of how abstractly conceived quantities a@jui here, the one-dimensional (continuum line or semi-line}-co
their values. We can see right away that these values do nQfaint turns out to be crucial for the construction of pretdu
come as the result of the standascaluationoperation of the  and inverse quantities, needed in defining volume, velocity
form Q(f) applied to flagpold, because such quantity val- density and many other commonplace derived quantities.

ues depend on a chosen unit, and possibly also on a spatia|, the classical approach, a physical quantity is thought of
reference frame. In addition to the target flagpole, quantityg 5 quantifiable attribute of physical entities (meaning-bo
values also depend on the flagpole’s physical-geometrie COyg  fields, particles and spatio-temporal events) thatesom
dition considered at the time the measurement is made. {@, an extrinsically attached unit. Quantities in theruesl
the big question is: what is the exact relationship between &6 apstract and theoretical in nature, and are subjectstito
abstractly given quantitQ and its possible values? tactically presented product and rational power operation
In order to proceed further, we need a precise charactetimfortunately, this view is not practical and is at odds with
zation of how physical quantities acquire their values whemost applications, because applied scientists and enginee
instantiated by commonplace real-world systems. Alsogto byho are interested in making predictions and performing
compatible with the dynamical laws of modern physical the- = — S o
ories, it is extremely important to be able to construcsited Because a measuring instrument can only distinguish a limigéghn

| d ial L f L. d their (ti borhood of alternatives around the actual state of the medsystem, mea-
(tOta and partia ﬂer'vat'veso quantities, and their (t'me' surements of the measurand encoding the state can provide oedyricted

space, etc.jlependenandrandomor stochasticalternatives.  amount of information about the measured system’s extant state.

2. SCALE TRANSFORMATIONS AND TORSORS OF UNITAL QUANTITIES
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measurements, usually work withnital quantities in which (i) At any given instant of time, the flagpoiéthought of as

the units are specifically tailored to the phenomena thegystu having just one degree of freedom that is reserved exclu-

and to the instruments they use. sively for length) occupies a well-defined spatial region
In our pragmatic approach, we bring the notion of quan-  in the common-sense Newtonian space with two spatial

tity to bear directly on the instantiating physical systend a endpoints A and B (localizing the flagpole’s respective

the associated measuring instrument, meaning that we do tak  left and right ends) that are connected by a unique ori-
into account the ingredient of measurement unit. In spite of ~ ented (closed, boundetifle segmenAB;.

much discussion to the contrary, for all practical purpasfes
physics we take quantities to be intrinsically “unitizedithv
built-in units. From a colloquial linguistic standpointyza-
jor distinction between the classical and our formulatidén o
metrological statements can be seen in handling the vafues o
guantities.

In more detail, the classical metrological statement

“Length(f) = 5.347m" with its awkward unitized way of treat-  Turning now to the state space apparatus for length, we as-
ing physical values (unitized magnitudes) is easily fixe&ociate with each flagpoliea geometric spacg?; of states,

by conversion into an equational statement of the forrdonsisting of all (positive) Euclidean line segments, nodu
“Lengthm (f) = 5.347,”" in which the left side shows length as spatial congruence, intended to encode the flagpole’s poten
a unit-parametrized numerical-valued functiewvaluatedat tjal deterministic physical-geometric modes of being when
argument, and the right side refers to a concrete “pure” realiewed from a given vantage point of time and coordinate
number. But to require a subscript-style, unit-relatidireta-  frame? At this point we can make the theoretical claim about

tion for quantities, based solely on the fact that one canemoyhe flagpole’s length mathematically explicit and rigorass
smoothly between the two formulations of metrologicalestat fgllows:

ments, is clearly indticient in itself. We provide the neces-

sary formal framework below. However, since we do not see Length(f) = Euclidean distance-in-meters between A and B.

any serious possibility of giving a mathematically exglamd

rigorous characterization of unital quantities withowtdk-  As the equation suggests, thaith-makerof the assertion
ing the concept of state, we begin by showing how states mayength(f) = 5.347m" is the flagpole’s extant state, encoded
be efectively used in defining the notion of “unitized” quan- by the instantiated line segment ABThus, for us, length
tity and in the grounding ofruth conditionsof metrological is intrinsic to f and is not something that is determined by
statements about quantity values. elementhood in a measurement model of length-bearing bod-
ies, as suggested, e.g., by the representationalists. them
standpoint of applied quantity calculus, we have two héiaris
reasons for focusing on states: (i) states serveudis-makers
for metrological statements, and (i) they specify thiginsic
measurement units of unital quantities.

(i) The Cartesian line segment completely characterizes t
flagpole’s physical-geometric condition which we call
its extant lengttstateand, additionally, we say that in
virtue of the way the flagpolé is at the assumed mo-
ment of time, itinstantiates(realizes) the line segment
AB;.

2.1. State spaces underlying unital quantities

In this subsection we investigate the importancelofsical-

geometric statesf quantity-bearing systems in quantity cal-
culus. To illustrate the essential role of states in the evorl T ) S )
of physical quantities, consider, once again, the simplest Before we begin with pertinent technicalities, there is one

crete paradigmatic example of length, say, the length of ﬂagadditignal piece. of mathematical structure to include in ou
polef. To set the scene, we begin with the following ques_quantlty—theoreuc framework, namely that of the archatyp
tion: what makes the metrological assertiorerigth(f) = set of real numberR. We know that real numbers, tradition-

5.347meters” true? ally treated as “magnitude algebras,” play a special rogein
gnee and measurement. However, it is important to be clear
:ﬂ)out the precise mathematical structureRobne plans to
use. For example, it can be the natural complete linear order
ues, and the issue tfuth conditionsfor metrological state- structure furn'ished with suprema and ir]fima of bounded sub-
' sets, the basic commutative group or ring structure for com-

ments is not addressed. putational content, Euclidean topology for geometry, Bore

With classical continuum mechanics as a background these 55 rable structure for random quantities, or a judicious
ory, our answer to the above-posed question is based on the . hination of all of these.

following two idealized theoretical assumptichs:

As far as one can make out, in the classical approach
guantities the emphasis is all on the multiplicatively praed
vector space of quantities and relationships betweenvhkir

grained macroscopic terms that generally do not (and needguhvave any
8For us, an assumption is “idealized theoretical” insofat ksaives outor ~ reference to the system’s microphysical details and energjyaages with its
abstracts away many of the concrete microscopic physicahge@ details ~ environment. Along related lines, the requirement of truligrenent can be
of the target system (e.g., the specific atomic structure hedresoscop- successfully maintained even for metrological statementintwthe micro-
ically blurred endpoints of the flagpole under considergtiand therefore scale details about the target system are abstracted away.
the system can have multiple microphysical realizers. A usefainder is 9n more complex situations it may become necessary to introstatis-
that continuum mechanicsfectively articulates the quantitative properties tical states that are encoded yndomline segments, governed by suitable
of physically isolated target systems and relations betwieem in coarse- probability distributions.
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Our fundamental assumption, which conforms to the welland elastic deformation.
established practice in algebraic anéeliential geometry, is
to model state spaces in terms of isomorphic coordinatizing 2 Evidence for the torsor structure of unital quantities
maps to the real line. We have a T‘“mber of good reasons Q. are now fully prepared to answer the question: what is
sticking to real numbers. These include not only the Iargg unital quantity? Our answer relies on a one-dimensional

variety of fully familiar and well-understood propertiekre- variant of the standard definition of space coordinatizatio

als and their .astc_)nishing success in local and global marbuite simply, aunital quantity(i.e., a quantity with a mea-
fold coordinatization, but also the fact that real numbarcst surement unit) is an isomorphism map from the underlying

tures admit numerous useful constructions, mcludmg@artquantity state space to the (positive) real line. In the exam

sian product® xR, direct sunR &R, n-dimensional coor- ple of length, a unital length quantity is given by a complete

. " . .
dinate spaces", extenspns to complex numbeéls-iR, and inearly ordered commutative semigroup isomorphism of the
passage to all sorts of important substructures, such as

continuum of strictly positive realR.q, the subsets of ratio-
nal numbersQ and integer#, or just natural numbem, to
name a few.

Because many familiar extensive physical quantities (ineetween the state spaéé of positive line segments and the
cluding length, mass, and absolute temperature) admit onpsitive real lineR.o, understood as the range of their uni-
positive numerical values, it is common to discard all unintized lengths. Recall that ardered semigroup isomorphism
terpreted surplus elements and work with the subsgtof iS a one-to-one and onto mapping that preserves the semi-
strictly positive reals. It should be noted that in this reeli group operations, and it also preserves and reflects the orde
numerical setting there are only two basic measuremenfelation. Importantly, we know from7] and [3] that com-
theoretically important structures to consider: the radtlin-  plete linearly ordered semigroup isomorphisms of the kind
ear order< for comparison purposes and the addition opdisplayed above do exist.
eration + for aggregating magnitudes. Although there are We shall see that the isomorphism-based definition of a
many options, it is common to give priority to the Holder per-unital quantity is completely general. It applies equaligliw
spective 7], which is in favor of the Archimedean ordered also to all the other kinds of quantities, such as time anctele
additive structuréR., <, +) of positive reals, upholding the tric current, but some of these may require the ordered addi-
laws of complete linearly ordered positive commutativeisemtive structure of the full set of real numbegs'
groups'® By way of contrast, we should also include the Next, we have to show that each linearly ordered semi-
multiplicative group structuréR., 1, -) of positive reals (and group isomorphism of the fornf : £ — R.o is automat-
that of nonzero realéR.oq, 1, -)), known to be crucial in in- ically endowed with its intrinsic “built-in"unit of lengththat
vestigating the scale transformations of unital quarstiind ~accords with the classical understanding of unitized quant
scalar multiplication. Finally, numbers are also needead fdies and modern definitions of units of measure. To warm up,
constructing numerical powers of quantities, such as squa@ur immediate interest is in answering the question “How is
roots, cubic roots, and so forth. 1 meter defined?”

It is now time to examine the mathematical structure of AS Wellknown, since 1983, theeter unit is defined some-
state spaces in more detail. Once again, there are many $ibat theoretically in terms of a designated Euclidean lege s
verging options, but in the case of length one obvious choid®€nt in the following way (see page 18 i)
is the linearly ordered additive semigroup structU# <, =)
that matches the similarity type of the preferred additive Lo : A
structure of real numbers. This state space structure is not eled.by light in a xacuum during the time interval
only heuristically plausible but enjoys a solid justificati of 1:299792458" of a second.

Be.cause states gssociated with.extensive quantities $teare g .1 use 1meter is officially defined asthe length of a
universal propgrnes obouqded intervalshat d_epend pnly straight-line segmentaveled by light during an agreed-upon
on the. underlying geomgtnc strugture of continuum Illnes %fime interval, we have a good reason for sticking to the line-
seml_-lmes, they automatically satls_fy 'Fhe laws of_ compeea. segment ontology of length states.
relations? < ¢ and support the definition of additive combi-
nationst ¢’ of statest, ¢’ € Z. In Euclidean geometry, we LIalthough the existing literature of representational measient theory
can obviously compare line segments in terms of the familidf.2. [13l. and [16]) tends to focus exclusively on Holder style represen-
“ » . . - . tation results in ensuring the existence of certain strecpueserving map-
shorter-than”relation and treat their addition in termsan- pings, it is important to bear in mind that this is not the onlyiop. For ex-
catenation, modulo spatial congruence. Note also thagsstatample, any state space”, ) that meets the definition of a one-dimensional
are usually equipped with a dynamical structure. For lengtheal vector space is automatically linear isomorphic to thitarespaceR, +)
the most common example of state dynamics is given by Stagéreals. And the same idea extends also to one-dimensiteirly or-

. . .—.deredvector spaces and even ordered semilinear spaces, such gsatiee
changes of material bodies caused by temperature varatgn . - .y of strictly positive reals over the semiring of reals. Anathes-

sibility is a one-dimensional rational or complex linear spaEor us, real-
valued isomorphisms constitute the heart of unital quastdfea given kind.

(&L, <, ") % Rso, <, +)

Onemeter is the length of a straight-line path trav-

10For ordered semigroups and related concepts 3par{d references
therein.

