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The principal objective of this paper is to provide a torsor theory of physical quantities and basic operations thereon. Torsors are introduced in
a bottom-up fashion as actions of scale transformation groups on spaces of unitized quantities. In contrast, the shortcomings of other accounts
of quantities that proceed in a top-down axiomatic manner are also discussed. In this paper, quantities are presented as dual counterparts
of physical states. States serve as truth-makers of metrological statements about quantity values and are crucial in specifying alternative
measurement units for base quantities. For illustration and ease of presentation, the classical notions of length, time, and instantaneous
velocity are used as primordial examples. It is shown how torsors provide an effective description of the structure of quantities, systems of
quantities, and transformations between them. Using the torsor framework, time-dependent quantities and their unitized derivatives are also
investigated. Lastly, the torsor apparatus is applied to deterministic measurement of quantities.
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1. Introduction and overview

This paper presents a torsor-theoretic framework for investi-
gating the basic structure of physical quantities togetherwith
their units, dimensions and measurement. The notion ofphys-
ical quantity(commonly thought of as a quantifiable attribute
instantiated by particular physical systems and characterized
by unit-dependent numerical values that can be estimated by
measurement) occupies a central place in the natural sciences
and engineering. Quantities and their dimensions have been
treated many times before (see, for example, [5],[17], [11],
[10] and references therein), but their intrinsic algebraic struc-
ture has not received a clear and precise formulation that
meets the standards of rigor of modern physical theories and
contemporary measurement practices.

Drobot’s great contribution in [5] was to translate the prob-
lems of physically dimensioned scalar quantities (e.g., their
dimensional independence) into a problem of linear algebra.
Specifically, Drobot treats the intuitively given length quanti-
ties (for us the length quantity’s unitized magnitudes) of the
sort 5m and 10km as members of aquantity space. Similarly,
physical mass quantities, such as 2kg and 40mg, and mean
velocities of the kind 7m/s and 9km/s, are all members of
the same quantity space.

A quantity space is modeled by amultiplicativelypresented
finite dimensional vector space over the field of rational (or
real) numbers. In more detail, the standard vector space addi-
tion for two dimensionful quantitiesQ1 andQ2 is symbolized
and understood to be the product quantityQ1 •Q2 (including
the counterpartQ1 •Q−1

2 of the difference quantity). And the

scalar product of a rational scalarr and a dimensionful quan-
tity Q is written in the form of ther-th rational powerQr of
Q. Drobot’s axioms governing these operations in a quan-
tity space are basically the multiplicatively reformulated ax-
ioms of a rational (or real) vector space. The problem of scale
change of quantityQ to quantityα · Q under (say) a positive
realα > 0 is handled by including all positive reals as special
dimensionlesselements of Drobot’s quantity space.

QuantitiesQ1 and Q2 in a quantity space are said to
have the samephysical dimensionprovided that the equal-
ity Q1 •Q−1

2 = α holds for some positive real numberα. In
this way the quantity space can be partitioned into disjoint
one-dimensional subspaces of quantities sharing the same di-
mension, where each partition subspace supports the usual
addition operationQ1+Q2= (1+α) ·Q1 (with some scale con-
version factorα > 0) on quantities of the same dimension, and
is equipped with scalar multiplication.

Pondering these and related subsequent achievements in
physical quantity theory, it becomes apparent that the initia-
tors (including [5],[17], and [11]) of the foregoing linear alge-
bra approach have not given much attention to the following
three fundamental issues:

(i) Firstly and most essentially, the advocates of the tradi-
tional algebraic approach have side-stepped in their for-
mal treatments the problem oftruth conditionsfor ele-
mentary metrological statements about quantity values,
understood to depend on the crucial notion ofphysical-
geometric statesof quantity-carrying target systems.
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Clearly, recording the target quantity’s values and rea-
soning about them relies on a suitable Boolean algebra
of propositions that is needed also for the introduction of
probability measures underlying statistical reasoning.

(ii) Secondly, followers of the Drobot paradigm leave out
in their investigation the formal structure ofdependent
quantities – dependent on or varying with spatial, tem-
poral and other dimensionful quantities, crucial in signal
theory, and the construction of various derivatives and
integrals of quantities.

(iii) And thirdly, the initiators of the linear algebra viewhave
not considered the underlyingquantity-theoreticstruc-
ture of the target quantity’s measurement process itself,
involving pointer or indicator quantities of measuring
instruments, associated uncertainties, confidence levels
or coverage probabilities.

In this paper, these issues are addressed in the framework of
torsors over commutative groups. Before getting to torsorsof
quantities, we give a quick reminder on the classical approach
to quantities and some of its shortcomings.

1.1. Classical approach to quantities and their measurement

In recent years, two prominent foundational conceptions of
quantities and their measurement have been the subject of
considerable research interest (see, for example, [6], [15], and
[12]): (a) the so calledclassicaland (b)representationalthe-
ories of measurement. The history of these rival theories is
complex and we can only recall some of the central technical
results, and express our reservations regarding their formal
articulation and interpretation. At a more basic level, thehis-
tory of quantities and their measurement is the story of search
for the intrinsic algebraic structures underlying dimensional
analysis, measurement units, and measurement uncertaintyof
quantity values. Since the representational approach ([13] and
[16]) skirts the issue of physical quantities and measurement
units,1 we shall not review it here.

In theclassicalapproach, following Maxwell [14], there is
a well-established tradition to express thevalue of a phys-
ical quantity under consideration as the product of a nu-
merical factor and a suitable unit of measurement (normally
thought of as a particular reference quantity of the same kind
as the target quantity). From this perspective, theInterna-
tional Standard Organization[8] recommends to formulate
thevalueof a static deterministic scalar quantityQQQ of interest
in terms of equational statements having the form

Q = {Q} · [Q].
1The key representational measurement-theoretic motto is: Measurement

is a process of assigning numbers to empirical entities (i.e.,bodies, particles,
fields, commodities, events, and so forth) in terms of faithful numerical rep-
resentations of the underlying measurement model of the targeted attribute,
manifested by instantiating various entities. It should be noted that “faith-
ful numerical representations” can be used to define quantities as appropriate
mappings of empirical entities to the real line. However, their metrological
interpretations in physics and engineering are far from obvious. Specifically,
it is not clear how the representational approach treats products and inverses
of quantities.

The simplest spatial and cognitively privileged example of
a concrete continuous geometric scalar quantity is thelength
of, say, a flagpole, illustrated by the metrological proposition
“Length(flagpole)= 5.347meters,” where the numerical factor
is specified by the real number{Q} = 5.347 and the unit [Q]
is 1.000meter or simply 1m (metre) according to theSI (ab-
breviated from the FrenchLe Systéme International d’Unités)
notation.2

The basic structure upon which the assumptions and condi-
tions of the classical view are based is a Drobot style finitely
generated quantity space of abstractly conceived physi-
cal quantities, closed under syntactically specified product
and rational-power operations, together with unit-conversion
transformations between them.

Since here everything hinges on what definitions and inter-
pretations one adopts, the first thing that needs to be done is
to explain exactly how the central ideas of physical quantity,
its value, and measurement unit fit into the classical frame-
work. Following Maxwell, the concept of quantity is intu-
itively characterized but not defined. In the classical theory,
a unit of measurement is viewed as a reference quantity, cho-
sen and specified by convention. Given these notions, mea-
surement is usually conceived as a process ofestimationor
approximationof the numericalratio {Q} = Q

[Q] between the
valueQ of the measured quantity and the value [Q] of a com-
mensurate reference unit quantity. Supporters of the classical
approach tend to fasten on the idea of ratios of quantity val-
ues, because it accords with an old account of what real num-
bers might be. According to the classical view, real numbers
are simply ratio-typerelationsbetween the values of contin-
uous quantities instantiated by physical systems. Therefore
numbers should be thought of as being internal to the empiri-
cal situation.3

It is important to note that in the basic classical setting, er-
rors and uncertainties that regularly obfuscate measurement
results are not given any technical (deterministic or statisti-
cal) formulation. For example, even in a single direct deter-
ministic measurement of the length of the target flaglopef by
a meter stick, due to limited precision, accuracy, resolution,
calibration, and other perturbing physical factors and circum-
stances, the measurement result is not exact. In simple ide-
alized deterministic situations, a single geometric measure-
ment reading from the instrument includes the availablesig-
nificant digitsand one estimated digit, given by atolerance
interval or round-off to the nearest significant digit.4 With
regard to validating the deterministic length-theoretic metro-
logical proposition “Length(f) = 5.3470meters,” if the mea-
surement is made with a perfectly calibrated metric ruler that
has a 1millimeter precision, specified by uniformleast count

2For ease of exposition, we use length as our running example. However,
there will be other examples as we proceed.

3We revisit the ontology and role of real numbers in quantity calculus and
measurement below.

4Note that here the choice of the 1meter measurement unit precedes the
consideration of deterministic uncertainties expressed inmillimeter or other
measurement subunits.
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marks spaced 1millimeter apart, then the measurement state-
ment about the flagpole’s length in a single measurement op-
eration acquires a new form

Lengthmeas(f)−ε ≤ Length(f) ≤ Lengthmeas(f)+ε

So after measurement, the actual lengthLength(f) of the flag-
pole f is determined by the measured lengthLengthmeas(f)
and a deterministic uncertainty (error)ε around it. For ex-
ample, if the measured length off is Lengthmeas( f lagpole) =
5.347meters and the “doubtful” digit (typically estimated by
the measurer) representing the deterministic interval-based
uncertainty isε = 0.0005meters, then the actual length off
is inferred to be an element of the interval [5.3465,5.3475].

In single-case deterministic measurements the number of
significant digits accompanied with measurement uncertainty
is regularly used in ranking the overall precision and accuracy
of measuring instruments and measurement methods. Fol-
lowing along these lines, it is crucial to enrich the classical
framework with data models that take account of the effects
of errors and statistical uncertainties in analyzing the measur-
and’s measurement results and alternative methods.

Also, it is to be emphasized that in contrast to the largely
autonomous character of units of measurement, the concept
of quantity must be fitted to the scientific theory in which it
is used.5 Curiously, quantities employed by classical con-
tinuum mechanics, thermodynamics and space-time theories
do not fit easily into the foregoing equational formulation in-
volving quantity values. One reason is that physical systems
and their behavior often exhibit two complementary struc-
tures: (i) thelocal infinitesimal structure that is studied in
(time-dependent, space-dependent, etc.) differential quantity
calculus, and (ii) theglobal structure that utilizes thebundle
formalism ofvariable quantities, continuously varying with
respect to time, space and environmental factors, such as the
ambient temperature or pressure.

Additionally, we must not forget theamphibiouscharacter
of quantities, exemplified by belonging to both the equations
of abstractly presented scientific laws and concrete observer-
friendly measurement arrangements. In their “double life,”
quantities are flexible enough to exhibit both continuous and
discrete qualities, and encompass both unit-free and unitized
embodiments.

At this point we may wonder which notions of classical
quantity calculus are used in the equations of scientific theo-
ries vs. measurement. This is a good moment to be specific
and raise the following question: does continuum mechan-
ics use in its equations the abstractly conceived general no-
tions of length, time, and mass or rather the equations utilize
the unitized values of these quantities? The quick answer, of

5Keep in mind the radically different methods of calculation and measure-
ment of length or velocity in Newtonian vs. relativistic frameworks. And re-
call that quantum theory treats the time quantity as a parameter and quantum
gravity theory posits a Planck scale granularity of space-time. In physical
geometry, length of the circumference of an ellipse on a three-dimensional
sphere strictly depends on the sphere’s underlying elliptical geometry. Sim-
ply, the concept of length as well as all the other physical-geometric quanti-
ties tend to be theory-laden.

course, is ”None of the above.” In order for the mathemat-
ical laws of science to be applicable to target physical sys-
tems, they must be formulated in equational forms that em-
body reference-frame invariance, quantity scale invariance,
and empirical compatibility between predictions and mea-
surement results. And these conditions are best handled an-
alytically and universally in terms of “pure” numbers, tradi-
tionally specified by theratios between quantities and their
units, and functions thereon.

In the next subsection we raise a couple of problems for the
classical approach and sketch a background for their solution.

1.2. Some shortcomings of the classical approach to quan-
tities and their measurement

There are many questions that can be asked about the limi-
tations of the classical framework but at this point we shall
consider only a couple of simple conceptual subtleties.

First, after a closer perusal of Maxwell’s familiar formula,
discussed in [14] and recalled at the top of the previous sub-
section, it should be noted that the numerical factor{Q} used
in the equational statement strictly depends on the chosen
unit U =d f [Q], and therefore the popular notation for fac-
tors is ambiguous and ill-formed.6 It should be changed into
a parametrized expression of the formQU or something sim-
ilar, resulting in the revised equationQ = QU ·U. Better yet,
for any quantity valueQ and any reference unit quantityU
of the same kind there exists a unique non-zero real number
α such thatQ = α ·U. More generally, since for any pair of
quantity valuesQ andU one can be expressed in terms of
the other asQ = α ·U with a unique scale conversion factor
α , 0, the revised equation is nothing more than a simpleuni-
tized quantity conversionrule. Knowing thatα, 0 is uniquely
determined byQ andU, we can conveniently denote it by the
ratio expressionQU =d f α and rewrite Maxwell’s equation into
a well-formed equational statement

Q = QU ·U.

Mathematically, it is also true that for each quantityQ and
scalarα , 0 there exists a unique quantityQ′ of the same
kind such thatQ = α ·Q′.

Starting in Section 2, we shall deliberately use the ratio
notation QU instead ofQU, because it suggests a direct ac-
cess to the familiar algebraic structure of real numbers. More
specifically, for ratios we have the obvious multiplicationlaw
Q
U · UV = Q

V , capturing the change of quantity values obtained
by passing from measurement unitU to unit V. And of
course we have the trivial identity condition: ifQU = 1, then
Q =U, together with its converse. The notion of ratio is de-
signed to (i) accommodate Maxwell’s idea as its close cousin,
and (ii) to treat the underlying structure of quantities in the
framework oftorsorsover groups, i.e., special kinds of ac-
tions of scale-transformation groups on spaces of unitized
quantities. Torsors are to groups as affine spaces are to vector

6Here and below we use the expression=d f to indicateequality by defi-
nition.
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spaces, and they are known to be highly effective tools both
in algebraic geometry and modern physics. As it turns out,
torsors are also fundamental in modelingrelative physical-
geometric quantities, such as position, time, temperature, po-
tential difference, energy difference, and many other quanti-
ties that depend on the notion of difference between two states
of the target quantity-bearing system.

As we shall see in the next section, from a formal stand-
point, the starting point for torsors of quantities is a fixed
commutative group of scale or state transformations, i.e.,a
nonempty setG furnished with a binary operation that is com-
mutative, associative, invertible, and has a unit. Given a group
G, a torsor overG is a nonempty setQ equipped with a free
and transitive “dynamical” action ofG on Q, which is a spe-
cial case of the familiar coordinate change transformation.

One major justification for the choice of the torsor frame-
work is the fact that the fundamental structure of physical
quantities of a given kind in spaceQ can be derived from the
action of the scale transformation group. For example, for
any pair of physical quantitiesQ andQ′ of the same kind in
Q we can always find a reference quantityU and unique scale
transformationsα andα′ in G such thatQ = α ·U andQ′ =
α′ ·U. And theiraddition is given byQ+Q′ =d f (α+α′) ·U.
One of the main assets of using torsors in quantity calculus
is that all previously discussedsyntacticallygiven operations
have naturalsemanticcounterparts, formulated in terms of
operations on torsors of quantities. Additional justifications
will be provided in the next section, after we recall the rel-
evant mathematical tool kit and make the torsor structure of
physical quantities concrete.

Second, we ought to be able to make a careful distinction
between a physical quantityQQQ per seand its potentialval-
uesQ, Q′, · · · , referred to in Maxwell’s equation. In this set-
ting, one should posit a separatevalue spacefor each physical
quantityQQQ, along with suitable algebraic operations thereon.
In addition, one must also provide product and exponentiation
operations on the abstractly granted quantities themselves. To
answer this, we need specific definitions of these operations.

And lastly, in the classical theory there is no rigorous char-
acterization of how abstractly conceived quantities acquire
their values. We can see right away that these values do not
come as the result of the standardevaluationoperation of the
form QQQ(f) applied to flagpolef, because such quantity val-
ues depend on a chosen unit, and possibly also on a spatial
reference frame. In addition to the target flagpole, quantity
values also depend on the flagpole’s physical-geometric con-
dition considered at the time the measurement is made. So
the big question is: what is the exact relationship between an
abstractly given quantityQQQ and its possible values?

In order to proceed further, we need a precise characteri-
zation of how physical quantities acquire their values when
instantiated by commonplace real-world systems. Also, to be
compatible with the dynamical laws of modern physical the-
ories, it is extremely important to be able to construct iterated
(total and partial)derivativesof quantities, and their (time,
space, etc.)dependentandrandomor stochasticalternatives.

It is not clear how these constructions of new quantities from
old fit into the classical framework. More will be said about
each of these problems later.

Up to now, we have provided a concise summary of
the classical approach to quantities and their measurement.
We have also outlined our reservations regarding the clas-
sical syntactic formulation and interpretation of quantities
and their values, and quantity calculus in general. We take
these criticisms to be good reasons for developing an alter-
native metrological framework that circumvents the earlier
discussed pitfalls and interpretative difficulties surrounding
quantity calculus and measurement.

2. Scale transformations and torsors of unital quantities

In this section we introduce four basic ingredients for the the-
ory of unital quantities: physical-geometricstatesof quantity-
bearing systems with one degree of freedom, torsors ofuni-
tal quantities, andscaleandstatetransformation groups un-
derlying torsors. Our main objective is to bring the concep-
tual structure of quantities into agreement with the require-
ments of modern physical theories and associated measure-
ment practices, and to circumvent the problems discussed ear-
lier.

Modern theoretical physics utilizes an extremely effec-
tive framework for the mathematical description of classi-
cal, quantum and statistical physical systems in which the
basic concepts arestatesandquantities(a.k.a. observables).
These eminently fruitful notions stand in a duality relation-
ship, meaning that there is a pairing in which quantities are
evaluated on states and collectively quantity values individu-
ate states. The theory of unital quantities we present in this
section fits seamlessly into the adopted physical framework.7

The only difference is in the geometric dimensionality of state
spaces. Whereas in models of theoretical physics and sys-
tems science the underlying state spaces are generally multi-
dimensional, in the theory of deterministic scalar (as opposed
to vector or tensor) unitized quantities these spaces are exclu-
sively one-dimensional, characterizing systems with justone
degree of freedom. For mathematical reasons not relevant
here, the one-dimensional (continuum line or semi-line) con-
straint turns out to be crucial for the construction of product
and inverse quantities, needed in defining volume, velocity,
density and many other commonplace derived quantities.

In the classical approach, a physical quantity is thought of
as a quantifiable attribute of physical entities (meaning bod-
ies, fields, particles and spatio-temporal events) that comes
with an extrinsically attached unit. Quantities in themselves
are abstract and theoretical in nature, and are subjected tosyn-
tactically presented product and rational power operations.
Unfortunately, this view is not practical and is at odds with
most applications, because applied scientists and engineers,
who are interested in making predictions and performing

7Because a measuring instrument can only distinguish a limited neigh-
borhood of alternatives around the actual state of the measured system, mea-
surements of the measurand encoding the state can provide onlya restricted
amount of information about the measured system’s extant state.
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measurements, usually work withunital quantities in which
the units are specifically tailored to the phenomena they study
and to the instruments they use.