157



MEASUREMENT SCIENCE REVIEWL7, (2017), No. 4, 152-177

Concretely, we say that a unital quantity presented by the(i) At a given instant of time, in its internal material satii
isomorphism mapping_ : £ — R.q is intrinsically uni- environmental conditions and other contingent factors,
tized by 1 meter, provided that the inverse map equation the target flagpoléinstantiates a unique line segment
fm = £71(1) holds, where/m denotes the line segment de-
scribed in the aforementioned definition mkter and 1 is
the numerical unit irR.o. In other words, the unital quan- (ii) The unital quantity/, unitized by Imeter in the sense of
tity presented by/ is unitized by 1 meter exactly when it the definition formulated above, satisfies the assertion’s
assigns number 1 to the line segmégt (modulo congru- condition £(AB;) = 5.347.
ence) traveled (i.e., instantiated or realized) by lightirtty
the prescribed time interval. As expected, a unital quﬁntitNOte that these truth conditions hold (or fail to h0|d) about
£’ is unitized by 1centimeter provided that the line segment T regardless of whether the flagpole’s length is measured or
defined by its inverséem = £~1(1) satisfies the equation whether there are any other flagpoles. When one measures
L(fcm) = 0.01, where£ is unitized by 1meter. This ex- the flagpole’s particular unital length (e.g., its length-i
ample will become important later on when we discuss scal@€ters), the aim is testimatethe unknown numerical value
changes of the fornt’ = 0.01- £. Thus, fixing a unital quan- ©f this unital length. The important point here is that this
t|ty L for |ength means Specifying a unit of measure in statgnknown numerical value is assumed to be an objective
space? for length that can be instantiated by a concrete mghathematical property of the line segment that is instéedia
tion of a physical entity. by the flagpole, and thus is conferred upon the flagpole’s
mextant length condition. We regard this to be the underlying

The reader may wonder why do we use isomorphis toloqical i bout the truth-maki | ;
rather than homomorphisms in defining unital quantities' 00dical assumption ~about the truth-making role o

The reason is that flerent isomorphism maps sendfeli- physical-geometric states of measured systems. So if we

ent states (and therefordfdirent measurement units) directly esiimate thet valule gj&;ugtgéliie;gth as, S%y’ dl.ym% in the
to the same real number unit 1. In this way, each unital quaR—a -open interval | 35. ) measured directly once

tity is unitized by exactly one state, so that states stand iR the meter unit, th.en the measurement ’operatlon gIvVes Uus
a one-to-one and onto correspondence with unitized quan _completanzformatlon about the flagpole’s extant objective

ties. All this readily generalizes to any base quantity. An ngth state: T he proposed st_ate-based definition of Iength
as we will show below, another redeeming reason is that t flagpoles is technically pictured by the commutative

setlsom(, Rso) of structure-preserving isomorphisms be- lagram

tween a state spac# and positive reals is a torsor over the

group of scale transformations that has many spectacular ap Length

AB; in the flagpole’s associated state sp&fe

plications in quantity calculus and dimensional analy#is. 8 Rso
far as measurement units are concerned, all informatiam is i state

the real-valued isomorphisms on states. One may complain instantiation

about the seemingly far-fetched continuum of measurement £

units for length. But as we will see later on, this is not a &

problem, because one can always choose a subtorsor of unital
quantities that singles out a convenient subset of countablThe diagram illustrates how the unitized length of flagpoles
many measurement units. belonging to the sef is determined in terms of instantiated

Metrologists have long referred to and investigated varirealized) states.
ous kinds of real-valued physical quantities. It will heljpro ~ We can now put all our conceptual pieces together. Among
project to distinguish betweamital quantities andyeneral all the ingredients that go into building a torsor theory oi-u
guantities. The latter is obtained from the former by comtal quantities, three stand out as especially fundamental:
position with suitable real-valued functions. For examfle
the interest is in establishing whether or not there is aurre (i) The isomorphism clasksom(.#’,R.0) of unital quanti-
of a sufficient magnitude in a given circuit powered by a bat- ties of a given kind is essential for the formulation of

tery, then the pertinent general quantity may be obtainz fr quantity calculus. Itis comprised of mappings that send
a unital current quantity that is composed with a two-valued ~ physical-geometric states to_ numbers in a one-to-one,
functionBool : R-g —> {0, 1}, sending all small current values onto and a structure-preserving fashion. Although here

(determined by a unitized threshold) to 0 and sending the res ~ we work with state spaces that are equipped with an or-
of the values to 1. Additional examples will be discussed in ~ dered additive semigroup structure, the method applies

the next section. equally well also to state spaces that are endowed with
Now we are ready to provide the final list of truth con- ~ Other types of structure. The starting point for the in-
ditions for lenth-theoretic metrological statements: #se vestigation of a physical quantity is a one-dimensional

Sertion_ “Flagpdef_ is 5.347 m_eters long” if‘We abputf's ) 12Modeling the flagpole’s blurred endpoints may require a stiatil (or
length if and only if the following two non-epistemic condi- fuzzy) structure that in a tradeffananner simultaneously enriches and com-
tions hold: plicates the underlying deterministic model.
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coordinatizing system of real-valued isomorphisms that
faithfully mirror the unknown or less familiar relations
between states in terms of well-understood numerical re-
lations.

(i) We shall see that the commutative groApt R.g =q¢

I som(Ro,Rs0) of automorphisms on positive reals, hav-
ing the form

(Ro0, <o +) —2— (Rag, <, +),

where for allae R, we seio,(a) =¢ @-awith a unique

a > 0, is essential in modeling quantity scale transfor-
mations. Because here the group operation is given
by the composition of automorphisms, satisfying for alll
a,a’ €R.g

(a) Identity: oy = 1dg_,;
(b) Multiplication: o, 0 0’ = 0.«/; @nd
(c) Inverse:o,-1 = (0,) 7%,

there is a natural isomorphism relationship between the
multiplicative group(Ro,1,-) of strictly positive reals
and the scale transformation grodpt R.o. It is easy

to verify that eachr in the multiplicative group of reals

is mapped byr : R.o — Aut R.¢ to its unique scale
transformationo,, and it is immediately apparent that
the multiplicative group structure & is preserved in

a one-to-one and onto manner.

Of special importance is the intimate relationship be-
tween two unital quantitieQ and@’ in Isom(.%,Rxo).

In complete analogy with geometric coordinate transfor-
mations, the unitonversiorof quantity@ into quantity

@ is achieved by composing the first unital quantiy
with a suitable similarity automorphisia, € Aut R.q,

as shown in the commutative diagram

<y7<,+> <R>0’<’+>

Ou
Q/
<R>0’<’+>
in which we have the equalitie® = a-Q =45 0, ©

Q for somea > 0. Thus, all unital quantities in
Isom(., R ) are of the scalar-product formQ, where

they are obtained. Physicists label these automorphic
scale transformations gaissivebecause there is nothing
objectively physical that changes under their actions.

It turns out that the analysis of quantities can be signif-
icantly deepened by introducing, in a dual fashion, the
“active” group Aut . =4; Isom(.,.) of dynamical
automorphisms of state spaces, encoding all causally in-
duced state changes in the target system, independently
of any access to numerical values. From a foundational
standpoint, the duality between active and passive auto-
morphism groups can be viewed as a bridge (realized by
guantities) between ontologically stipulated truth-nrake
states endowed with causal powers and epistemically ac-
cessible numerical counterparts. To advance to the active
side of transformations surrounding quantities, we now
turn to the final basic ingredient of unital quantity calcu-
lus.

(i) As alluded to above, besides unital quantities and

their scale transformations, we need dynamical trans-
formations on states that characterize temporal and
otherchangesdn the quantity-bearing target system. In
conformity with scale transformations, the grotpt .
consists of automorphisms of the fodp : .7 — .7,
defined byd, =qt @ 10 0, 0 Q, where@ = a - Q with
somea >0 ando, = Qo d, oQ L, as seen in the
commutative diagram

Q
(S, <8 (R>0,<,+)
6(1/ [
Q/
<ya<a+> <R>Oa<7+>
Q—l

It is no surprise that the state automorphisfigsmay

be obtained in a one-to-one and onto manner from scale
transformationsr,. Furthermore, it is easy to check by
elementary calculations that the passage to state auto-
morphisms from scale transformations is independent
of the choice of unital quantity?. This brings out

the all-important dual group-isomorphism relationship
between the fundamental automorphism grodps.”
andAut R.g.

Q.7 — Rso Is a designatedeferenceunital quan-  Thege are all the ingredients we need for torsors of unital
tity, anda > 0 is a unique scaleonversioncoefficient o aniities of a given kind. We have been repeatedly refgrrin
in R>0.. Techmcally, the most s_trlkmg featgre of aut_O'to the setsom(.¥,R.0) of unital quantities and indicated that
morphism groups is the canonical group isomorphismy is 1, rnished with the structure of a torsor over an automor
Aut R0 = Aut Isom(.7, R-.). phism group, but we have not fully explained what it is. We
We contend that the classical approach treats scale camw pause to recall the pertinent definitibhEortunately, the
versions only in a “passive” manner, meaning that thelefinition is pretty minimal.

main concern is the symmetry grodyut R.q that acts
on quantity values independently of their origin or how

13An elementary discussion of torsors may be foundin [
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2.3. Torsor structure of unital quantities Itis easy to modify the foregoing definition of a torsor to in-

In the case of unital quantities of a given kind, the startclude topological, dferentiable, measurable and many other
ing point for the specification of a torsor is a multiplicativ Species of groups and spaces. All one has to do is enrich the
Abelian group(G, 1,-) that introduces the torsor structure ongroup and torsor space of interest with a topological orrothe
a setX in the form of a group actio®* Simply put, atorsor ~ structure in a manner that is compatible with the group actio
over the groups is a nonempty seX, equipped with a free  There is one glaring omission from the just given definition
and transitive action of on X. of a torsor. The definition is not complete without specifyin

In unwrapped and explicit termst@rsor (a.k.a. a principal a set of mappings that relate pairs of torsors in a structure-
homogeneous space, which is a special case of a princigakeserving manner.
bundle) over the grougs, denoted byg—~X, is defined by

. l Recall that &orsor map
the following three conditions:

G X L gy
. . . >
1. Group action:There is a designated mgpx X ——

X, called theleft actionof groupG on setX, which as- from torsor G~X to torsor G~Y is a mapping of the
signs to each group elememE G andX € X a unique form H : X — Y which renders the following diagram
element ofX, denotedy > X, in such a way that the fol- commutative:

lowing actionaxioms (familiar from dynamical systems

theory) hold for allg,g’ € G andX € X:

GXX ————X
(a) Identity: 1 > X = X;
(b) Composition of actiony’ > (g > X) = (g’ -g) > X. ldgxH H
2. Transitive action:The above specified action is assumed >

to betransitive i.e., for allX, X’ € X there exists @€ G GxY Y

such thag > X = X’. In the language of dynamical sys-

tems theory, the “transitivity” assumption means that fofrpat is to say, the equality(g > X) = g » H(X) holds for all

the given group action oK there exists exactly one or- hointsx in X and for all group elementse G. A one-to-one

bit, namely the entire se¢t itself. To be more concrete, ang onto torsor mapl : X — Y is called atorsor isomor-

in torsor X there is no preferred or distinguished ele-phismfrom torsorg~X to torsorG~Y. If there is a torsor
ment. isomorphism between torsoxsandY over the shared group
G, then we writeX = Y. Moreover, we denote the set of all
ditiong > X =g’ >X = g = ¢ holds. Equivalently, for torsor isomorphi_sms frc_Jm tors@~X to torsorng by

a free action the conditiog> X = X —> g = 1 is sat- Isor‘_n.mr(X,Y). It is routine to_check. that a sequential com-
isfied. Informally, “freeness” means thafigirent group position of two torsor maps is again a torsor map, and the

elements act diierently on the elements of torsk i.e., identity map is trivially a torsor map. o .
the stabilizer subgroup at every point is trivial, specified Next, we turn to examples of torsors arising in quantity cal-
by the group’s identity element. culus. Keep in mind that each commutative gr@igan be
The free and transitive action requirements are equivatil—”n.ed Into a‘”‘"?‘ tgrsorg ~G by Viewing Its group op-
. X S eration as an action: G x G — G on itself and by setting
lent to the following simple condition: g 1 .
5 =df g’ -9~ with g,g’ € G for the quotient element. In par-
4. Ratio law For every pair of elementX, X’ € X there ticular, the multiplicative grougR.o,1,-) of positive reals is
exists a unique elemente G such that the equation g trivial torsor over itself.
g > X = X’ holds. Here the unique group elemenis
denoted by theatio expressionxy and is called thguo-

tient X by X. So there is guotientmap—: XxX — G

3. Free action: The action idreeg, i.e., the uniqueness con-

For us, the most important example is the torsor
Isom(.¥,R.0) of unital quantities of a given kind over the
) T : automorphism groupgut R, of scale transformations, iso-
which sends each paiK(X’) in X to & unique group el- -, hhic o the multiplicative groufR-o, L,-) of positive re-

=X =X ' ' ) : o .
ementg = S_UCh thag > X = X’. Quotients will be als. This torsor is specified by the (left) action
of paramount importance later on, when we show how

unital quantities of the same kind can be divided to get
“pure” numbers. The analysis just given is actually mod-
eled on Maxwell's account of quantities and their idealof the multiplicative group(Rso,1, - of reals on the set
ized measurement. Isom(.#,Rs) of unital quantities defined on state spage

(Rs0,1, -) X 1S0M(.-7, Rs0) —— 150m(., Rs0)

14Note that the term “torsor” comes from the French “torseurd amay ~ We know from our earlier discussion of quantities that each
have originated from “torque,” aactionof rotation. As we shall see, torsors real numbera > 0 and each unital quantit determines
hold the key to understanding all of quantity calculus. a unique quantitp’ = a > Q, defined by the simple scale
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changeQ'(s) = [a@ > Q](s) =df a - Q(s) for all statess. Ev- quantity typeof the formlsom(.¥,R.o) provide a powerful
idently, both action axioms are satisfied. Furthermores it itorsor-theoretic account of dimensional analysis.
clear from our previous analysis that any pair of unital guan Conventional wisdom has it that the units of measure and
tities Q and Q@ determines a unigue real number- 0 in  associated unital quantities of a given kind used in applied
the multiplicative group of positive reals such that theagu sciences do not form a continuum. What this means is that in-
ity @ = a-Q holds. In the present case the real numbestead of labeling the units by arbitrary positive real nurape
is denoted by the quotien% that permits us to convert we may prefer to label them more accessiblySbis metric
the Maxwell formula (discussed in the Introduction) inte th prefixesreferring to the everyday use of integer powers of 10.
equation®’ = % -Q. In the classical approach, this equationSo under the metric approach the set of measurement units of
characterizes the idealized measurement of the unital-quaagiven kind is at most countable.
tity Q of interest relative to a given reference “unit” quantity At this point we have a bit of a confusion to clear up. The
Q, where the quotien{% denotes the number the measurecritical point to notice is that torsors of isomorphisms be-
reads & a perfect analog instrument’s display. The torsotween state spaces and real numbers provide the ideal con-
Isom(,R~) of isomorphisms is based on the idea that uniceptual arena for truth conditions of metrological proposi
tal quantities are special forms of numerical coordingiiwes  tions, definitions of unital quantities, and for specifyidg-
of geometrical state spaces. rived quantities. In the torsor picture, we can accommodate
Because all three grougB.o,1, -), Aut R.o, andAut .#,  the accepted metric-system wisdom by specifyingstligtor-
discussed in the previous subsection, are pairwise isdmgrp sor 10%-Q of unital base quantities, defined by the countable
we end up with three essentially equivalent specificatidns ubset---,102.Q,101-Q, Q,10-Q,10?-Q,---} of unitized
the torsor of unital quantities. To clarify the slightigrence quantities, generated by a designated unital quagt{s.g., 1
between torsors introduced over the last two groups, we haseter, 1 kilogram, 1 ampere and so forth). So the elements of
ten point out that the state automorphism gréufi . acts this subtorsor can be written as"®@wltiples (with integers
on Isom(.¥,R.q) from theright. In more detall, it has the n e Z) of the reference unital quantit®, and the correspond-
right action form ing scale names are given by the familiar Latin name-prefixes
(e.g.,nano for 1072, micro for 107, milli for 1072, kilo for 10°,
< mega for 10°, giga for 10°, etc.). According to the definition
Isom(.7", R>0) x Aut ¥ —— Isom(.7, R>0) of the metric subtorsor £0Q, t%e group ofgscale transforma-
satisfyingQ <61 = Q and @ <6,) <6, = Q< 6, for all  tions is given by the infinite multiplicative cyclic subgrou
unital quantitiesQ and strictly positive reale ande’. The 107 of integer powers of ten. Similar subtorsors can be iden-
key lies in observing that this action is also free and tranfified also for imperial and other non-metric systems ofainit
sitive. Since here in accord with thmpatibility require- ~ quantities. A moment's reflection reveals that the subset of
ment the right action can be transformed into the left actiorgtional-valued unital quantities in torstsom(.”’,R-o), de-
by settingQ <6, = o, > Q for all unital quantitiex? and reals  fined on the counterpart countable subset of the state space
a > 0, the isomorphism clagsom(., R.¢) is guaranteed to -, iS & subtorsor over the scale automorphism grsuipQ- o
be a torsor also for the automorphism gropt .~ of state  Of positive rational numbers. The analysis just given works
tranformations. We are quick to point out that in this formu-also for supertorsors of complex-valued unital quantitiesr
lation of group action the unital quantities vary in the saméhe scale automorphism groét C of complex numbers.
way as states vary. The foregoing two Compatib|e (passive In Subsection 2.2 we discussed the truth conditions for
and active) group actions are commonly taken to imply thahetrological propositions. To get clear on the connectien b
Isom(.%,Rs0) is actually abitorsor. Fortunately, here we tween quantities and propositions about their values, itido

need not engage a general theory of torsors. As expecté)ﬁ gOOd first to have some idea of what propositions are. For
the evaluationmap a given unital quantit® : .¥ — R.q, all elementanypropo-

sitions about its potential values are specified by subsets
€
Isom(.#,Rs0) X ¥ ———— Ry

- . . . . [Q<el] de{S’Q(S)Sa’}
defined by€(Q,s) = Q(s) is an isomorphism. The essential

thing to note here is that a measurement act can be thouglitstates in& that satisfy the condition stating that the value
of as an approximate empirical realization of the evalumtioof quantity@Q is not greater than. This includes the special
map, applied to the target system’s measured quantity and {tase[@Q = o] discussed earlier. In addition, using Boolean
extant state. complements and intersections, we can quickly obtain more
To say that a unital quanti@ of a given kind is equipped complex propositions having the forfa < Q < g].
with a particularunit of measuresimply means that it is an ~ The logical structure of unital quantitQ, needed for rea-
element of a certain torsésom(.#,R.q) over the automor- soning about its values, is encoded by the Boolean (sigma)
phism groupAut R.q of positive reals. For this reason it is algebra®q of propositions, constructed from elementary
profitable to view torsors of unital quantities over a giverpropositions using set-theoretic Boolean operations. # pa
scale conversion group as dimension-theoretic encodihgs $age from quantity to quantity@ =y - Q is reflected in the
the kinds or typesof unital quantities. As we shall see, propositionfa <Q <g] =[§ <Q < g]]- If deterministic
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truth assignments to elementary propositions are harceo-sp reals. In more detail, the total unital length is given by the
ify, then it becomes necessary to reformulate the basicametrsum L, (€ + ¢) =qt Li(€) + Ly (¢) for length stateg and¢’
logical statements into probabilistic statements, usiriigible  instantiated by the respective constituent flagpplasdf’ .1°

probability measureB defined on the Boolean (sigma) alge-  Thjs simple algebraic apparatus immediately generalizes t
bra, of subsets of”. These statements have the basic formyiner finitely many juxtaposed flagpoles and to any finite col-
P(IQ < al) = p, stating that the probability that the value ofjection of length-bearing physical objects. And, as inttida

quantityQ is not greater tham, is p. Under a frequentist on- the product construction works equally well also in the am-

tology, the probability measurdsare conveniently thought pience of other types of combined systems in which unital
of asstatisticalstates instantiated by the target system. guantities behave additively.

There are several useful ways of adding new structure to At this point we make the general discussion of torsors
any torsor of unital quantities. For us, a substantive eXampof ynital quantities more concrete by considering torsoas t

defined by

, Q 2.4. Leading examples: torsors of unital length and time
Q+Q =(1+ Q )-Q quantities
In this subsection our main order of business is to illustrat
a basic method of (i) specifying the pertinent automorphism

and the natural linear order structure, given by

Q<@ 1 Q groups of states and scale transformations of unital gtiesti
<& = i< Q’ and then (i) isolating the torsor of unital quantities uncien-
satisfying the monotonicity conditio < @ — Q+@Q" <  Sideration.
Q+Q". Torsor of unital length quantities

A quantity t_orsorlsom(f,]&o) over the autolmorphlsm As a first example of a torsor of unital quantities, we degcrib
groupAut R, is also a metric space under the distance l‘unctwhe torsor

tion d(@Q’,Q") =qi¢ I% - %’l. Simple calculation shows that

the distance function does not depend on the choic& of L =g 1S0M(Z, Ro0)

in the quotients. Thus, if needed, we can also think of

the torsor of unital quantities as a topological and hence @& unital length quantitiesover the automorphism group
Borel measurable torsor. Alternatively, the order topglog Aut R.g of scale transformations. As mentioned earlier, the
Isom(.,R+0) is given by the subbasis family of subsets ofstate space?’ associated with length-bearing physical ob-

the form{Q|Q <} and{Q|Q” < Q) forall @ and@”. jects is given by the linearly ordered semigroup of line seg-

When it comes to handling the unital quantities instantiMents and aiital length quantityis any isomorphism that

ated bycompositephysical systems (e.g., systems presenteaends line segments (encoding length states) to numbers in a

in terms of parallel combinations of electric circuits iniain structure-preserving manner. Recall that length staeesar

currents behave additively, or massy bodies given by s&parz?tam'ated by length-bearing physical systems with onestieg
parts with masses that also combine additively, along witff freédom, reserved for the length attribute.

similar cases involving volume or area), we can use a Carte- From a formal standpoint, the notion of unital length quan-
sian product construction. As a classic example, suppose W# is designed to accommodate quantityitizationandtruth
wish to calculate the combined length of two juxtaposed{corconditionsfor metrological statements about length. From the
catenated) flagpoles, symbolized by . Since each con- standpoint of applications, unital quantities provide tiest
stituent flagpole comes with its own respective state sj&ce hospitable environment for predictions and measurement in
and.#; for length, there is also a similar state spaégy for ~ Virtually all disciplines of science and applications. Wet p
the concatenated flagpole. Although these state spacessareunital quantities on the center stage because scientidtsxan
beled diferently, the are in fact defined by the same set aperimenters reason about systems or phenomendidiated
line segments. In modeling the length of respective flagpolégneasurement methods of interest in terms of unital questiti
f andf’, we can use unital quantitie& and L. As shown in that specifically fit the objects of their investigation.

the commutative diagram For instance, because distances and sizes in the universe
Lix Ly tend to be too big, astronomers utilize length quantities th
L x Ly RsoxR>o are unitized by special astronomical units, suchlagayear
(1ly = 9.5% 10 km) andparsecs(1pc = 3.09x 10 km), in-
+ cluding kiloparsecs andmegaparsecs. By contrast, biologists

work with light microscopes that have a resolution of about
R.o 200nanometerglnm = 10~° m) and atomic physicists inves-
Liyy ” tigate the ultrasmall diameters of atoms in the range from

the unital quantities of flagpoles determine the quanfity T , . . o
. . L. We can give a substantially more technical characterizdiijomoting
of the juxtaposed flagpoles, using the addition of states angl; .« additions specifies a torsor map.

gﬂ_f’
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about 01 nm to 0.5nm. The average distance between théelorsor of unital time quantities
centers of the nuclei of two bonded atoms in a molecule i/i
even smaller and is commonly expressediimgstromunits

(1A =101%m). A similar pragmatic unitizing strategy ap-
plies also to time, mass, energy, electric current, andgb.fo

s another important example of a torsor of quantities we
now consider the torsor afnital time quantities A minor
complication arises from the fact that physical time has two
distinct ontologies, as immediately seen in conceptuaHy d
Somewhat naively, the torsdr of unital length quan- yerging answers to questions such as “What is the time?” and
tities over AutR.o can be viewed as families of posi- «“How long will it take?”. In contrast to many other views,
tive real numbers annotated with various measurement unifss find the following two-sorted temporal ontology to be of

(a.k.a. dimensioned scalars), includifig _me_ters|a >0} = overwhelming importance in quantity calculus:
{Binches|B > 0} = {y kilometers |y > 0}, and similarly for mass:

{a kilograms| e > O} = {Btons |8 > 0} = {y pounds|y >0}, andso (i) The point-based ontology, intended to capture the

forth. Note that on this account the notion of unital quaedit instantaneous occurrence of classical idealipeiht

involves only thenamef certain measurement units without eventsn terms of temporal momentghenthey occur at

specifying their actual physical-geometric referentsr ks any place in a three-dimensional Euclidean simultaneity

the torsorL is best seen as tHength quantity typei.e., the space. Typical colloguial examples of such point events

type of quantities unitized by a length unit of measure. include flipping a light switch, collision of two particles,
Now, if the interest is in length values involving a spe-  firing a gun, and so on.

cific measurement unit of length, e.g., given by the unital
length quantityZ, then without any loss of generality one can
employ an alternative (albeit less convenient) torsor tiaia

Roo L= {a- L | >0} for the length torsok. that explicitly nite bounded region of classical space. Often-discussed
displays the chosen reference unital quanfity : . .
examples are falling bodies, earthquakes, and the cyclic
The situation becomes somewhat more complicated when  penayiors of pendulums, quartz crystals, cesium atomic
we consider thenitizedlength of curves, perimeters of areas clocks and stopwatches.
and other length-bearing geometric objects. For example, i
is well known that the numerical value of the circumference These temporal ontologies are often crafted in a mutually
of an ellipse is given by a complete elliptic integral of thereductionist manner, so that durations can be viewed as fini-
second kind that cannot be evaluated in terms of elementagyry closed convex continuum-type subsets of the space of
functions. Even if the unital length values of the semiminoinstants (withbona fideinitial and terminal boundaries) and
and semimajor axes of the ellipse (used in defining the &lipt conversely, temporal instants are thought of as consituti
integral) are known exactly, the value of the circumfereisce elements in the form of slices of durations. Since clocks usu
available only approximatef ally indicate time instants and measure temporal durations

Suppose the earlier discussed flagpoleas an elliptical We shall integrate these two approaches within a single geo-
crossection (constant along its length) and the intereist is metric framework.