In our pragmatic approach, we bring the notion of quan-
tity to bear directly on the instantiating physical system and
the associated measuring instrument, meaning that we do take
into account the ingredient of measurement unit. In spite of
much discussion to the contrary, for all practical purposesof
physics we take quantities to be intrinsically “unitized” with
built-in units. From a colloquial linguistic standpoint, ama-
jor distinction between the classical and our formulation of
metrological statements can be seen in handling the values of
quantities.

In more detail, the classical metrological statement
“Length(f) = 5.347m” with its awkward unitized way of treat-
ing physical values (unitized magnitudes) is easily fixed
by conversion into an equational statement of the form
“Lengthm

(

f
)

= 5.347,” in which the left side shows length as
a unit-parametrized numerical-valued function,evaluatedat
argumentf, and the right side refers to a concrete “pure” real
number. But to require a subscript-style, unit-relativized nota-
tion for quantities, based solely on the fact that one can move
smoothly between the two formulations of metrological state-
ments, is clearly insufficient in itself. We provide the neces-
sary formal framework below. However, since we do not see
any serious possibility of giving a mathematically explicit and
rigorous characterization of unital quantities without invok-
ing the concept of state, we begin by showing how states may
be effectively used in defining the notion of “unitized” quan-
tity and in the grounding oftruth conditionsof metrological
statements about quantity values.

2.1. State spaces underlying unital quantities

In this subsection we investigate the importance ofphysical-
geometric statesof quantity-bearing systems in quantity cal-
culus. To illustrate the essential role of states in the world
of physical quantities, consider, once again, the simplestcon-
crete paradigmatic example of length, say, the length of flag-
pole f. To set the scene, we begin with the following ques-
tion: what makes the metrological assertion “Length(f) =
5.347meters” true?

As far as one can make out, in the classical approach to
quantities the emphasis is all on the multiplicatively presented
vector space of quantities and relationships between theirval-
ues, and the issue oftruth conditionsfor metrological state-
ments is not addressed.

With classical continuum mechanics as a background the-
ory, our answer to the above-posed question is based on the
following two idealized theoretical assumptions:8

8For us, an assumption is “idealized theoretical” insofar as it leaves out or
abstracts away many of the concrete microscopic physical-geometric details
of the target system (e.g., the specific atomic structure and the mesoscop-
ically blurred endpoints of the flagpole under consideration), and therefore
the system can have multiple microphysical realizers. A useful reminder is
that continuum mechanics effectively articulates the quantitative properties
of physically isolated target systems and relations betweenthem in coarse-

(i) At any given instant of time, the flagpolef (thought of as
having just one degree of freedom that is reserved exclu-
sively for length) occupies a well-defined spatial region
in the common-sense Newtonian space with two spatial
endpoints A and B (localizing the flagpole’s respective
left and right ends) that are connected by a unique ori-
ented (closed, bounded)line segmentABf.

(ii) The Cartesian line segment completely characterizes the
flagpole’s physical-geometric condition which we call
its extant lengthstateand, additionally, we say that in
virtue of the way the flagpolef is at the assumed mo-
ment of time, itinstantiates(realizes) the line segment
ABf.

Turning now to the state space apparatus for length, we as-
sociate with each flagpolef a geometric spaceLLL f of states,
consisting of all (positive) Euclidean line segments, modulo
spatial congruence, intended to encode the flagpole’s poten-
tial deterministic physical-geometric modes of being when
viewed from a given vantage point of time and coordinate
frame.9 At this point we can make the theoretical claim about
the flagpole’s length mathematically explicit and rigorousas
follows:

Length(f) = Euclidean distance-in-meters betweenA andB.

As the equation suggests, thetruth-makerof the assertion
“Length(f) = 5.347m” is the flagpole’s extant state, encoded
by the instantiated line segment ABf. Thus, for us, length
is intrinsic to f and is not something that is determined by
elementhood in a measurement model of length-bearing bod-
ies, as suggested, e.g., by the representationalists. Fromthe
standpoint of applied quantity calculus, we have two heuristic
reasons for focusing on states: (i) states serve astruth-makers
for metrological statements, and (ii) they specify theintrinsic
measurement units of unital quantities.

Before we begin with pertinent technicalities, there is one
additional piece of mathematical structure to include in our
quantity-theoretic framework, namely that of the archetypal
set of real numbersR. We know that real numbers, tradition-
ally treated as “magnitude algebras,” play a special role insci-
ence and measurement. However, it is important to be clear
about the precise mathematical structure ofR one plans to
use. For example, it can be the natural complete linear order
structure furnished with suprema and infima of bounded sub-
sets, the basic commutative group or ring structure for com-
putational content, Euclidean topology for geometry, Borel
measurable structure for random quantities, or a judicious
combination of all of these.

grained macroscopic terms that generally do not (and needed not) involve any
reference to the system’s microphysical details and energy exchanges with its
environment. Along related lines, the requirement of truth assignment can be
successfully maintained even for metrological statements in which the micro-
scale details about the target system are abstracted away.

9In more complex situations it may become necessary to introducestatis-
tical states that are encoded byrandomline segments, governed by suitable
probability distributions.
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Our fundamental assumption, which conforms to the well-
established practice in algebraic and differential geometry, is
to model state spaces in terms of isomorphic coordinatizing
maps to the real line. We have a number of good reasons to
sticking to real numbers. These include not only the large
variety of fully familiar and well-understood properties of re-
als and their astonishing success in local and global mani-
fold coordinatization, but also the fact that real number struc-
tures admit numerous useful constructions, including Carte-
sian productsR×R, direct sumsR⊕R, n-dimensional coor-
dinate spacesRn, extensions to complex numbersR+ iR, and
passage to all sorts of important substructures, such as the
continuum of strictly positive realsR>0, the subsets of ratio-
nal numbersQ and integersZ, or just natural numbersN, to
name a few.

Because many familiar extensive physical quantities (in-
cluding length, mass, and absolute temperature) admit only
positive numerical values, it is common to discard all unin-
terpreted surplus elements and work with the subsetR>0 of
strictly positive reals. It should be noted that in this reduced
numerical setting there are only two basic measurement-
theoretically important structures to consider: the natural lin-
ear order< for comparison purposes and the addition op-
eration + for aggregating magnitudes. Although there are
many options, it is common to give priority to the Hölder per-
spective [7], which is in favor of the Archimedean ordered
additive structure〈R>0, <, +〉 of positive reals, upholding the
laws of complete linearly ordered positive commutative semi-
groups.10 By way of contrast, we should also include the
multiplicative group structure〈R>0, 1, ···〉 of positive reals (and
that of nonzero reals〈R,0, 1, ···〉), known to be crucial in in-
vestigating the scale transformations of unital quantities and
scalar multiplication. Finally, numbers are also needed for
constructing numerical powers of quantities, such as square
roots, cubic roots, and so forth.

It is now time to examine the mathematical structure of
state spaces in more detail. Once again, there are many di-
verging options, but in the case of length one obvious choice
is the linearly ordered additive semigroup structure〈LLL , ≺,6〉
that matches the similarity type of the preferred additive
structure of real numbers. This state space structure is not
only heuristically plausible but enjoys a solid justification.
Because states associated with extensive quantities sharethe
universal properties ofbounded intervalsthat depend only
on the underlying geometric structure of continuum lines or
semi-lines, they automatically satisfy the laws of comparative
relationsℓ ≺ ℓ′ and support the definition of additive combi-
nationsℓ6ℓ′ of statesℓ,ℓ′ ∈LLL . In Euclidean geometry, we
can obviously compare line segments in terms of the familiar
“shorter-than” relation and treat their addition in terms of con-
catenation, modulo spatial congruence. Note also that states
are usually equipped with a dynamical structure. For length,
the most common example of state dynamics is given by state
changes of material bodies caused by temperature variation

10For ordered semigroups and related concepts see [3] and references
therein.

and elastic deformation.

2.2. Evidence for the torsor structure of unital quantities

We are now fully prepared to answer the question: what is
a unital quantity? Our answer relies on a one-dimensional
variant of the standard definition of space coordinatization.
Quite simply, aunital quantity(i.e., a quantity with a mea-
surement unit) is an isomorphism map from the underlying
quantity state space to the (positive) real line. In the exam-
ple of length, a unital length quantity is given by a complete
linearly ordered commutative semigroup isomorphism of the
form

〈LLL , ≺,6〉 L−−−−−−−−−−−→ 〈R>0, <, +〉
between the state spaceLLL of positive line segments and the
positive real lineR>0, understood as the range of their uni-
tized lengths. Recall that anordered semigroup isomorphism
is a one-to-one and onto mapping that preserves the semi-
group operations, and it also preserves and reflects the order
relation. Importantly, we know from [7] and [3] that com-
plete linearly ordered semigroup isomorphisms of the kind
displayed above do exist.

We shall see that the isomorphism-based definition of a
unital quantity is completely general. It applies equally well
also to all the other kinds of quantities, such as time and elec-
tric current, but some of these may require the ordered addi-
tive structure of the full set of real numbersR.11

Next, we have to show that each linearly ordered semi-
group isomorphism of the formL : LLL −→ R>0 is automat-
ically endowed with its intrinsic “built-in”unit of lengththat
accords with the classical understanding of unitized quanti-
ties and modern definitions of units of measure. To warm up,
our immediate interest is in answering the question “How is
1 meter defined?”

As well known, since 1983, themeter unit is defined some-
what theoretically in terms of a designated Euclidean line seg-
ment in the following way (see page 18 in [9]):

Onemeter is the length of a straight-line path trav-
eled by light in a vacuum during the time interval
of 1 : 299,792,458th of a second.

Because 1meter is officially defined asthe length of a
straight-line segmenttraveled by light during an agreed-upon
time interval, we have a good reason for sticking to the line-
segment ontology of length states.