(i) The interval-basedntology that treats time in terms of
durations(i.e., finitary lapses of time) of variousterval
eventshappenings or spatiptocessesconfined to a fi-

determining the flagpole’s perimeter. Theoretically, théial In conformity with neo-Newtonian space-time theory, it
perimeter of physical rods with elliptical crossectionsyrhba s customary to model physical time in terms of a one-
specified by the composite of two maps: dimensional future-orientedfine Euclidean spacé.
instantiate ' c There is a simple alternative approach that exploits the
Rods ——————— Ellipses —— R0 £ torsor structure introduced earlier. To characterize W t

In the diagram, the first map indicates the instantiation oforted ontology of time, we need two spaces: (i) the one-

an ellipse by the crossection of a target physical ¥od. dimensional linearly ordered continuutit,<) of time in-
And the second magg refers to the circumference of the stants? instantiated by point events associated with motions

(instantiated) ellipse with a numerical value measuredén t Of and interactions between physical entities (e.g., zodrel

units (_)f Iength quamityﬁ Chose_n for the Iengths of QXQS of 18t js important to emphasize that we are not identifying theeated
the ellipse. In terms of our setting, the flagpole’s perimete mathematical structure of time with the objective physical titngurports
given by the equatiomerimeter(f) = C(E;) - £, whereC(E;) to model and we are not assuming that these two entities ama0igihic” in

. . . . any useful sense. Simply, we regard physical space-time agisiogé¢hat
denotes the circumference of the elllpsﬁl&tamla’[ed by exists in its own right and with its own manner, and is endowéH eertain

f in the length unit of£. Unitized Jordan and Lebesgue physical-geometric structures that classical neo-Newmiodels are able
measures of geometric objects, including their areas akd vao capture to an acceptable degree of adequacy. In this papare ontolog-

umes. and unitized probability densities are handled ahm” ically committed only to space-time structures that are mininajuired in
' characterizing unital quantities in the context of kinermstnd dynamics of

classical bodies, particles and fields.
18Alternatively, the circumference of an ellipse can also beratterized 191t should be clear that the continuum time line’s points modslsical
in terms of various slow-converging infinite series. time instants and they are not numbers. Real numbers are usedrtiina-
17Recall that in continuum mechanics a physical body is assumed-t  tizethe linearly ordered topological time line relative to somé.un
cupy a compact spatial region delineated by a boundary.
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particles), and (ii) the one-dimensional, future-oriehtin-  t’. Of course, we could, somewhat arbitrarily, choose the re-
ear spaces, <, +) of temporal intervalsinstatiated by dura- verse linear order. To make a better sense of this dilemma, we
tions (modulo temporal congruence) that are realized by resshow that the spatial orientation of spaces actually inher-
world interval events involving bodies, particles or fields  ited from the orientation of the one-dimensional linearcgpa

By analogy between line segments and temporal intervalgf time intervals capturing durations. The upshot of this fo
two time intervals aréemporally congruenwvhen there is a OUr discussion is that orientation is an important (albeg:r
temporal translation that uniquely translates the firstriigl ~ Ularly ignored) additional structure of linear spaces ibat
into the second interval. Since temporal congruence is corflorphisms between them are not required to preserve. For-
patible with the ordinary composition of temporal intesval tunately, since in the case of the linear spa&€ef durations
(the addition of equivalence classes of two time intervals ithere are only two possible orientations, namely fiere
given by the equivalence class of addition of their represef@ndpastorientation, the problem is quite simple.
tatives), it is straightforward to interpret the additior- 7’ In sum, the temporal linear order of time instantsTiis
of time intervalst andt’ in 7 as a sequential combination obtained from the ordering of durations in the following way
of durations of instantiating events. We also need a stru¢=<t’ if and only if t' = t + = holds for a future-oriented dura-
ture that allows to prolong or shorten time intervals. Thation .

structure is the scalar product in the linear sp&ceFinally, After this somewhat abstract and fussy account of the tor-
time intervals (modulo congruence) are linearly ordered bgor setup for physical time we now turn to the task of intro-
theshorter-thantemporal order relatiom < 7’. ducing the torsor of unital time quantities. The situatien i

The point to be taken away from all this is that the under@n@logous to unital length. Specifically, unital time quteeg

lying structure of the physical time is more richly struetdr 2r€ given by the seisom(J’,R) of isomorphism maps from
than the state space apparatus for length, and therefage it 1€ One-dimensional linear spageof time intervals (encod-
quires some extra stage-setting. As we shall now see, rat{8p durations) to the spadeof reals. However, we must not

than referring to a state space, reference is made to the-und@r9et that the numerical coordinatization of physicaléim-
lying torsor v~ of time instants over the group of dura- cludes both time instants and durations. A natural straiegy

tions, given by theight (free and transitive) action to treatthem in parallel, as shown in the commutative diagra

- TxgJ —=* T
TXT — T,
of the additive groug.7,0,+) (underlying the linear space CxT ¢
(T, <,+)) on the spac@ of time points. This action assigns
to each time instantand a duratiorr a unique instant, de- RXR + R

noted byt ¥, obtained from by means of temporal trans- . .
. ; . . . : : in which
lation given by the duration. Here is a simple illustrating

example: we know that the equation “2 o'cloek 3 hours (i) ¢ is a coordinatizing(a.k.a. dating) isomorphism map

= 5 o'clock” is meaningful but the equation “2 o’clock 3 from the linearly ordered structut®, <) of time instants
o'clock = 5 o’clock” of adding two temporal moments is not. to the ordered structurér, <) of reals with a unique

Recognizing that the just exemplified action of durations  starting moment of time, i.e., ttemporal origingiven
defines the torsorv». means that it satisfies the following by to = ¢~1(0), and

action axioms for all time instantsand durations andt’: N ) . . ) . . .
(i) 7 is a unital time quantity, defined as a linear isomor-

(i) Identity: t:+0=t; phism map from the linear spacE of durations to the
linear spaceR of reals. It is unitized by the duration
(i) Composition:(t 1)+ 7 =t (t+7). . =7 Y1).

In addition, in view of transitivity and freeness propestiéor  In more technical terms, in the above diagram the pairj

any pair of time instantsandt’ there is a unique time lapse presents a basic isomorphism relationship between the tor-
between them, henceforth denoted by the temptifirence  sorTv»& of physical time and the tors& R of reals, ex-

t —t, satisfying the equation (' —t) = t". To recover the du- pressed by the equati@it * 7) = ¢ (t) + 7 (7).20 In particular,
ration from two time instants, consider the toy-exampléheft if physical time is assumed to start at instaptvith coordi-
temporal diference of two time instants (dates): 11 o’clock -nate value 0 (e.g.,€cond or Ohour) and the time that elapsed

6 o’clock =5 hours. So we have an importatifferencemap betweerng and a later moment, sayis equal tor =t—tg, then
—:TXT— Z that assigns to each pairt() of time instants the time at is exactly¢ (t) = 0+ 7 (), measured in the unit of
the time lapse —t between the instants. 7", added to time “zero”.

When Working with physica] time, it is extreme|y impor- So as to suit the intended interpretation of unital time quan
tant to introduce its temporal orientation, commonly motidities, we now look closely at the base measurement unit of
Yated by the human _eXperlence_bamrefaﬂenemporal 20since physical time instants cannot be addR just the ordered set of
linear orden < t', stating that instantis earlier than instant reals, whereas is the vector space of reals.
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time. As well known (see, e.g., page 19 @) in Sl the The earlier developed pattern for defining torsors of uni-
standard unit of time is &econd and it is defined, using our tal length and time quantities is the same for all base quanti
notation, as follows: ties, including in particular the tors® =4¢ | som(.#,R.0)
of unital massquantities and the torsdr=4¢ | som(.#,R.q)
The time quantity7 :  — R is unitized by 1 of unital electric currentquantities over the automorphism
second provided that the future-oriented time in- groupAut R. of scale transformations. The structure of state
terval sec =4t 7 (1) in 7, modulo temporal spaces for mass and electric current is discussed]inlf
congruence, encodes tbaration of a cesium (Cs this way we obtain the required torsor-theoretic backgdoun
133) atom (at rest and at temperature 0 Kelvin in for the MKSA system of quantities.
the ground state) to perform exactly 9,192,631,770 We can now make a fundamental distinction between two

complete microwave oscillations. sorts of unital quantities. For example, in the case of time,

we can characterize time quantity in terms of the torsor
Isom(Z,R) of real-valued unital time quantities over the au-
tomorphism grou@ut R of scale transformations or in terms

As in the case of length, all unital time quantitigs
have the forn7” = -7 with a unigue time scale-changing

nonzero real number, given by the automorphism grou )
g y P group ¢ o subtorsof som(Z~0,R-0) over the automorphism group

Aut R =q¢ Isom(R,R) of the one-dimensional linear space . .
of reals, known to be isomorphic to the multiplicative groupAUt R-o that employs only future-directed temporal units.

(R40,1,-) of nonzero reals. In a dual manner, to obtain aIIHere we can also think of torsésom(7,R) as anextension

unital time quantities from a reference unital time quantit of time torsod som(9>o,R>_o). ) .
we can utilize the automorphism grodut 7 of transfoma- The construction of unital length and time quantities de-
tions on time intervals scribed here can be generalized far beyond the scope of the

At this point we might ask the question: When is the metro(—:urrent paper. For example, treatments of unital tempera-

logical statement “Physical eve@tasted 378 seconds” true? ture, unital energy, unital potentialftérence, and a host of

The answer to this question involves a temporal time inierva?hther quantities can be subsumed in a unified manner under

and a unital time quantity. Concretely, the statement is trut e above presented torsor-theoretic framework._ )
Our dfort to develop a torsor framework for unital quanti-

provided that (i) the above mentioned physical event'salctu i N
ties would not be worthy of serious attention if we could not

duration is faithfully encoded by the time interval, mod- i ) . "
ulo temporal congruence, belonging#, and (ii) the unital eﬂf.ec'qvely handle the structure aferived unital quantities.
This is our next topic.

time quantity7 unitized by lsecond satisfies the equation
T (1) = 37.8. Using time instants and coordinatizing “date”
maps¢ : T — R, these same ideas can also be applied to truf®.  TORSORS OF DERIVED UNITAL QUANTITIES

conditions for metrological statements about the time ef odn this section we look more closely at the family of derived

currence of point events. guantities, definable in terms of torsors of given base Linita
There is a crucial distinction between continuous unitafjuantities. Once we accept the torsors of base unital quanti
time quantities belonging to the torsor ties (over the shared group of scale transformations) d@s bas
structures of quantity calculus, our next task is to spettiéy
T =4t Isom(Z,R) algebraic operations on these and other torsors, needed for

over the groupAut R of temporal scale transformations andree_\soning a_b.out_dimer!sional analysis in general and dkrive
the associated discrete-valysaintertime quantities realized Unital quantities in particular. In contrast to the Drobiyfes

by a clock, stopwatch or other analog or digital instrument t {OP-down approach, here we proceed bottom-up from chosen
gether with a display module, designed to detect or measup@se quantities to derived quantities.

time. We know that clocks provide only a good approxima-

tion of the time at which an event actually occurs or endured.1.  Products of unital quantities

in the clock’s neighborhood. If not calibrated properlyeBv We begin this subsection with a brief overview of products of
ideal clocks may give dlierent readings, due toftérent time unital quantities. First, there is the tensor product o$tos,
settings or time units. More importantly, even if the analogised, e.g., in formulating the notions of unital area andalini
measuring clock’s pointer rotates continuously with canst volume quantities. )X andY are torsors over the groug,
angular speed, there is always a discrete, nonzero, fitlite, ahen theirtensor producis a torsor over the same grogh
servationally accessible time lapse between any pair of codenotedX ® Y, given by the following two conditions for all
secutive ticks or marks. Naturally, one can get a graduallglementsX e X, Ye Y andg € G:

better approximation of the time of occurrence of the evénto ) ] . )
interest with increasingly shorter lapses between cortisecu (i) The tensor product is defined by the quotiented Cartesian
ticks or marks, but in the end the approximation is halted by ~ Product

the Planck’s measure of time. Theoretical physicists wuayki

in the classical areas of physics usually circumvent thiety X®Y =q4; X ><Y/~
of restriction by passing to pragmatically more accommodat
ing models of time. that employs the equivalence relation specified by

165



MEASUREMENT SCIENCE REVIEWL7, (2017), No. 4, 152-177

(g > X Y) ~ (X, g >Y). The elementary tensor memberstwo product torsors in hand, it is possible to introduasné
of X®Y, defined by the equivalence classes of pairsongruenceelation= on the elements of product torsors and
(X,Y), are symbolized by ® Y. Note that the tensor write X@Y = Y& X, (X®Y)®Z = X®(Y®Z), and so forttt!
product is neither commutative nor associative in th&@he idea is quite straightforward. For example, although th
usual strict sense, but it satisfies these crucial propgertiproduct unital quantities. ® 7 and 7 ® £ for length and
up to auniqueisomorphism. Below we will spell out in time are formally distinct, they are neverthelesst congru-
more detail the algebraic properties of tensor productsent L7 = 7 ® £, meaning that from the standpoint of uni-
tization both product quantities exemplify the same unit of
measure. We will take up this issue with more precision in
. the next subsection.
GX(X®Y) —— X®Y, The last two conditions irProposition 1show that the
shared grougg can be viewed as a two-sided “unit” for the
whereg > (X®Y) =41 (g > X)®Y = X® (g > Y). tensor product operation, modulo isomorphism. With the ba-
Based on these conditions, it is routine to check that theoten Sic product operation on torsors in place, we can now define
productX ® Y is a torsor oveg. Even though the definition torsors for area, volume, and a host of other familiar geemet
of the tensor product of torsors looks weak and abstract, fitc quantities.
satisfies the following natural isomorphism conditions: To define the notion of a unital area quantity, we only
need the underlying torstr = | som(Z,R.o) of unital length
Proposition 1 For all torsorsX, Y, andZ over the same group quantities over the automorphism grodut R.o of scale
G the following torsor isomorphism relations hold: transformations. Givehb, the torsor of unitabrea quanti-
. ties is given by the tensor product tordo® L overAut R..
() XeY=YeX, So, for example, the area of a rectangular carpet is exgtesse

(i) The left action ofG on XY is given by the map

(i) (X®Y)®Z=Xa(Y®Z); in terms of the “lengthx width” tensor productL ® £’ =
a- L& L unital quantity, using thequareof the length unit
(i) X=Y = X®Z=Y®Z, of £ and a conversion factar > 0.
(V) X=Y = Z@X=ZQY; Let flength @andéuidgin be the respective line segments instan-
tiated by the rectangular carpet under consideration. Then
(v) GeX=X;and the equation for identifying the carpet's area in the square

units of £ is given by the productf ® £L](fiength Cwidth) =
@ L(liength) - L(bwidtn) for somea > 0.
Proof: Incidentally, the tensor product of unital length quaetti

. . . . Y o7
(i) The torsor isomorphism map for the commutativity con-> strictly commutative, i.e., we hawee L' = L'® L. To see

P : this, all we have to do is verify the elementary equalities in

dition is given by the assignmekt® Y — Y Q X. LoL = Lo L)=(a L)®L =L oL for somea > 0.

(i) The natural isomorphism map for the associativity prop  Because strictly commutative tensor products are gen-
erty is specified by the assignmeiX®Y)®Z +— X®  yinely useful in their own right, we shall use the notation
(Y®2). Lo L instead of £& £’. It might also be noted that unital

volume quantities are elements of the tensorial power torso

L®3 =4¢ (L oL) oL, known in dimensional analysis as the

dimension of volume. By induction, we arrive at tensorial

(iv) The justification is the same as above. powerd©" of any integer degree> 0. From granted torsors

] o N ~of base quantities we may construct iterated tensor product
(v) The left torsor isomorphism is specified by the assigngyrsors such ad(®T)®M, L3 T®2g M, and so forth.
mentg® X — g > X.

(Vi) X®G = X.

(i) Given an assignmenX — Y, we automatically obtain
the assignmenX®Z +— Y®Z.

Oddly, the classical approach does not address the issue of
(vi) The right torsor isomorphism is specified by the assignontology of physical dimensions. In the classical paradigm
mentX®gr— X<g. it is assumed that physical quantities have dimensions) eve
] ) ) ) though the relationship between them is not one-to-one, as
Based on these unique universal torsor isomorphisms agdemplified byenergyand torque quantities that are known
knowing that the isomorphisr is an equivalence relation {5 share the same dimension namMiL.2 T-2 expressed in
on the class of torsors ovg, we can now safely write the e traditional notation, even though structurally enesgg
tensor produck ® Y ® Z of three torsors without putting in sca|ar and torque is a vector, and thereby their associteteed s

the parentheses and we might even wite X ® Y for the  gnaces are fierent. As desired, congruence relations provide
same tensor product, modulo isomorphism.

In what follows, this parenthesis-free notational simpéifi 2Here a congruence relation is an equivalence relation sot@lements

tion will be used freely in all iterated tensor products Wit which preserves the product operation in the sense of dondi8 and 4 of
a unique “witness” natural torsor isomorphism map betweefoPestion 1
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the extra degree of freedom, often needed for semantic dis-Having made this foray into products of quantities, we now
tinctions between quantities sharing the same dimension. introduce the notion dfiverseunital quantity of a given quan-

To get a more precise account of physical dimensions, ity and then move on to defining more complex derived unital
is customary to start with a rather small set of base quantifuantities. With the help of inverse quantities we will béeab
ties, saylength, time and mass, chosen by convention, and to produce a more fine-grained inventory of derived quaadtiti
assign certain so-calldmhse(albeit semantically undefined) than we had in the framework of products. Thanks to seman-
dimensions to them, commonly symbolizedlbyT, andM, tically specified product and inverse operations, we camdefi
respectively?? To specify the dimensions of so-callddrived  the notions of mean unital velocity, mean density and many
physical quantities, it is standard to posit suitable gropp  other commonplace derived unital quantities.
erations that generate produBt®D’ and inverse® !, D1 It is common knowledge that physicists and engineers use
of given dimension® andD’. The resulting group structure meter persecond (in symbolsm/s) as a typical metricerived
of dimensions also includes the “dimensionless” produdt unmeasurement unib unitize a mean velocity quantity. Evi-
element 1 (the algebraic shorthand notation for the re& li dently, unital velocities require everyday inverselaal units
R) and is regarded as the centerpiece of dimensional analysig time, such as “per Seconds"ecﬁ or “per hour” ﬁ,

This strictly syntactic (symbolic) dimension-theoretigpa-  Similarly, units for unital pressure quantities are cowediin
ratus is regularly used in classifying quantities andtestive  terms of “per meter square’—L—;, and related inverse units.
dimensional consistency of equational laws of physics. meter

What is essential about the proposed torsor approach is tge2
explicit (semantic) definition of the notion of physical dim . i , L i i i
sion as ajuantity typei.e., as the physical-geomettigpeof In this su_b_sectlon we give a brief _mtrod_uctl_on to inverse un
unital quantities of the same kind, exemplified by quantity t tal quantities. Our first examples involving inverse quigi

sorsL, T, M and their product and inverse combinations ovepvere distance per second and pressure per area. As alluded

Aut R.o, modulo universal torsor isomorphisms. From thd® @Pove, before turning to the concept of mean velocity, we

humble list of base torsors we advance to the notion of tens§fed t0 introduce the notion of torsoriaferseunital quan-
product of torsors that takes care of the product structire §U€S- _ o

derived quantity types, modeling the basic taxonomy of phys Civen a unital quantiti in torsor

ical dimensions. In addition, using suitable inverse opena

on torsors, we can explicitly form quantity types with expo- Q =41 Isom(7,R>0)

nents, corresponding to syntactically built dimensionse@d over the automorphism grouput R.g, its inverse unital
to integer powers. For us, quantity types (dimensions)@re tuantity, suggestively denoted by, is a real-valuedsomor-

physics what types are to logic and programming languagesnic torsor map of the forma% - Q —> R0, specified by the
Just as in logic type checking of a formula ensures its well4tio formula

formedness, in physics dimensional consistency uphokls th

physical meaningfulness of a quantity equation. 1.,
One apparent stumbling block in handling products of uni- [5](0 ) =df Q

tal quantities of the same kind (e.g., length) may be encouns . 1 o

tered in their additive combination. Fortunately, as \atid

by the easy-to-follow chain of equalities

Inverse unital quantities

€ Q.? It is easy to see that the function-theoretic

inverse of quantitys is the map &)~ : R, — Q, specified

by (&) (@) = @-Q, so that(%) (1) = Q. According to the
L1 L+ Lo Ly =L10 Ly +(a- L1)®(a - L)) = terminology we halve_just .aldopted,_if unital tirfieis unitized
(+a-o) L10L, = LOL), by 1 second, then = is unitized by its dugl Isecond, and

similarly in the case of other temporal units.

any additive combination of elementary tensor unital quan- The commutative diagram

tities reduces to an elementary tensor unital quantity.sThu (Roo.1, yxQ > Q

even if the physical area is made up of several rectangular >0 %

subareas, the resulting area is determined by the sum afrtens

product factors that reduces to a commutative tensor ptoduc

of just two unital length quantities. And as anticipateds th

tensor structure of physical volume is the same — just replac

L L with (L L)®L". ltis straightforward to see that the

distributive law (L + £')®7 = L&T + L' ®7 holds on both (Rs0,1, ) X(Rs0,+) ————— (Rs0,+)

sides as usuaf

Q-

IdR>OXé

quantities. Usually, the product Boolean algeBga® By (supporting prod-

22Drobot in [5] and others specify dimensions by partitioning a quantityuct probability measures) is Sicient.
space into equivalence classes of quantities having the danemsion. 240ne might ask why areverseunital quantities treated as isomorphic
231 order to be able to reason about the values of product ifiesptve ~ Mappings on unital quantities instead of mappings on statesause, as we
need to associate Boolean (sigma) algeBgsy of propositions with prod- have seen, itis p0_55|b|e to code_up the_ same |nf0rma§|0n'tbanta|ned ina
uct quantities in exactly the same way that we have done béborease  States in terms of its corresponding unital quant satisfyings = @ ~(1).
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verifies that the inverse unital quanti% is an isomorphic (i) (Q®Q’)‘l =Qle Q1
torsor map, satisfying the required commutativity coruditi . , i 1
(i) Q=Q = Q= QY

é(ab@') =a» é(@’), (i) QleQ=1;

where the new group actiom of the multiplicative group (iv) Q@ Q1=1;
(R-0,1, -) on the additive groufR.q, +) (shown in the bottom

part of the diagram) is defined by (v) 18Q=Q;
1 11 (vi) Qel=Q;
ar —(Q)=df - =(Q). . o
Q a Q (vii) (@) =Q,and
Thus, the equality; = 1 - & holds for allQ’ in Q anda > 0. (i) 1121

Now that we have a reasonable semantic concept of an‘in-
verse unital quantity, it is natural to introduce the torsor Proof:

QL =4f 10Mor(Q,Rog) = {i |Q €Q} (i) The torsor isomorphism map is given by the assignment
9 HN> Q

) ) . . . . N WA Qv a
of all inverse unital quantities associated with unitalmfitées .
of typeQ. Itis given by the class of isomorphic torsor maps (i)
from torsorQ to the trivial torsor 1 of positive reals. Here

the required group action is given by the map

In view of one-to-one correspondence betwe2rand
Q1, the isomorphism assignme@ +— Q' automati-
cally transfers t@@ 1 — QL.

RS 1 (iii) The natural isomorphism is specified by the assignment
R>0,1, )XQ" —— Q™ L8Q — o, where@ =a-Q.
wherea» & =41 75 = = - & forall « > 0 andQ.
The respective automorphism transformations of torQors
andQ! are related by the commutative diagram

(iv) Choose the same map as above, composed with the iso-
morphism map for commutativity.

Ou

(v) Use the assignment® Q — a- Q.