11Although the existing literature of representational measurement theory
([12], [13], and [16]) tends to focus exclusively on Hölder style represen-
tation results in ensuring the existence of certain structure-preserving map-
pings, it is important to bear in mind that this is not the only option. For ex-
ample, any state space〈S ,6〉 that meets the definition of a one-dimensional
real vector space is automatically linear isomorphic to the vector space〈R, +〉
of reals. And the same idea extends also to one-dimensionallinearly or-
deredvector spaces and even ordered semilinear spaces, such as thespace
〈R>0, <, +〉 of strictly positive reals over the semiring of reals. Another pos-
sibility is a one-dimensional rational or complex linear space. For us, real-
valued isomorphisms constitute the heart of unital quantities of a given kind.
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Concretely, we say that a unital quantity presented by the
isomorphism mappingL : LLL −→ R>0 is intrinsically uni-
tized by 1 meter, provided that the inverse map equation
ℓm = L−1(1) holds, whereℓm denotes the line segment de-
scribed in the aforementioned definition ofmeter and 1 is
the numerical unit inR>0. In other words, the unital quan-
tity presented byL is unitized by 1 meter exactly when it
assigns number 1 to the line segmentℓm (modulo congru-
ence) traveled (i.e., instantiated or realized) by light during
the prescribed time interval. As expected, a unital quantity
L′ is unitized by 1centimeter provided that the line segment
defined by its inverseℓcm = L′−1(1) satisfies the equation
L(ℓcm) = 0.01, whereL is unitized by 1meter. This ex-
ample will become important later on when we discuss scale
changes of the formL′ = 0.01···L. Thus, fixing a unital quan-
tity L for length means specifying a unit of measure in state
spaceLLL for length that can be instantiated by a concrete mo-
tion of a physical entity.

The reader may wonder why do we use isomorphisms
rather than homomorphisms in defining unital quantities.
The reason is that different isomorphism maps send differ-
ent states (and therefore different measurement units) directly
to the same real number unit 1. In this way, each unital quan-
tity is unitized by exactly one state, so that states stand in
a one-to-one and onto correspondence with unitized quanti-
ties. All this readily generalizes to any base quantity. And
as we will show below, another redeeming reason is that the
set Isom(S , R>0) of structure-preserving isomorphisms be-
tween a state spaceS and positive reals is a torsor over the
group of scale transformations that has many spectacular ap-
plications in quantity calculus and dimensional analysis.As
far as measurement units are concerned, all information is in
the real-valued isomorphisms on states. One may complain
about the seemingly far-fetched continuum of measurement
units for length. But as we will see later on, this is not a
problem, because one can always choose a subtorsor of unital
quantities that singles out a convenient subset of countably
many measurement units.

Metrologists have long referred to and investigated vari-
ous kinds of real-valued physical quantities. It will help our
project to distinguish betweenunital quantities andgeneral
quantities. The latter is obtained from the former by com-
position with suitable real-valued functions. For example, if
the interest is in establishing whether or not there is current
of a sufficient magnitude in a given circuit powered by a bat-
tery, then the pertinent general quantity may be obtained from
a unital current quantity that is composed with a two-valued
functionBool : R>0 −→ {0,1}, sending all small current values
(determined by a unitized threshold) to 0 and sending the rest
of the values to 1. Additional examples will be discussed in
the next section.

Now we are ready to provide the final list of truth con-
ditions for lenth-theoretic metrological statements: theas-
sertion “Flagpolef is 5.347 meters long” istrue about f’s
length if and only if the following two non-epistemic condi-
tions hold:

(i) At a given instant of time, in its internal material setting,
environmental conditions and other contingent factors,
the target flagpolef instantiates a unique line segment

ABf in the flagpole’s associated state spaceLLL f;

(ii) The unital quantityL, unitized by 1meter in the sense of
the definition formulated above, satisfies the assertion’s
conditionL(ABf

)

= 5.347.

Note that these truth conditions hold (or fail to hold) about
f regardless of whether the flagpole’s length is measured or
whether there are any other flagpoles. When one measures
the flagpole’s particular unital length (e.g., its length-in-
meters), the aim is toestimatethe unknown numerical value
of this unital length. The important point here is that this
unknown numerical value is assumed to be an objective
mathematical property of the line segment that is instantiated
by the flagpole, and thus is conferred upon the flagpole’s
extant length condition. We regard this to be the underlying
ontological assumption about the truth-making role of
physical-geometric states of measured systems. So if we
estimate the value off’s unital length as, say, lying in the
half-open interval [5.3465,5.3475) measured directly once
in the meter unit, then the measurement operation gives us
incompleteinformation about the flagpole’s extant objective
length state.12 The proposed state-based definition of length
of flagpoles is technically pictured by the commutative
diagram

F R>0

LLL

Length

state
instantiation

L

The diagram illustrates how the unitized length of flagpoles
belonging to the setF is determined in terms of instantiated
(realized) states.

We can now put all our conceptual pieces together. Among
all the ingredients that go into building a torsor theory of uni-
tal quantities, three stand out as especially fundamental:

(i) The isomorphism classIsom(S ,R>0) of unital quanti-
ties of a given kind is essential for the formulation of
quantity calculus. It is comprised of mappings that send
physical-geometric states to numbers in a one-to-one,
onto and a structure-preserving fashion. Although here
we work with state spaces that are equipped with an or-
dered additive semigroup structure, the method applies
equally well also to state spaces that are endowed with
other types of structure. The starting point for the in-
vestigation of a physical quantity is a one-dimensional

12Modeling the flagpole’s blurred endpoints may require a statistical (or
fuzzy) structure that in a trade-offmanner simultaneously enriches and com-
plicates the underlying deterministic model.
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coordinatizing system of real-valued isomorphisms that
faithfully mirror the unknown or less familiar relations
between states in terms of well-understood numerical re-
lations.

(ii) We shall see that the commutative groupAut R>0 =d f

Isom(R>0,R>0) of automorphisms on positive reals, hav-
ing the form

〈R>0, <, +〉
σα−−−−−−−→ 〈R>0, <, +〉,

where for alla∈R>0 we setσα(a)=d f α ·a with a unique
α > 0, is essential in modeling quantity scale transfor-
mations. Because here the group operation is given
by the composition of automorphisms, satisfying for all
α,α′ ∈ R>0

(a) Identity:σ1 = Id R>0;

(b) Multiplication: σα ◦σα′ = σα·α′ ; and

(c) Inverse:σα−1 = (σα)−1,

there is a natural isomorphism relationship between the
multiplicative group〈R>0,1,···〉 of strictly positive reals
and the scale transformation groupAut R>0. It is easy
to verify that eachα in the multiplicative group of reals
is mapped byσ : R>0 −→ Aut R>0 to its unique scale
transformationσα, and it is immediately apparent that
the multiplicative group structure ofR>0 is preserved in
a one-to-one and onto manner.

Of special importance is the intimate relationship be-
tween two unital quantitiesQ andQ′ in Isom(S ,R>0).
In complete analogy with geometric coordinate transfor-
mations, the unitconversionof quantityQ into quantity
Q′ is achieved by composing the first unital quantityQ
with a suitable similarity automorphismσα ∈ Aut R>0,
as shown in the commutative diagram

〈S ,≺ ,6〉 〈R>0,<,+〉

〈R>0,<,+〉

Q

σα

Q′

in which we have the equalitiesQ′ = α ··· Q =d f σα ◦
Q for some α > 0. Thus, all unital quantities in
Isom(S ,R>0) are of the scalar-product formα ·Q, where
Q : S −→ R>0 is a designatedreferenceunital quan-
tity, andα > 0 is a unique scaleconversioncoefficient
in R>0. Technically, the most striking feature of auto-
morphism groups is the canonical group isomorphism
Aut R>0 � Aut Isom(S ,R>0).

We contend that the classical approach treats scale con-
versions only in a “passive” manner, meaning that the
main concern is the symmetry groupAut R>0 that acts
on quantity values independently of their origin or how

they are obtained. Physicists label these automorphic
scale transformations aspassivebecause there is nothing
objectively physical that changes under their actions.

It turns out that the analysis of quantities can be signif-
icantly deepened by introducing, in a dual fashion, the
“active” group Aut S =d f Isom(S ,S ) of dynamical
automorphisms of state spaces, encoding all causally in-
duced state changes in the target system, independently
of any access to numerical values. From a foundational
standpoint, the duality between active and passive auto-
morphism groups can be viewed as a bridge (realized by
quantities) between ontologically stipulated truth-maker
states endowed with causal powers and epistemically ac-
cessible numerical counterparts. To advance to the active
side of transformations surrounding quantities, we now
turn to the final basic ingredient of unital quantity calcu-
lus.

(iii) As alluded to above, besides unital quantities and
their scale transformations, we need dynamical trans-
formations on states that characterize temporal and
otherchangesin the quantity-bearing target system. In
conformity with scale transformations, the groupAut S

consists of automorphisms of the formδα : S −→ S ,
defined byδα =d f Q−1 ◦σα ◦Q, whereQ′ = α · Q with
some α > 0 and σα = Q ◦ δα ◦ Q−1, as seen in the
commutative diagram

〈S ,≺ ,6〉 〈R>0,<,+〉

〈S ,≺ ,6〉 〈R>0,<,+〉

Q

δα

Q′

Q−1

σα

It is no surprise that the state automorphismsδα may
be obtained in a one-to-one and onto manner from scale
transformationsσα. Furthermore, it is easy to check by
elementary calculations that the passage to state auto-
morphisms from scale transformations is independent
of the choice of unital quantityQ. This brings out
the all-important dual group-isomorphism relationship
between the fundamental automorphism groupsAut S

andAut R>0.

These are all the ingredients we need for torsors of unital
quantities of a given kind. We have been repeatedly referring
to the setIsom(S ,R>0) of unital quantities and indicated that
it is furnished with the structure of a torsor over an automor-
phism group, but we have not fully explained what it is. We
now pause to recall the pertinent definition.13 Fortunately, the
definition is pretty minimal.

13An elementary discussion of torsors may be found in [2].
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2.3. Torsor structure of unital quantities

In the case of unital quantities of a given kind, the start-
ing point for the specification of a torsor is a multiplicative
Abelian group〈G,1,···〉 that introduces the torsor structure on
a setX in the form of a group action.14 Simply put, atorsor
over the groupG is a nonempty setX, equipped with a free
and transitive action ofG on X.

In unwrapped and explicit terms, atorsor (a.k.a. a principal
homogeneous space, which is a special case of a principal
bundle) over the groupG, denoted byGyX, is defined by
the following three conditions:

1. Group action:There is a designated mapG×X
⊲−−−−−−→

X, called theleft actionof groupG on setX, which as-
signs to each group elementg ∈ G andX ∈ X a unique
element ofX, denotedg ⊲X, in such a way that the fol-
lowing actionaxioms (familiar from dynamical systems
theory) hold for allg,g′ ∈G andX ∈ X:

(a) Identity: 1 ⊲X = X;

(b) Composition of action:g′ ⊲ (g ⊲X) = (g′ ·g) ⊲X.

2. Transitive action:The above specified action is assumed
to betransitive, i.e., for allX,X′ ∈ X there exists ag ∈G
such thatg ⊲X = X′. In the language of dynamical sys-
tems theory, the “transitivity” assumption means that for
the given group action onX there exists exactly one or-
bit, namely the entire setX itself. To be more concrete,
in torsor X there is no preferred or distinguished ele-
ment.

3. Free action:The action isfree, i.e., the uniqueness con-
dition g ⊲X = g′ ⊲X =⇒ g = g′ holds. Equivalently, for
a free action the conditiong ⊲X = X =⇒ g = 1 is sat-
isfied. Informally, “freeness” means that different group
elements act differently on the elements of torsorX, i.e.,
the stabilizer subgroup at every point is trivial, specified
by the group’s identity element.

The free and transitive action requirements are equiva-
lent to the following simple condition:

4. Ratio law: For every pair of elementsX,X′ ∈ X there
exists a unique elementg ∈ G such that the equation
g ⊲ X = X′ holds. Here the unique group elementg is
denoted by theratio expressionX′

X and is called thequo-
tient X′ by X. So there is aquotientmap− : X×X −→G
which sends each pair (X,X′) in X to a unique group el-
ementg = X′

X such thatg ⊲ X = X′. Quotients will be
of paramount importance later on, when we show how
unital quantities of the same kind can be divided to get
“pure” numbers. The analysis just given is actually mod-
eled on Maxwell’s account of quantities and their ideal-
ized measurement.

14Note that the term “torsor” comes from the French “torseur” and it may
have originated from “torque,” anactionof rotation. As we shall see, torsors
hold the key to understanding all of quantity calculus.

It is easy to modify the foregoing definition of a torsor to in-
clude topological, differentiable, measurable and many other
species of groups and spaces. All one has to do is enrich the
group and torsor space of interest with a topological or other
structure in a manner that is compatible with the group action.

There is one glaring omission from the just given definition
of a torsor. The definition is not complete without specifying
a set of mappings that relate pairs of torsors in a structure-
preserving manner.

Recall that atorsor map

GyX
H−−−−−−−−→GyY

from torsor GyX to torsor GyY is a mapping of the
form H : X −→ Y which renders the following diagram
commutative:

G×X X

G×Y Y

⊲

IdG×H H

�

That is to say, the equalityH(g ⊲X) = g � H(X) holds for all
pointsX in X and for all group elementsg ∈G. A one-to-one
and onto torsor mapH : X −→ Y is called atorsor isomor-
phismfrom torsorGyX to torsorGyY. If there is a torsor
isomorphism between torsorsX andY over the shared group
G, then we writeX � Y. Moreover, we denote the set of all
torsor isomorphisms from torsorGyX to torsorGyY by
Isom tor(X,Y). It is routine to check that a sequential com-
position of two torsor maps is again a torsor map, and the
identity map is trivially a torsor map.

Next, we turn to examples of torsors arising in quantity cal-
culus. Keep in mind that each commutative groupG can be
turned into atrivial torsorGyG by viewing its group op-
eration as an action··· : G×G −→ G on itself and by setting
g′
g =d f g′ ···g−1 with g,g′ ∈G for the quotient element. In par-

ticular, the multiplicative group〈R>0,1,···〉 of positive reals is
a trivial torsor over itself.

For us, the most important example is the torsor
Isom(S ,R>0) of unital quantities of a given kind over the
automorphism groupAut R>0 of scale transformations, iso-
morphic to the multiplicative group〈R>0,1,···〉 of positive re-
als. This torsor is specified by the (left) action

〈R>0,1, ·〉× Isom(S ,R>0)
⊲−−−−−−→ Isom(S ,R>0)

of the multiplicative group〈R>0,1, ·〉 of reals on the set
Isom(S ,R>0) of unital quantities defined on state spaceS .
We know from our earlier discussion of quantities that each
real numberα > 0 and each unital quantityQ determines
a unique quantityQ′ = α ⊲Q, defined by the simple scale
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changeQ′(s) = [α ⊲Q](s) =d f α · Q(s) for all statess. Ev-
idently, both action axioms are satisfied. Furthermore, it is
clear from our previous analysis that any pair of unital quan-
tities Q andQ′ determines a unique real numberα > 0 in
the multiplicative group of positive reals such that the equal-
ity Q′ = α · Q holds. In the present case the real number
is denoted by the quotientQ

′
Q that permits us to convert

the Maxwell formula (discussed in the Introduction) into the
equationQ′ = Q′

Q ·Q. In the classical approach, this equation
characterizes the idealized measurement of the unital quan-
tity Q′ of interest relative to a given reference “unit” quantity
Q, where the quotientQ

′
Q denotes the number the measurer

reads off a perfect analog instrument’s display. The torsor
Isom(S ,R>0) of isomorphisms is based on the idea that uni-
tal quantities are special forms of numerical coordinatizations
of geometrical state spaces.

Because all three groups〈R>0,1, ·〉, Aut R>0, andAut S ,
discussed in the previous subsection, are pairwise isomorphic,
we end up with three essentially equivalent specifications of
the torsor of unital quantities. To clarify the slight difference
between torsors introduced over the last two groups, we has-
ten point out that the state automorphism groupAut S acts
on Isom(S ,R>0) from the right. In more detail, it has the
right action form

Isom(S ,R>0)×Aut S
⊳−−−−−−→ Isom(S ,R>0)

satisfyingQ⊳ δ1 = Q and (Q⊳ δα)⊳ δα′ = Q⊳ δα·α′ for all
unital quantitiesQ and strictly positive realsα andα′. The
key lies in observing that this action is also free and tran-
sitive. Since here in accord with thecompatibility require-
ment the right action can be transformed into the left action
by settingQ⊳δα =σα ⊲Q for all unital quantitiesQ and reals
α > 0, the isomorphism classIsom(S ,R>0) is guaranteed to
be a torsor also for the automorphism groupAut S of state
tranformations. We are quick to point out that in this formu-
lation of group action the unital quantities vary in the same
way as states vary. The foregoing two compatible (passive
and active) group actions are commonly taken to imply that
Isom(S ,R>0) is actually abitorsor. Fortunately, here we
need not engage a general theory of torsors. As expected,
theevaluationmap

Isom(S ,R>0)×S
BC−−−−−−−−→ R>0

defined byBC(Q,s) = Q(s) is an isomorphism. The essential
thing to note here is that a measurement act can be thought
of as an approximate empirical realization of the evaluation
map, applied to the target system’s measured quantity and its
extant state.

To say that a unital quantityQ of a given kind is equipped
with a particularunit of measuresimply means that it is an
element of a certain torsorIsom(S ,R>0) over the automor-
phism groupAut R>0 of positive reals. For this reason it is
profitable to view torsors of unital quantities over a given
scale conversion group as dimension-theoretic encodings of
the kinds or types of unital quantities. As we shall see,

quantity typesof the formIsom(S ,R>0) provide a powerful
torsor-theoretic account of dimensional analysis.

Conventional wisdom has it that the units of measure and
associated unital quantities of a given kind used in applied
sciences do not form a continuum. What this means is that in-
stead of labeling the units by arbitrary positive real numbers,
we may prefer to label them more accessibly bySI’s metric
prefixes, referring to the everyday use of integer powers of 10.
So under the metric approach the set of measurement units of
a given kind is at most countable.

At this point we have a bit of a confusion to clear up. The
critical point to notice is that torsors of isomorphisms be-
tween state spaces and real numbers provide the ideal con-
ceptual arena for truth conditions of metrological proposi-
tions, definitions of unital quantities, and for specifyingde-
rived quantities. In the torsor picture, we can accommodate
the accepted metric-system wisdom by specifying thesubtor-
sor 10Z ·Q of unital base quantities, defined by the countable
subset{· · · ,10−2 ·Q,10−1 ·Q, Q,10·Q,102 ·Q, · · · } of unitized
quantities, generated by a designated unital quantityQ (e.g., 1
meter, 1 kilogram, 1 ampere and so forth). So the elements of
this subtorsor can be written as 10n multiples (with integers
n ∈ Z) of the reference unital quantityQ, and the correspond-
ing scale names are given by the familiar Latin name-prefixes
(e.g.,nano for 10−9, micro for 10−6, milli for 10−3, kilo for 103,
mega for 106, giga for 109, etc.). According to the definition
of the metric subtorsor 10Z·Q, the group of scale transforma-
tions is given by the infinite multiplicative cyclic subgroup
10Z of integer powers of ten. Similar subtorsors can be iden-
tified also for imperial and other non-metric systems of unital
quantities. A moment’s reflection reveals that the subset of
rational-valued unital quantities in torsorIsom(S ,R>0), de-
fined on the counterpart countable subset of the state space
S , is a subtorsor over the scale automorphism groupAut Q>0

of positive rational numbers. The analysis just given works
also for supertorsors of complex-valued unital quantitiesover
the scale automorphism groupAut C of complex numbers.