Q Q
(vi) Start with the same assignment as above and compose it
1 1 with the isomorphism for commutativity.
(0} [0}
(vii) By definition, the isomorphism is given by the identity
. 71 . map.
Q” Q :
(viii) Assigna~'toa.
satisfying the equalities The foregoing isomorphism relationships between torsors
justify the earlier chosen symbol 1 for the trivial torsRgg
1 1 11 1 e : C -
—o00p(@Q =—==="==0,10—= of positive reals. Notice that in this new notation, 1 may be
0 Q a Q Q interpreted as thenit torsor associated with the product oper-
for all Q@ anda > 0. ation ®, and the inverse unital quantity is a two-sidedsor

Therefore, relative to a given inverse reference qua%i;ty productinverse of the given unital quantity. To choose a uni-

all inverse unital quantities have the forn 2 with a unique @l quantity (or measurement unit) of quantity tyRemeans
. M Q - S :
scale conversion parameter 0. to specify a torsor map of the forfQ™ : 1 — Q, defined by

So far, we have avoided a mention of “division” of in- Q@) =a-Qforalla> 0', . .
verse quantities. Notice that sinQe is a torsor, it has its Inverse torsor constructlops readily extend tq negative te
own induceddivision mapDiv : Q"1 x Q! —s R, defined sor powers. For examgﬁ, in th_el cas_elof the mYS:'rse length
by Div(é,%) —dt g_', satisfying the equatio% _ % > % quantity torsqr we have =df L @_L =(L ®|T) . One _
There is an intimate connection between a torsor of unfan Proceed in the same spirit and mtroo_luce hlghe_r negative
tal quantities and its corresponding torsor of inversealinit (ENSOr power&e™ = Lo L o---oL™" iteratedn-times,

i 00 ~ m
quantities, and tensor products, given by the followinginat NClUdingL®® = 1. So now we have tensor powelrs™ of
ral torsor-isomorphism conditions: torsorL for all integer degrees € Z, and similarly for all the

other torsors of unital quantities.

Proposition 2 For all unital quantity torsor@ andQ’ over We can now make a fundamental conclusion about quantity
the same group of scale transformations, and the tensor pradrsors that is of paramount importance in our investigatio
uct unit defined by the trivial torsor 43¢ R0, the following  of dimensional analysis. Remarkably, with respect to tenso
characterizations hold: product and inverse operations, the class of quantity terso
forms a commutative group, modulo torsor isomorphism.
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In order to specify the dimensional structure of quantitiesquantities, pausing first for a more detailed look at how to ex
we start with aspace of quantity torsorsay, Tors(L,T,M), press complex rational powers in terms of products, ingerse
generated by base quantity torsht§ andM of the respec- and roots.
tive length, time, and mass unital quantities, closed uteter
sor products and integer exponentiation operations. $o tht 3. Rational powers of unital quantities

space @()Zf torsi(zrs includes product terms of the familiar form, purpose of this subsection is to discuss rational powers
Ma( ® T and aII.of thelr torsqr—|somorph|c vanants. ot nita| guantities. In order to specify the algebraic stiwe
NOV.V by S|mpI¢ .algebra|c considerations we arrive at the fo'(')f torsorsQ%l of derived unital quantities with rational expo-
lowing proposition: nentsT for me Z andn e N, we will follow the strategy
used above for derived unital quantities with integer pawer
We saw that all negative integer-powered quantity torsars ¢
be described by reference to iterated products of inverae-qu
tity torsors. So if we have a definition of thé root torsor
\”/6 = Qr’lm of unital quantities for alh € N, o, then we get all
of the space of quantity torsof®rs(L,T,M), generated by torsors with positive rational exponents for free, i.egytican
base quantity torsors, T andM together with theguotient  be specified by the iterated product

mapDim : Tors(L,T,M) —— Dims(L,T,M), is a commu-

Proposition 3 The dimension spacBims(L,T,M) of quan-
tity torsorsdefined by the quotient

Dims(L,T,M) =41 Tors(L,T,M)/=~

tative (Picard) group under the operations specified by the Qnﬁ1 =df \”/66 \”/66--- 0] \”/6
conditions in which then™ root 4/Q is iteratedm times. And simi-
1
1. DimQ«DimQ’ = Dim (Q®Q’), and larly, upon settingQ‘r’11 =dr Q1) = (Q%)‘l, we can define
. 1 _1 Q7 =q¢ (Q7Y)" for all negative rational exponents. There-
2. (bimQ) = Dim (Q”). fore, to specify unital quantities with arbitrary ratioreadpo-

nents, all we need is a definition of the notion of tiferoot

of unital quantities witim € N,o. We should always keep in
mind that although most unital quantities with rational ex-
g ponents do not have any direct physical significance, we do
Jjot expunge them from the class of mathematically specified
Jorsors. For example, even if we agree that th® idgot of
unital length to the power of 11 has no known direct physical-
Q®Q-! = G properties, the category of torsors o\@rbe- geometric meaning, it is nevertheless a legitimate element

comes a commutative (Picard) group. The congruence Clagsquantity torsor. In order to get a quantitative account of a
Dim Q =q1 {Q’ |Q’ ~ QJ of quantity torsoQ is an element of given phenomenon, we focus only on unital quantities theat ar

the dimension spadeims(L,T,M), interpreted as a physical th(\a/(\)/;]gltlcgllly and el>1<per|n"_|enlt?lly s;]%wﬁcant n thgt aquo du.
dimension, i.e., the physical type of a quantity. ile it is a mathematical fact thg" root must be used in

Notice that the torsor-isomorphisneT = T 2g (L oT ) definiqg all unitgl .quantities with rational exponen'gs, ur o
induces a unit congruenc@e T = 7 2@ (L®7 1) between e_>§p05|t|on we will introduce only the square root un!tal qua
the corresponding unital quantities. _t|t|es because we can calculate them easily. Happily,viallo _

It should be obvious that the unit congruence relatiba ing the gonstructlon method for square roqts, one can specif
@ between any pair of unital quantiti@and@ belongingto  €Xactly in the same way thé" root of quantity types for any
a congruent pair of torso@ ~ Q’ in spaceTors(L,T,M), is natural numben > 0. .
formally equivalent to the unit congruence relat@e Q' ~* = To complete_ our tors_or-theo_retlc account of thuare
o for somea > 0 over the isomorphic paQ ®Q'1 = 1, stat- root VQ quantity of a given unital quantit@, we have to

ing that the unital quantitie® and@’ have the same physical SPecify thesquare roottorsor, written Q = Q2, of torsor

dimension. Q. The key to the notion of square root of unital quantities
This leaves us still with the question of existence of raion lies in the idea of isomorphic torsor maps of the form

powers of torsors, modeling more general derived quantity : Q — R0 satisfying the conditiomi(a >Q) = va - H(Q),

types. Specifically, do torsors admit square root and rélatés the commutative diagram

algebraic operations? Evidently, the inverse operaticgsdo o

not directly extend to exponentiating unital quantitiesablyi- R>0xQ Q

trary rational numbers. But we need these types of nonlinear

operations on unital quantities to calculate, say, theoplesf

a simple pendulum as the square root of unital length divided Idg_oxH H

by earthbound acceleration or the length of the chosen $ide o

a square-shaped region in terms of the square root of its area

Next, we turn to the construction of rational powers of unita

Proof: It is well known (see, e.g./1l]) and easy to verify that
the category of torsors over a groggforms a symmetric ten-
sor category in which every object is invertible (i.e., afidors

have an inverse counterpart) with respect to the tensoupto
unit G. Furthermore, it is also known that under the smalle
congruence relation generated by the natural isomorphism
for commutativityQ ® Q" = Q' ® Q, associativity and inverse

R.oox{(Rs0,+) (R0, +)
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illustrates. Here the required special group action is defin
by a» H(Q) =qt Vv -H(Q) for all Q anda > 0. It is obvious .

that the key axiom which the new left action must satisfy ‘/6 "

is the following: Va’ » (vVa» H(Q)) = Va’ - » H(Q) for all v

positive@ ande’. We now have all of the conceptual ma-In particular, we have the following obvious isomorphism re
chinery we need to define the square root torsor of a giveationships between quantity torsordQ © yQ = (1Q)°? =
guantity torsor. VQoQ=Q.

Once a unital quantity has been chosen for prediction or
measurement, dynamical laws involving square roots (e.g.,
VQ) can be stated in an algebraic form relative@o This
N is what is commonly done in concrete calculations. For ex-

Upon examining the elements kdom?2(Q,R.o) foramo-  ample, consider the calculation of the length of one side of a
ment, we can see that each isomorphic torsor mapdeter-  square area in theeter unit: Vom2 = 3m.
mined by the value it takes on a given (fixed) reference unital |, ihe setting of square root torsors the automorphism

quantity inQ and conversely, each quant@e Q determines  yansformations are related by the commutative diagram
aunique maig by the ruleHg(Q) = 1, so thatg(a-Q) = Vo

holds. What is essential here is the crucial one-to-one and

onto correspondence between the elements of t@sand Q

Isom%(Q,Rw).
Now, to arrive at the concept ofsgjuare root unital quan- N Na

tity vQ:Q — R.p, all we need to do is to emulate the fore-
going construction of isomorphic torsor magsand accord-

ingly set for all unital quantitie® o) TV NG

02

Let|som? (Q.R.p) be the set of all isomorphic torsor maps
from torsorQ to the trivial torsorR., satisfying the torsor
map requiremerti(a>Q) = a» H(Q) =47 Va-H(Q).

Oq

Q

VQ(Q) =41 1 & VQ(Q) =4t Va,
where@ = «-Q for somea > 0.25 satisfying the equalityy/o,(Q) = o 4(VQ ) for all unital
uantitiesQ. Alternatively and more intuitively, we have
O(\J}a' -Q = +a- VQ. Complete understanding of physical di-
mensions would require a detailed account of the extengion o

We now have the conceptual resources to define the noti
of asquare root quantity torsor/Q as follows:

@_ Isom%(Q R.0) congruence relations to rational power constructions on to
—at >0 ~sors. Due to space constraints we leave it as an exercise.
gram quantities is a natural generalization ttme-dependenand
other types ofzariable unital quantities.
RooxQ ——— Q P a
Id x \/* f 4. TORSORS OF VARIABLE UNITAL QUANTITIES
In this section we consider quantities that depend on or vary
> with other quantities. It is undeniable that in theoretiaatl
R-0X Q VQ ]

applied sciences, dynamical laws of motion and continuous
measurement results are regularly formulated in terms -of ap
in which \/6 = Q% is a torsor oveAut R, and thesquare propriate functions ofontinuouslyor smoothlyarying unital
rootmap \/_ is an isomorphic torsor map satisfying the equa|quantities, endowed with suitable domains of variatiorchsu
ity Va>Q=arVQ= Va-VQ, in which we employ the def- as time, space and temperature. Quantities used in sigrnal th
inition & » VQ =4+ Va- V@ for all @ > 0 andQ in Q. Torsor ory in particular are regularly presented through the mediu
Q consists of all square root unital quantities of the fornPf time-dependent quantities.
va. Since we have already laid the groundwork in the static
case of unital quantities, we want at this point to procedt wi
§he introduction of a dynamical variant of quantities.
To give a simple illustration, we consider the question of
what happens when we replace the notionnt#an unital
25As we noted earlier, since there is a one-to-one correspmedeetween quantity (e.g., mean velocity) with the conceptdifferen-

states and unital quantities, we are free to use either of theur definitions. : : : : : :
A further point is that if quantity is unitized by 1cm (centimeter), then the tiable unital quantity (€.9., instantaneous unital velocity). We

square root quantity/Q is unitized by unit+vcm, satisfying the equality O.nly discuss time-dependent quantities becall'lse the.y HE_E qu
(vem)? =cm. simple and are most frequently encountered in applications

We note in passing that there is a dual relationship betwe
guadraticand square rootisomorphic torsor maps, as indi-
cated by the diagram
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4.1. A paradigmatic example of mean versus instantaneousFrom the relatively simple notion of unital mean velocity
unital quantities we now want to advance to the significantly more powerful

Before turning to the investigation of variable quantitiee  Nnotion ofinstantaneousinital velocity.

consider the basic fierence between the definitions of mean So far, we have examined a rather narrstatic aspect of
and instantaneous unital velocities in the framework of torunital quantities. In particular, we discussed the lengths
sors. We take velocity to be a common attribute of movingods and beams in terms of their constant values, and sim-
bodies or particles, captured by their spatial paths tHrouglarly, we focused on the fixed durations of events and pro-
time. The most obvious modeling route is though torsors fotesses. There is, however, an entireljegdient line of reason-
lengthL = Isom(#Z,R.o) andinversetime ing about quantities that concentratesvamiable or depen-
dentunital quantities that vary with (and hence depend on)
time, space, temperature or some other indicator of variati