In Subsection 2.2 we discussed the truth conditions for
metrological propositions. To get clear on the connection be-
tween quantities and propositions about their values, it would
be good first to have some idea of what propositions are. For
a given unital quantityQ : S −→ R>0, all elementarypropo-
sitions about its potential values are specified by subsets

~Q ≤ α� =d f

{

s
∣

∣

∣

∣

Q(s) ≤ α
}

of states inS that satisfy the condition stating that the value
of quantityQ is not greater thanα. This includes the special
case~Q = α� discussed earlier. In addition, using Boolean
complements and intersections, we can quickly obtain more
complex propositions having the form~α ≤ Q ≤ β�.

The logical structure of unital quantityQ, needed for rea-
soning about its values, is encoded by the Boolean (sigma)
algebraBQ of propositions, constructed from elementary
propositions using set-theoretic Boolean operations. A pas-
sage from quantityQ to quantityQ′ = γ · Q is reflected in the
proposition~α ≤ Q′ ≤ β� = ~α

γ
≤ Q ≤ β

γ
�. If deterministic
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truth assignments to elementary propositions are hard to spec-
ify, then it becomes necessary to reformulate the basic metro-
logical statements into probabilistic statements, using suitable
probability measuresP defined on the Boolean (sigma) alge-
braBQ of subsets ofS . These statements have the basic form
P
(

~Q ≤ α�) = p, stating that the probability that the value of
quantityQ is not greater thanα, is p. Under a frequentist on-
tology, the probability measuresP are conveniently thought
of asstatisticalstates instantiated by the target system.

There are several useful ways of adding new structure to
any torsor of unital quantities. For us, a substantive example
is theadditionQ+Q′ of unital quantities of thesame kind,
defined by

Q+Q′ = (1+
Q′
Q ) ·Q,

and the natural linear order structure, given by

Q < Q′ ⇐⇒ 1<
Q′
Q ,

satisfying the monotonicity conditionQ < Q′ =⇒ Q+Q′′ <
Q′+Q′′.

A quantity torsorIsom(S ,R>0) over the automorphism
groupAut R>0 is also a metric space under the distance func-
tion d(Q′,Q′′) =d f | Q

′
Q −

Q′′
Q |. Simple calculation shows that

the distance function does not depend on the choice ofQ
in the quotients. Thus, if needed, we can also think of
the torsor of unital quantities as a topological and hence a
Borel measurable torsor. Alternatively, the order topology on
Isom(S ,R>0) is given by the subbasis family of subsets of
the form

{Q
∣

∣

∣Q < Q′} and
{Q
∣

∣

∣Q′′ < Q} for all Q′ andQ′′.
When it comes to handling the unital quantities instanti-

ated bycompositephysical systems (e.g., systems presented
in terms of parallel combinations of electric circuits in which
currents behave additively, or massy bodies given by separate
parts with masses that also combine additively, along with
similar cases involving volume or area), we can use a Carte-
sian product construction. As a classic example, suppose we
wish to calculate the combined length of two juxtaposed (con-
catenated) flagpoles, symbolized byf+ f′. Since each con-
stituent flagpole comes with its own respective state spaceLLL f

andLLL f′ for length, there is also a similar state spaceLLL f+f′ for
the concatenated flagpole. Although these state spaces are la-
beled differently, the are in fact defined by the same set of
line segments. In modeling the length of respective flagpoles
f andf′, we can use unital quantitiesLf andLf′ . As shown in
the commutative diagram

LLL f×LLL f′ R>0×R>0

LLL f+f′ R>0

Lf×Lf′

+ +

Lf+f′
the unital quantities of flagpoles determine the quantityLf+f′
of the juxtaposed flagpoles, using the addition of states and

reals. In more detail, the total unital length is given by the
sumLf+f′

(

ℓ+ ℓ′
)

=d f Lf(ℓ)+Lf′(ℓ′) for length statesℓ andℓ′

instantiated by the respective constituent flagpolesf andf′.15

This simple algebraic apparatus immediately generalizes to
other finitely many juxtaposed flagpoles and to any finite col-
lection of length-bearing physical objects. And, as indicated,
the product construction works equally well also in the am-
bience of other types of combined systems in which unital
quantities behave additively.

At this point we make the general discussion of torsors
of unital quantities more concrete by considering torsors that
model the type ofbasequantities of the classicalSI system.

2.4. Leading examples: torsors of unital length and time
quantities

In this subsection our main order of business is to illustrate
a basic method of (i) specifying the pertinent automorphism
groups of states and scale transformations of unital quantities,
and then (ii) isolating the torsor of unital quantities under con-
sideration.

Torsor of unital length quantities

As a first example of a torsor of unital quantities, we describe
the torsor

LLL =d f Isom(LLL ,R>0)

of unital length quantitiesover the automorphism group
Aut R>0 of scale transformations. As mentioned earlier, the
state spaceLLL associated with length-bearing physical ob-
jects is given by the linearly ordered semigroup of line seg-
ments and aunital length quantityis any isomorphism that
sends line segments (encoding length states) to numbers in a
structure-preserving manner. Recall that length states are in-
stantiated by length-bearing physical systems with one degree
of freedom, reserved for the length attribute.

From a formal standpoint, the notion of unital length quan-
tity is designed to accommodate quantityunitizationandtruth
conditionsfor metrological statements about length. From the
standpoint of applications, unital quantities provide themost
hospitable environment for predictions and measurement in
virtually all disciplines of science and applications. We put
unital quantities on the center stage because scientists and ex-
perimenters reason about systems or phenomena and affiliated
measurement methods of interest in terms of unital quantities
that specifically fit the objects of their investigation.

For instance, because distances and sizes in the universe
tend to be too big, astronomers utilize length quantities that
are unitized by special astronomical units, such as alight-year
(1ly = 9.5×1012 km) andparsecs(1pc = 3.09×1013 km), in-
cludingkiloparsecs andmegaparsecs. By contrast, biologists
work with light microscopes that have a resolution of about
200nanometers(1nm = 10−9 m) and atomic physicists inves-
tigate the ultrasmall diameters of atoms in the range from

15We can give a substantially more technical characterizationby noting
that the addition+ specifies a torsor map.
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about 0.1 nm to 0.5nm. The average distance between the
centers of the nuclei of two bonded atoms in a molecule is
even smaller and is commonly expressed inÅngstromunits
(1Å = 10−10 m). A similar pragmatic unitizing strategy ap-
plies also to time, mass, energy, electric current, and so forth.

Somewhat naively, the torsorLLL of unital length quan-
tities over Aut R>0 can be viewed as families of posi-
tive real numbers annotated with various measurement units
(a.k.a. dimensioned scalars), including{α meters |α > 0} =
{β inches |β > 0}= {γ kilometers |γ > 0}, and similarly for mass:
{α kilograms |α> 0}= {β tons |β> 0}= {γ pounds |γ > 0}, and so
forth. Note that on this account the notion of unital quantities
involves only thenamesof certain measurement units without
specifying their actual physical-geometric referents. For us,
the torsorLLL is best seen as thelength quantity type, i.e., the
type of quantities unitized by a length unit of measure.

Now, if the interest is in length values involving a spe-
cific measurement unit of length, e.g., given by the unital
length quantityL, then without any loss of generality one can
employ an alternative (albeit less convenient) torsor notation
R>0L =d f

{

α ·L
∣

∣

∣ α > 0
}

for the length torsorLLL that explicitly
displays the chosen reference unital quantityL.

The situation becomes somewhat more complicated when
we consider theunitizedlength of curves, perimeters of areas
and other length-bearing geometric objects. For example, it
is well known that the numerical value of the circumference
of an ellipse is given by a complete elliptic integral of the
second kind that cannot be evaluated in terms of elementary
functions. Even if the unital length values of the semiminor
and semimajor axes of the ellipse (used in defining the elliptic
integral) are known exactly, the value of the circumferenceis
available only approximately.16

Suppose the earlier discussed flagpolef has an elliptical
crossection (constant along its length) and the interest isin
determining the flagpole’s perimeter. Theoretically, the unital
perimeter of physical rods with elliptical crossections may be
specified by the composite of two maps:

Rods
instantiate−−−−−−−−−−−−→ Ellipses

C−−−−−−−→ R>0L
In the diagram, the first map indicates the instantiation of
an ellipse by the crossection of a target physical rod.17

And the second mapC refers to the circumference of the
(instantiated) ellipse with a numerical value measured in the
units of length quantityL chosen for the lengths of axes of
the ellipse. In terms of our setting, the flagpole’s perimeter is
given by the equationPerimeter(f) = C(Ef

) · L, whereC(Ef
)

denotes the circumference of the ellipse Ef instantiated by
f in the length unit ofL. Unitized Jordan and Lebesgue
measures of geometric objects, including their areas and vol-
umes, and unitized probability densities are handled similarly.

16Alternatively, the circumference of an ellipse can also be characterized
in terms of various slow-converging infinite series.

17Recall that in continuum mechanics a physical body is assumed to oc-
cupy a compact spatial region delineated by a boundary.

Torsor of unital time quantities

As another important example of a torsor of quantities we
now consider the torsor ofunital time quantities. A minor
complication arises from the fact that physical time has two
distinct ontologies, as immediately seen in conceptually di-
verging answers to questions such as “What is the time?” and
“How long will it take?”. In contrast to many other views,
we find the following two-sorted temporal ontology to be of
overwhelming importance in quantity calculus:

(i) The point-based ontology, intended to capture the
instantaneous occurrence of classical idealizedpoint
eventsin terms of temporal momentswhenthey occur at
any place in a three-dimensional Euclidean simultaneity
space. Typical colloquial examples of such point events
include flipping a light switch, collision of two particles,
firing a gun, and so on.

(ii) The interval-basedontology that treats time in terms of
durations(i.e., finitary lapses of time) of variousinterval
events, happenings or spatialprocesses, confined to a fi-
nite bounded region of classical space. Often-discussed
examples are falling bodies, earthquakes, and the cyclic
behaviors of pendulums, quartz crystals, cesium atomic
clocks and stopwatches.

These temporal ontologies are often crafted in a mutually
reductionist manner, so that durations can be viewed as fini-
tary closed convex continuum-type subsets of the space of
instants (withbona fideinitial and terminal boundaries) and
conversely, temporal instants are thought of as constitutive
elements in the form of slices of durations. Since clocks usu-
ally indicate time instants and measure temporal durations,
we shall integrate these two approaches within a single geo-
metric framework.

In conformity with neo-Newtonian space-time theory, it
is customary to model physical time in terms of a one-
dimensional future-oriented affine Euclidean space.18

There is a simple alternative approach that exploits the
torsor structure introduced earlier. To characterize the two-
sorted ontology of time, we need two spaces: (i) the one-
dimensional linearly ordered continuum〈T,≺〉 of time in-
stants19 instantiated by point events associated with motions
of and interactions between physical entities (e.g.,bodies and

18It is important to emphasize that we are not identifying the selected
mathematical structure of time with the objective physical timeit purports
to model and we are not assuming that these two entities are “isomorphic” in
any useful sense. Simply, we regard physical space-time as something that
exists in its own right and with its own manner, and is endowed with certain
physical-geometric structures that classical neo-Newtonian models are able
to capture to an acceptable degree of adequacy. In this paperwe are ontolog-
ically committed only to space-time structures that are minimally required in
characterizing unital quantities in the context of kinematics and dynamics of
classical bodies, particles and fields.

19It should be clear that the continuum time line’s points model physical
time instants and they are not numbers. Real numbers are used tocoordina-
tize the linearly ordered topological time line relative to some unit.
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particles), and (ii) the one-dimensional, future-oriented, lin-
ear space〈TTT ,< ,+〉 of temporal intervals, instatiated by dura-
tions (modulo temporal congruence) that are realized by real-
world interval events involving bodies, particles or fields.

By analogy between line segments and temporal intervals,
two time intervals aretemporally congruentwhen there is a
temporal translation that uniquely translates the first interval
into the second interval. Since temporal congruence is com-
patible with the ordinary composition of temporal intervals
(the addition of equivalence classes of two time intervals is
given by the equivalence class of addition of their represen-
tatives), it is straightforward to interpret the additionτ+ τ′

of time intervalsτ andτ′ in TTT as a sequential combination
of durations of instantiating events. We also need a struc-
ture that allows to prolong or shorten time intervals. That
structure is the scalar product in the linear spaceTTT . Finally,
time intervals (modulo congruence) are linearly ordered by
theshorter-thantemporal order relationτ < τ′.

The point to be taken away from all this is that the under-
lying structure of the physical time is more richly structured
than the state space apparatus for length, and therefore it re-
quires some extra stage-setting. As we shall now see, rather
than referring to a state space, reference is made to the under-
lying torsorTxTTT of time instants over the group of dura-
tions, given by theright (free and transitive) action

T×TTT
6−−−−−−−→ T,

of the additive group〈TTT ,0,+〉 (underlying the linear space
〈TTT , <,+〉) on the spaceT of time points. This action assigns
to each time instantt and a durationτ a unique instant, de-
noted byt6τ, obtained fromt by means of temporal trans-
lation given by the durationτ. Here is a simple illustrating
example: we know that the equation “2 o’clock6 3 hours
= 5 o’clock” is meaningful but the equation “2 o’clock+ 3
o’clock= 5 o’clock” of adding two temporal moments is not.

Recognizing that the just exemplified action of durations
defines the torsorTxTTT means that it satisfies the following
action axioms for all time instantst and durationsτ andτ′:

(i) Identity: t60= t;

(ii) Composition:
(

t6τ
)

6τ′ = t6
(

τ+ τ
′
)

.

In addition, in view of transitivity and freeness properties, for
any pair of time instantst and t′ there is a unique time lapse
between them, henceforth denoted by the temporaldifference
t′− t, satisfying the equationt6

(

t′− t
)

= t′. To recover the du-
ration from two time instants, consider the toy-example of the
temporal difference of two time instants (dates): 11 o’clock -
6 o’clock= 5 hours. So we have an importantdifferencemap
− : T×T −→TTT that assigns to each pair (t, t′) of time instants
the time lapset′− t between the instants.

When working with physical time, it is extremely impor-
tant to introduce its temporal orientation, commonly moti-
vated by the human experience-basedbefore-aftertemporal
linear ordert ≺ t′, stating that instantt is earlier than instant

t′. Of course, we could, somewhat arbitrarily, choose the re-
verse linear order. To make a better sense of this dilemma, we
show that the spatial orientation of spaceT is actually inher-
ited from the orientation of the one-dimensional linear space
of time intervals capturing durations. The upshot of this for
our discussion is that orientation is an important (albeit reg-
ularly ignored) additional structure of linear spaces thatiso-
morphisms between them are not required to preserve. For-
tunately, since in the case of the linear spaceTTT of durations
there are only two possible orientations, namely thefuture
andpastorientation, the problem is quite simple.

In sum, the temporal linear order of time instants inT is
obtained from the ordering of durations in the following way:
t ≺ t′ if and only if t′ = t 6 τ holds for a future-oriented dura-
tion τ.

After this somewhat abstract and fussy account of the tor-
sor setup for physical time we now turn to the task of intro-
ducing the torsor of unital time quantities. The situation is
analogous to unital length. Specifically, unital time quantities
are given by the setIsom(TTT ,R) of isomorphism maps from
the one-dimensional linear spaceTTT of time intervals (encod-
ing durations) to the spaceR of reals. However, we must not
forget that the numerical coordinatization of physical time in-
cludes both time instants and durations. A natural strategyis
to treat them in parallel, as shown in the commutative diagram

T×TTT T

R×R R

6

¢×T ¢

+

in which

(i) ¢ is a coordinatizing(a.k.a. dating) isomorphism map
from the linearly ordered structure〈T,≺〉 of time instants
to the ordered structure〈R,<〉 of reals with a unique
starting moment of time, i.e., thetemporal origingiven
by t0 = ¢−1(0), and

(ii) T is a unital time quantity, defined as a linear isomor-
phism map from the linear spaceTTT of durations to the
linear spaceR of reals. It is unitized by the duration
τ1 = T −1(1).

In more technical terms, in the above diagram the pair (¢,T )
presents a basic isomorphism relationship between the tor-
sorTxTTT of physical time and the torsorRxR of reals, ex-
pressed by the equation¢ (t 6 τ)= ¢ (t)+T (τ).20 In particular,
if physical time is assumed to start at instantt0 with coordi-
nate value 0 (e.g., 0second or 0hour) and the time that elapsed
betweent0 and a later moment, sayt, is equal toτ= t− t0, then
the time att is exactly¢ (t) = 0+T (τ), measured in the unit of
T , added to time “zero”.

So as to suit the intended interpretation of unital time quan-
tities, we now look closely at the base measurement unit of

20Since physical time instants cannot be added,R is just the ordered set of
reals, whereasR is the vector space of reals.
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time. As well known (see, e.g., page 19 in [9]), in SI the
standard unit of time is 1second and it is defined, using our
notation, as follows:

The time quantityT : TTT −→ R is unitized by 1
second provided that the future-oriented time in-
terval τsec =d f T −1(1) in TTT , modulo temporal
congruence, encodes theduration of a cesium (Cs
133) atom (at rest and at temperature 0 Kelvin in
the ground state) to perform exactly 9,192,631,770
complete microwave oscillations.

As in the case of length, all unital time quantitiesT ′
have the formT ′ = α · T with a unique time scale-changing
nonzero real numberα, given by the automorphism group
Aut R =d f Isom(R,R) of the one-dimensional linear space
of reals, known to be isomorphic to the multiplicative group
〈R,0,1,···〉 of nonzero reals. In a dual manner, to obtain all
unital time quantities from a reference unital time quantity,
we can utilize the automorphism groupAut TTT of transfoma-
tions on time intervals.

At this point we might ask the question: When is the metro-
logical statement “Physical evente lasted 37.8 seconds” true?
The answer to this question involves a temporal time interval
and a unital time quantity. Concretely, the statement is true
provided that (i) the above mentioned physical event’s actual
duration is faithfully encoded by the time intervalτe, mod-
ulo temporal congruence, belonging toTTT , and (ii) the unital
time quantityT unitized by 1second satisfies the equation
T (τe) = 37.8. Using time instants and coordinatizing “date”
maps¢ : T −→ R, these same ideas can also be applied to truth
conditions for metrological statements about the time of oc-
currence of point events.

There is a crucial distinction between continuous unital
time quantities belonging to the torsor

TTT =d f Isom(TTT ,R)

over the groupAut R of temporal scale transformations and
the associated discrete-valuedpointertime quantities realized
by a clock, stopwatch or other analog or digital instrument to-
gether with a display module, designed to detect or measure
time. We know that clocks provide only a good approxima-
tion of the time at which an event actually occurs or endures
in the clock’s neighborhood. If not calibrated properly, even
ideal clocks may give different readings, due to different time
settings or time units. More importantly, even if the analog
measuring clock’s pointer rotates continuously with constant
angular speed, there is always a discrete, nonzero, finite, ob-
servationally accessible time lapse between any pair of con-
secutive ticks or marks. Naturally, one can get a gradually
better approximation of the time of occurrence of the event of
interest with increasingly shorter lapses between consecutive
ticks or marks, but in the end the approximation is halted by
the Planck’s measure of time. Theoretical physicists working
in the classical areas of physics usually circumvent this type
of restriction by passing to pragmatically more accommodat-
ing models of time.

The earlier developed pattern for defining torsors of uni-
tal length and time quantities is the same for all base quanti-
ties, including in particular the torsorMMM =d f Isom(MMM ,R>0)
of unital massquantities and the torsorIII =d f Isom(III ,R>0)
of unital electric currentquantities over the automorphism
groupAut R>0 of scale transformations. The structure of state
spaces for mass and electric current is discussed in [4]. In
this way we obtain the required torsor-theoretic background
for the MKSA system of quantities.