The basic example is the instantaneous velocity of a single

We begin with the most elementary example of a singlénoving particle, e.g., moving in a time-varying gravitatio
classical particle, moving uniformly on a straight spalii@, potential during a given time period. The particlsiste of
considered between the line’s two distinct designatedtpoin motionis encoded by a mapping: T — L that assigns to
By definition, theunital mean velocitys given by the product each instant of timethe particle’s unique positiox(t) on the
V =41 L&+, whereL is a unital length quantity in the torsor Euclidean spatial line on which the particle moves. We take
L =1som(Z,R.0) of length and,%. is the inverse of the unital the function space#(T,L) of mappingsx to be the space of
time quantity7 belonging to the torsof = Isom(J-9,R.0) all potential smooth paths or trajectories that can be imsta

T2 =41 150M(F=0,R0) " = 150M 10r(T0, R=0).

of time. tiated by a particle moving in the one-dimensional space
As desired, the additive property of unital velocity is give In order to get a concrete account of motion, these trajecto-
by ries may be specified as solutions to Newton’s second law of
1 1 1 motion.
(L+L')®F = £®? +L,®F The key to the whole analysis of motion is the recogni-

tion that (i) velocity is a unital quantitgy’(x) = ‘(’,—§.(x) that is
associated with each particle-pathencoding the particle’s
o 1 motion in its entirety, and (ii) in addition, it is also assted
(0/'13)®W = ;'(13@ ;)~ with temporal points. Here is the definition of the partisle’
instantaneous unitized velocity in state of motiand at time

and the scale conversion satisfies

Suppose the line segment instantiated by the particle’somot "
between the line’s two designated pointsg gith length £(¢) to:
in meter base units. In addition, let the elapsed time between dr Lt = X[to])
: o : . 0
the successive moments of the particle’s passing through th F(X) =gf lim —hsn)
respective initial and final points be realized byith du- ol T(t-t)
ration 7 (t) in second base units. Then the particle’s meanln the definitionx[t] =4+ €(x,t) denotes thevaluationof tra-
velocity in its instantiated physical-geometric state @ftibon  jectoryx at time instant, obtained from the evaluation func-
(¢,7), unitized bymeter persecond unit, is given by the equal- tion€:.#(T,L)xT — L. If time instants are not specified,

ities then the unital velocity associated with th&te of motiorx
can be viewed as a time-dependent map of the form
PO 1o_ 7= _ L) dL
V(tr)=Le ;(5,7') = L(0)- F(T )=L(0)- T T F(x) T——LeT

wherer" =q4¢ 7 denotes the unital time quantity unitized ex-modeling the “velocity field” which upon evaluation at a cho-
atitly by the time intervak, satisfying7 (r)-7. = 7, i.e., sen time instant gives the particle’s instantaneous vigi@ati

7O~ ;-26 that instant along the particle’s path

26t cannot be emphasized strongly enough that in order to letalgier- We cannot conclude this subsection without ment.|on|ng the
form any kind of classical measurement of most common derivedigalys Nature of truth makers of statements about velocity values.
quantities (e.g., velocity, acceleration and energy)t firs must specify a \WWhen we say that the straightline mean velocity of a projec-

designated Newtonian space-timeordinate systerthat fixes the simulta- tile in a given Galilean coordinate frame is #&ters in 3
neous spatial location of the target system, measuring msintj and ex-

perimenter, without significantlyféecting the measurement operations. Of S€conds, what we mean is that (i) the projectile traverses a

course, there is no privileged coordinate frame and the @rpater can se- spatial interval of 15meters, and (ii) the projectile’s journey

lect the one that best suits his or her measurement needsréssember that  |asts for the time interval of 3econds. Thus, metrological

fhxepg;menters sngatgd inftBrent coordmate frames will generally observegropositionS about the mean velocity of a moving object in-
get system in fferent shapes, sizes and states of motion. For examplé, . .

since velocity of a moving particle hasfiirent values in dierent (moving) ~ VOIve two kinds of truth-makersspatial andtemporal The

frames, so will its kinetic energy and all the other velodspendent quan- first kind instantiates the object’s traversed spatialrirak
tities.
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and the second underwrites the object’s temporal mode of ex-

istence during motion and thereby instantiates the tine-int Lt Ly Rso
val spent during its journey. We use a similar account ofitrut

makers also for metrological statements about instanteneo L o
velocities, involving realizations of states of motion drey-
ing to the state space(T,L).

- ’ -
We now have all of the dlierential calculus machinery to “
calculate the particle’s unitacceleration given by the map
g%(x) : T —— L®T2, and similarly for unital density, .
unital kinetic energy, and so forth. ' - T
t —

We have said enough aboutfdrentiable unital quantities
to see that they are not captured by the apparatus of thé-clads addition, to each temporal path:t — t' in T (associated
cal approach. The next step in the development of our torsomith the time lapser =t —t with t < t’) there corresponds a
theoretic framework for quantities is an extensiordapen- unique torsoconnectiormap¥, between the fibers of length

dentunital quantities that depend on other quantities. guantities that captures the empirical law, charactegitire
tree’s dynamical evolution in terms of its varying unitaldte
4.2. Bundles of quantity torsors over time domains in the total spack along the paths in the base spaceelated

In this subsection we look more closely at tempora")pyprOJectlon. As the diagram indicates, the torsor corioact

parametrized torsors of unital quantities. We begin with thmapﬂ,, specified by duratiom, sends the unital length in

most familiar case of variable unital length that varieshwit Eber Lito ? unique le'til Ietljgtlttrfl;zelongmgt;[]o f!tbhe"‘t" .
time. Consider the case otemporally varyingunital length or example, in simple situations of tree growth with velipci

quantityq‘“ . £ __, R_o instantiated by the variable Vv we may demand that the variable quantify for height

height of, say, a tall growing tree, denotéade and consid- be defined by the linear deterministic equation
ered at time instant As might have already become clear, , ,
the living tree’s temporally parametrized state spa€g* Ly(ly) = L)+ V(ly G0 =0T (' -1)

plays two essential roles: (i)synchroniaole in the quantity- for all time instants andt’ and corresponding tree heiglfts
constrained specification of the target tree’s mode of batng and¢; .

a particular time, sflicient for the determination of the quan-  The foregoing bundle approach to variable unital quarstitie
tity values of interest, and (ii) diachronicrole in modeling g completely general. For example, a similar fiber bundle

the temporal evolution of the tree’s stages of growth. Is thidiagram (and dynamical law) applies also to a unital resis-
example we assume that the tree’s height grows linearly Wit ,ce quantity that varies with temperature. And it should
velocity V. However, in the case of a nonlinear tree growth, s, pe noted that in view of the underlying complete ordered
we might demand that the height be dependent also on a fixgdmigroup or one-dimensional vector space framework it is
acceleration. A truly technical formulation of the law gove fﬂfssmle to define the temporal (and spatial) derivatg%ésf

ing the growth may include instantaneous speed and instanig,jta| quantities, needed in formulatingf@rential equations.
neous acceleration. However, it is obvious that since & tr , ,
We have now gone as far as we can in the world of unital

grows at a particular rate, there will be just one correct law . X .
uantities, using only the torsor language. We will now ex-

for the t Id ics of the tree’ iable height. q
orihe fempora’ dynamics ot the tree's vanab'e held pand the method of torsors to include the pointer (indigator

How should this kind of temporal dependence of length bﬁuantities of measuring instruments.
understood formally? One obvious possibility is to conside
in place of the static torsdrsom(.%,R.¢) of unital lengths
the parametrizedorsorl som1(.Z,R-o) over the scale group

AutR.o and relative to the chosen domain of variation, Up to this point, we have only investigated the torsors of uni
namely the fiine spacéd of temporal points. tal quantities and have said little about the torsor apgroac

their measurement. In this section we give a brief intro-
uction to bundles of semitorsors of unigainter quantities,
associated with the measurand’s measuring instruments and
methods, characterized by assorted degrees of deteriminist
uncertainty. We will confine our attention solely to single d
rect deterministic measurements of unital quantities.

One of the central points of measurement science is that
in general the measured quantity’s values cannot be known
with 100% accuracy. Most of us are aware that in view of
limited accuracies and resolutions of measuring instrusjen
parallax errors in meter reading, environmental pertimbat

BUNDLE OF SEMITORSORS OF INSTRUMENT POINTER QUANTITIES

What this means is that now we have a time-indexed famil
(technically a principabundlg of torsors on the base spate
of time points, comprised of isomorpHiibersof the form

Lt =df |som7(Z,R>0); = | som(Z}1, R-0)

at each temporal base pointhat vary continuously from
point to point within the time domaim, as the diagram below
illustrates. In more detail, the bundle (i.e., the disjainton
L = Ukt L) in the diagram consists of isomorphic torsbgs
specified in terms diiberslocated at each time instann T:
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imperfections of the underlying theory, and uncertaintiés is defined in terms of an analogue-to-digital conversion map
other kind, the outcomes of measurement operations tendapplied to the mediating quantity’. As well known, mea-
be far from being perfectly accurate. The numerical valuesurement operations are often far more complicated than thi
of unitized quantities realized by target systems embody f&ut there is also a considerably simpler approach (prattice
more detail than the pointer quantities of interacting rmeas e.g., by carpenters and electricians) which focuses ontii@n
ing devices can reproduce. Because generally the result afialogue-to-digital conversion aspects of measuremeudt, a
measurement is only discrete approximatiorof the mea- this is the conception that will concern us here.

surand’s actual value, some original information is in@#y  on the side of quantities, this sort of simplified measure-

sacrificed. Similar losses of information are encountered iment scenario leads to modeling a deterministic measure-
making predictions that depend on the approximate nature gent operation in terms of a projective transfer map from a

initial conditions and discretized solutions of the targgs-  given measuran@ : . — R to the measuring instrument’s

tem’s diterential or integral equations. . - . .
L pointer quantityQ : .4 — &Z. The pointer quantity sends
We make a fundamental distinction between two Sorts Ghe instrument’s pointer states iff to the discrete additive
states and two kinds of associated quantities: (i) states BroupeZ =gt {---,-2¢, &, 0, &, 2¢,---} of rationals (the in-
stantiated by the quantity-bearing system together with gy ment's idealized numerical reading scale), specified b
quantity to be measured, i.e., tileasurandand (i) the  jnteger multiples of a rationdéast significant biD < & < 1.

instrument'spointer states instantiated by the measurand'sp,o parametes (encoding the smallest numericafidrence
calibrated measuring device or measurement method, tgapyeen the pointer quantity’s values) is commonly redlize
gether with its correspondingointer quantitythat numer-  , nairs of adjacent marks displayed on the instruments cal
ically presents the instrument's (or method's) final paintejateq analog reading scale. Experimenters reportinig the
state to the measurer, after the completiosystem + instru-  measyrement results tend to rourfBitbe result to the nearest
ment physical interaction. multiple of the granted unit of precision (deterministicane

From the standpoint of classical physics, a deterministisurement uncertainty), formulated in the measurand’s mea-
measurement process is commonly characterized by a dyurement unit. We should not forget that the main motiva-
namical interaction between the measured and measuring s¥isn for the introduction of parameteris to provide a the-
tem that results in a post-interaction transmission ofrimi@-  oretical basis for the earlier discussed measurement propo
tion from the measurand to the instrument’s pointer quantittions of the formLength(flagpole = Length,..4 flagpole +
The key to understanding this information transmissiosilie ¢ meters.2”

amapping (a.k.a. information channel) from system states t 14 phandle the botany of error and uncertainty types aris-
instrument states, given by the composition of input, dyigam i deterministic measurement operations in a fundamen-
interaction, and output maps tal way and to numerically coordinatize the measuring instr

in out ment’s state space{ (determined in part by the interacting
S é A—">A target system'’s state spacé), we shall regularly use a con-

crete version of the instrument’s reading scale. Spedifical

For example, in the process of measuring the voltage Ofl%l’thls purpose we introduce the additive graap~"z, 0, +)
battery with a voltmeter, the two systems are coupled by con~ .. S o

; X N . of rationals, generated by the deterministic uncertaintgri
ducting wires to form a closed circuit. Prior to measurement

aen " . )
the battery is in its initial electrical state and the volterds vale =10 =0.00---01 withn > 0 decimal places behind the

in its null state. After the circuit’s activation and terration decimal point, thought to encode all the available infoioat

of subsequent dynamical changes in the joint system, the bE(l)tn the upper bound of measurement errors expressed in the

o . . Mmeasurand’s metric unifs.
tery’s initial state is transduced to the voltmeter's finals,

captured by the pointer quantity’s value on the instrunsent’ 2TIn view of statistical errors encountered in repeated measents, the
reading scale size of the additive uncertainty intervalis not constant and therefore it is

necessary to switch to (frequentist or Bayesian) prolstluilimeasurement
It is important to note that metrologists treat this kindpropositions of the fornP([Length(flagpolg = a +&]) = p, where the
of measurement proceﬁmctionallyfrom inputs to outputs arithmetic mean value is the estimate of the length quantity’s expected

ithout l t t d inst t stat ial fvalue ande denotes the normalized empirical standard deviation. Inpiis
without appeal to system and instrument states, crucia Er we shall continue to work in a deterministic setting.

causal explanations. In short, a typical metrologist start 28gor example, in the case of length measurement performed iméhe
ing point is an equationally presentedeasurement model ter unit of measure we may visualize the numerical additive semjgrou
("/ — &A/D((V/) together with)” = V + N, treating all perti- (10"N, 0, +) as a one-dimensional discrete positively oriented uniforieh g

; " . . of equally spaced points, say, one millimeter apart (so theemstep-size
nent.umtal quantities as Input or output Slgnals of some SO g-3'is one millimeter wide), capturing the multiply applied metdclss
In this model,V denotes the measurand, i.e., the battery’sniform scale structure, starting from zero and servinghasiiscrete 16#-
Voltage, andV’ stands for the voltmeter’s output, specifiedapproximatiomfthe measurand’s continuum value spReg. We know that

by the sum of the measurand and a (random thermal) “noiséﬁhen_a skillful exp_erimenterwishes to_ measure the length tr_tadgslt rigid

d to be present in the connecting wires and VO(O-d with a meter stick to the nearest millimeter, he or she tyfgicaunds df
N (assume 0 - p _g ) he displayed value on the meter’s scale to the closest mikirmeark. Thus
meter). The details of the voltmeter’s governing physiaald  the rod's actual length will befb(i.e., shorter or longer) by a small amount,

are suppressed. And lastly, the voltmeter’s pointer qtyamti  not exceeding millimeters.
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In order to complete the guantity-theoretic account of dethe torsor map conditiofRp(a +k-10") = Rp(a) + k- 107"
terministic measurement operations, we have to specify teolds for all realsy and integers.
transfer operator from measurands to their pointer questit  The key to understanding the role &, in measure-
To do this, we need two mappings: one from the measurandsent lies in the observation that the additive translations
target system states to instrument pointer states, andlibe 0 R-1(£5) =41 R;1(0) + & -k = [(k-3) - 107, (k+ 3)- 107"

from the measurand's numerical values to the instrumentgor all integersk) of the inverse valueR;(0) = [_% .

pointer quantity values. 10™,1.10™") at 0 form a uniform partition ofR. And
Since the treatment of the respective numerical values ¢fis partition stands in a one-to-one relationship with the

measurands and their pointer quantities requires some cairedistinguishabilityequivalence relation defined by the kernel

it will be our starting point. First, we introduce dis- biconditional

cretizing (round-df) uniform transfer maR, : (R,0,+) —

(10"Z,0,+) with a stipulated discretizing step size 10 a=nB = Rn(a) = Rn(B)

(n> 0) that sends the measurand’s values to discrete point,te(z)rr

guantity values. The most basic and fundamental discnetizi

(analogue-to-digital conversion) of the measurand’s esis

given by the floor function

all @, € R. As a simple illustration of the importance
of indistinguishability equivalence relations, note ttie nu-
merical ordem < ninduces aefinemenbrdering

1 @=nf = a=np

%n(w)=dfi{1ma+— . . .
1 2 on the corresponding equivalence relations. In general, to
for all realsa and natural numbers> O. each unital quantity there corresponds an entire lattidga-of
distinguishability equivalence relations, modeling theq-
tity’s associated pointer quantities and instrumentsattar-
n+1 for all @ > 0. Intuitively, the floor function returns the ized by varying levels of accuracy and resolution. It turag; o

greatest value i that is less than or equal to its real numberhowever’ that generally, is not a congruence relation.
argument, and it projects an entire half-open interval af re ~ With this line of thinking we can conclude that the mea-
numbers to its proximal integer. surand’s actual value is an element of one of the equivalence
8Iasses specified by a half open interffalThis is an ele-
gant and appealing description of uncertainty in deterstimi
measurement operations. The only serious downside is the
vious failure of conservation of additivity. The issuenca
put in terms of absolute-value inequality

Recall that the floor functiofe| : R — Z is defined by
la| =¢t Max{ne Z |m< a}, so thatle]=n < n<ac<

Although there are many choices, floor function-base
transfer functions provide highly fiective models of
measurement-induced discretizations, as apparent frem t
studies of analog-to-digital converters and sensors. O:%é)
advantage of using such models is that they allow us e
treat measurement operations as ways of extracting restric 1
amounts of information about the measured system’s extant “Rn(a +£) = (Rnl@) + Ra(B)| < 75

state. To illustrate, suppose the numerical value of measur, . . . . -
andQ at system stateis equal to the numbe@(s) = o from which is an immediate consequence of the floor function’s

a continuous range, encoded in the decimal system with r‘g)nlinear property. In the circumstances described, ifove ¢
countably infinite number of digits. Then (in the absence o?'derthreg summands am(.aJ’ﬁJ’Y)’ then the error bound
instrument errors) theuncatedstorable value of, given by Jumps to 7, and so forth. S|mply, any increase of thg num-
n digits to be kept behind the decimal point, is specified b)per of ;ummands leads to potentially "'?“ger errors, It istwor
Rn(a@). We can now interpret the discrete valg(a) as the our while to_ g;k \{vhethgr or not there is a way to handle the
outcome of@'s measurement, executed by a measuring irl|§1ck of additivity in an insightful manner. Here one should

strument (or method) with a pointer quantity characterizgd ]Ea_ﬁ a clear sta{;]d "flr:,d decl_are trl;at E)(t)r:nter quantm? rithI on
deterministic uncertainty (quantization interval) 10 aito preserve the information about the measurand se&/u

] o . but also they do not always behave additively. Fortunately,
Further advantage of the discretizing transfer iiapis ot a1l measurement structure is lo8t;, is an isotone func-
provided by its crucial torsor map property

tion that preserves the lattice operations.
+

Rx10"Z R By taking a clue from the above-discussed partition of
R into half-open intervals generated hy= R;1(0), it is
Roxl R, easy to see that the transfer ntp : R.o — &N restricted
to positive reals with values in the set of positive ratignal
eN ={0, ¢, 2¢,---} has the following staircase-shaped graph:
10"Zzx10"2 10"z

. . ... ?%In a general model of deterministic uncertainty that handftset non-
stating that the transfer map commutes with the addltlvf?hear and other errors, the measurand’s potential valiepatitioned into

group of translations of the trivial torsor 10Z. Thatis to say, non-uniform equivalence classes.
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the measurement projection may,. The main motivation
pointer's values irL.0™"' N for the introduction of instrument pointer state spaceis t
circumvent the complex problem of having to give a detailed
physical account ofystem + instrument interaction. Because
10e | —o a measurand is an isomorphism between a state space and
o reals, the earlier definadindistinguishabilityequivalence re-
lation =, immediately carries over to the system states/in
by setting

6 I *—o s=ps %n(Q(S)) = %n(Q(S,))

By way of an example, our point here is that if two potential
length stateg and¢’ of a target straight rod are so proximal
A geometrically that the meter stick with measurement accu-
2| oo racy set at 10° meters cannot discern their actualftérence,
o= i.e., the indistinguishability relationshif=3 ¢’ holds, then
"_c ‘ ‘ ‘ ‘ ‘ the meter stick’s pointer quantity reading should proviue t

2 46 6e 86 106 ke same value for both. As presented here, the indistinguishab
measurant values iR, ity relation on states is directly tied to the rounfi-map.

Although it may seem dhicult to do at first glance, in a
general case it is more natural to introduce the equivalence
relation=p on the state spac# as a basic partition structure
that intrinsically characterizes the applied measureropet-

One can see that the rouné-onap always rounds up at ation. However, with the roundfiomap being available to us,

the step edgesi.e., we havesxg((kJr %),8) =(k+1)e In W€ have chosen this simpler definitional alternative.

less idealized measurement models that include target sys-S0 NOW the measuring instrument's state space can be de-
tem noise, nonlinearity, and other sources of uncertaihg, (IN€d as the quotient space; =4 -//=, of the measured

transfer maps are correspondingly more involved. system’s state space. As we already remarked, the state

. . transfer map is given by the natural projection, defined b
We can now advance to the problem of _spemfynjg the m‘jﬁn(s) =qf [s]? Whgre k] =>;s’ |s=ps’}. Inpadjdition, itis clear ’

strument’s pointer state spacg together with a projection that the pointer quantity

mapM : .¥ — A that sends (as part of measurement inter- Q. : % —s 10-"Z of the instrument measuring can be

action) each state of the measured system to a unique pom&%rfined by the composite

state. The easiest strategy is to simply regard the poitats s

space as isomorphic to the measured system’s quotient space Q= R .

A = .7, relative to the indiscernibility equivalence relation Fzn R/=, 1072

= that characterizes the measuring system’s deterministic u

certamty.- , , L Q/=,, whereR([a]) = Rn(a). Finally, we see that the mea-
In our idealized version of deterministic measurement, thg |, .- 45 measurement-basestimatemay be reconstructed

specification of the pointer state space is starightforwérel directly from the pointer quantity as a real-valued map
construct a projective transfer mag, : . — . from the A i ~ .
measured system’s state spa€eonto the measuring instru- _ &n % — R, defined by @n(s) =4t Jo@n([s])), where
ment's pointer state spacg,, parametrized by determinis- J0 - 10" Z — R is the obvious embedding map. Thus the
tic uncertainty 10". In complete detalil, the definition of the duality of the measurand’s estimate is determined by the mea
transfer map is given by the commutative diagram surement's deterministic uncertainty.

Q As shown in Figure 1, based on the discretization function
R R, the measurand’s estimat® (having the geometric form

of a staircase) is a non-linear approximation of the diajona
Wt Rn picturing the graph of measuraill These concepts embody
the crux of the quantity approach to deterministic measure-
ment operations.

. For the remainder of this subsection, we will investigate
indicating that the equalitR ,(Q(s)) = Q(Min(s)) holds forall  a bundle of semitorsors of pointer quantities over the base
system states. space of measurands. Each measu@raf a given type in

By inspecting the foregoing diagram, we can see that tH&€ base spacQ comes with a countable set of associated
only undefined notions are the instrument’s state spg@nd  pointer quantities = {Q,,Qm,---}, furnished with varying

Figure 1. A numerical transfer map with a shaded uniform
uncertainty zone.

of two simple isomorphism maps, i.e., we haéa = ﬁ%no

54

5 10"z
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degrees of deterministic uncertainty 2010, -- -, with pos- With this construction we bring our torsor-based investi-
itive natural numbera andm. This set provides an unlimited gation of unital quantities and their pointer counterpéta
catalog of staircase functions (displayed in Figure 1), moctlose.

eling measurement operations affelient levels of accuracy

and resolution. 6. CONCLUDING REMARKS

There is one major structural feature of pointer quantitieg, this paper, we have developed a novéketive torsor-
which deserves our close attention. In the torsor regime Wgeoretic framework for quantity calculus and supervening
have a semitorsor action deterministic measurement operations. The calculus isthas
on torsors of unital quantities and accompanying stateespac
that provide the truth conditions for metrological staterse
about quantity values. In our investigation of the struetur

Qx10" =54
on pointer quantities iQ by the multiplicative semigroup
(10M,1,-) of rationals {1, 101,102 10°3,...}, defined O©f quantities we used length, time and velocity as illugtgat
by Qn <10k = ka for all natural numberk. So on €xamples. For simplicity's sake and for reasons of space, we
this account, to each less accurate deterministic pointBAVe restricted our analysis to the case of determinista-me
quantity (signified by a smaller number of decimal places§urement processes.
there corresponds a suitably more accurate pointer guantit In bridging the gap between what experimenters regard as
(indicated by more decimal places), determined by the mctidheoretical and what they take to be measurement-based, we
of semigroup(107™,1,-). In this way, each measurar@ have also investigated the torsor structure of pointer guan
comes with a countable fib& of pointer quantities, forming tities, characterizing measuring instruments, togethith w

a semitorsor ovex107N,1,-), as indicated in the diagram tightly connected deterministic measurement unceresnti
below: and the formal relationship between measured unital quan-

tities and their associated pointer quantities.

There are vast areas of the subject of unital quantity calcu-
lus and measurement uncertainty which remain unexplored,
including probabilistic and stochastic extensions to atpe,
combined and distributive measurements, built over measur
able state spaces, random unital quantities, and theialunit
probability density functions. We intend to take up thege to
ics in the near future.
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