We can now make a fundamental distinction between two
sorts of unital quantities. For example, in the case of time,
we can characterize time quantity in terms of the torsor
Isom(TTT ,R) of real-valued unital time quantities over the au-
tomorphism groupAut R of scale transformations or in terms
of a subtorsorIsom(TTT>0,R>0) over the automorphism group
Aut R>0 that employs only future-directed temporal units.
Here we can also think of torsorIsom(TTT ,R) as anextension
of time torsorIsom(TTT>0,R>0).

The construction of unital length and time quantities de-
scribed here can be generalized far beyond the scope of the
current paper. For example, treatments of unital tempera-
ture, unital energy, unital potential difference, and a host of
other quantities can be subsumed in a unified manner under
the above presented torsor-theoretic framework.

Our effort to develop a torsor framework for unital quanti-
ties would not be worthy of serious attention if we could not
effectively handle the structure ofderivedunital quantities.
This is our next topic.

3. Torsors of derived unital quantities

In this section we look more closely at the family of derived
quantities, definable in terms of torsors of given base unital
quantities. Once we accept the torsors of base unital quanti-
ties (over the shared group of scale transformations) as basic
structures of quantity calculus, our next task is to specifythe
algebraic operations on these and other torsors, needed for
reasoning about dimensional analysis in general and derived
unital quantities in particular. In contrast to the Drobot style
top-down approach, here we proceed bottom-up from chosen
base quantities to derived quantities.

3.1. Products of unital quantities

We begin this subsection with a brief overview of products of
unital quantities. First, there is the tensor product of torsors,
used, e.g., in formulating the notions of unital area and unital
volume quantities. IfX andY are torsors over the groupG,
then theirtensor productis a torsor over the same groupG,
denotedX⊗Y, given by the following two conditions for all
elementsX ∈ X, Y ∈ Y andg ∈G:

(i) The tensor product is defined by the quotiented Cartesian
product

X⊗Y =d f X×Y/∼

that employs the equivalence relation specified by

165



MEASUREMENT SCIENCE REVIEW,17, (2017), No. 4, 152–177

(g ⊲X,Y) ∼ (X,g ⊲Y). The elementary tensor members
of X ⊗Y, defined by the equivalence classes of pairs
(X,Y), are symbolized byX⊗Y. Note that the tensor
product is neither commutative nor associative in the
usual strict sense, but it satisfies these crucial properties
up to auniqueisomorphism. Below we will spell out in
more detail the algebraic properties of tensor products.

(ii) The left action ofG on X⊗Y is given by the map

G× (X⊗Y)
⊲−−−−−−→ X⊗Y,

whereg ⊲ (X⊗Y) =d f (g ⊲X)⊗Y= X⊗ (g ⊲Y).

Based on these conditions, it is routine to check that the tensor
productX⊗Y is a torsor overG. Even though the definition
of the tensor product of torsors looks weak and abstract, it
satisfies the following natural isomorphism conditions:

Proposition 1 For all torsorsX, Y, andZ over the same group
G the following torsor isomorphism relations hold:

(i) X⊗Y � Y⊗X;

(ii) (X⊗Y)⊗Z � X⊗ (Y⊗Z);

(iii) X � Y =⇒ X⊗Z � Y⊗Z;

(iv) X � Y =⇒ Z⊗X � Z⊗Y;

(v) G⊗X � X; and

(vi) X⊗G � X.

Proof:

(i) The torsor isomorphism map for the commutativity con-
dition is given by the assignmentX⊗Y 7−→ Y⊗X.

(ii) The natural isomorphism map for the associativity prop-
erty is specified by the assignment (X⊗Y)⊗Z 7−→ X⊗
(Y⊗Z).

(iii) Given an assignmentX 7−→ Y, we automatically obtain
the assignmentX⊗Z 7−→ Y⊗Z.

(iv) The justification is the same as above.

(v) The left torsor isomorphism is specified by the assign-
mentg⊗X 7−→ g ⊲X.

(vi) The right torsor isomorphism is specified by the assign-
mentX⊗g 7−→ X⊳g.

Based on these unique universal torsor isomorphisms and
knowing that the isomorphism� is an equivalence relation
on the class of torsors overG, we can now safely write the
tensor productX⊗Y⊗Z of three torsors without putting in
the parentheses and we might even writeZ⊗X⊗Y for the
same tensor product, modulo isomorphism.

In what follows, this parenthesis-free notational simplifica-
tion will be used freely in all iterated tensor products. With
a unique “witness” natural torsor isomorphism map between

two product torsors in hand, it is possible to introduce aunit
congruencerelation� on the elements of product torsors and
write X⊗Y� Y⊗X, (X⊗Y)⊗Z � X⊗ (Y⊗Z), and so forth.21

The idea is quite straightforward. For example, although the
product unital quantitiesL⊗T andT ⊗L for length and
time are formally distinct, they are neverthelessunit congru-
entL⊗T � T ⊗L, meaning that from the standpoint of uni-
tization both product quantities exemplify the same unit of
measure. We will take up this issue with more precision in
the next subsection.

The last two conditions inProposition 1show that the
shared groupG can be viewed as a two-sided “unit” for the
tensor product operation, modulo isomorphism. With the ba-
sic product operation on torsors in place, we can now define
torsors for area, volume, and a host of other familiar geomet-
ric quantities.

To define the notion of a unital area quantity, we only
need the underlying torsorLLL = Isom(LLL ,R>0) of unital length
quantities over the automorphism groupAut R>0 of scale
transformations. GivenLLL, the torsor of unitalarea quanti-
ties is given by the tensor product torsorLLL⊗LLL overAut R>0.
So, for example, the area of a rectangular carpet is expressed
in terms of the “length× width” tensor productL⊗L′ =
α ·L⊗L unital quantity, using thesquareof the length unit
of L and a conversion factorα > 0.

Let ℓlengthandℓwidth be the respective line segments instan-
tiated by the rectangular carpet under consideration. Then
the equation for identifying the carpet’s area in the square
units ofL is given by the product [L⊗L′](ℓlength, ℓwidth) =
α ·L(ℓlength) ·L(ℓwidth) for someα > 0.

Incidentally, the tensor product of unital length quantities
is strictly commutative, i.e., we haveL⊗L′ =L′⊗L. To see
this, all we have to do is verify the elementary equalities in
L⊗L′ =L⊗ (α ·L) = (α ·L)⊗L =L′⊗L for someα > 0.

Because strictly commutative tensor products are gen-
uinely useful in their own right, we shall use the notation
L⊙L′ instead ofL⊗L′. It might also be noted that unital
volume quantities are elements of the tensorial power torsor
LLL⊙3 =d f (LLL⊙LLL)⊙LLL, known in dimensional analysis as the
dimension of volume. By induction, we arrive at tensorial
powersLLL⊙n of any integer degreen> 0. From granted torsors
of base quantities we may construct iterated tensor product
torsors such as (LLL⊗TTT)⊗MMM, LLL⊙3⊗TTT⊙2⊗MMM, and so forth.

Oddly, the classical approach does not address the issue of
ontology of physical dimensions. In the classical paradigm
it is assumed that physical quantities have dimensions, even
though the relationship between them is not one-to-one, as
exemplified byenergyand torquequantities that are known
to share the same dimension, namelyMMM LLL2 TTT−2 expressed in
the traditional notation, even though structurally energyis a
scalar and torque is a vector, and thereby their associated state
spaces are different. As desired, congruence relations provide

21Here a congruence relation is an equivalence relation on torsor elements
which preserves the product operation in the sense of conditions 3 and 4 of
Proposition 1.
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the extra degree of freedom, often needed for semantic dis-
tinctions between quantities sharing the same dimension.

To get a more precise account of physical dimensions, it
is customary to start with a rather small set of base quanti-
ties, saylength, time and mass, chosen by convention, and
assign certain so-calledbase(albeit semantically undefined)
dimensions to them, commonly symbolized byLLL, TTT, andMMM,
respectively.22 To specify the dimensions of so-calledderived
physical quantities, it is standard to posit suitable groupop-
erations that generate productsDDD⊗DDD′ and inversesDDD−1, DDD′−1

of given dimensionsDDD andDDD′. The resulting group structure
of dimensions also includes the “dimensionless” product unit
element 1l (the algebraic shorthand notation for the real line
R) and is regarded as the centerpiece of dimensional analysis.
This strictly syntactic (symbolic) dimension-theoretic appa-
ratus is regularly used in classifying quantities and testing the
dimensional consistency of equational laws of physics.

What is essential about the proposed torsor approach is the
explicit (semantic) definition of the notion of physical dimen-
sion as aquantity type, i.e., as the physical-geometrictypeof
unital quantities of the same kind, exemplified by quantity tor-
sorsLLL, TTT, MMM and their product and inverse combinations over
Aut R>0, modulo universal torsor isomorphisms. From the
humble list of base torsors we advance to the notion of tensor
product of torsors that takes care of the product structure of
derived quantity types, modeling the basic taxonomy of phys-
ical dimensions. In addition, using suitable inverse operations
on torsors, we can explicitly form quantity types with expo-
nents, corresponding to syntactically built dimensions raised
to integer powers. For us, quantity types (dimensions) are to
physics what types are to logic and programming languages.
Just as in logic type checking of a formula ensures its well-
formedness, in physics dimensional consistency upholds the
physical meaningfulness of a quantity equation.

One apparent stumbling block in handling products of uni-
tal quantities of the same kind (e.g., length) may be encoun-
tered in their additive combination. Fortunately, as validated
by the easy-to-follow chain of equalities

L1⊗L′1+L2⊗L′2 =L1⊗L′1+ (α ·L1)⊗ (α′ ·L′1) =

(1+α ·α′) ·L1⊗L′1 =L⊗L′1,

any additive combination of elementary tensor unital quan-
tities reduces to an elementary tensor unital quantity. Thus,
even if the physical area is made up of several rectangular
subareas, the resulting area is determined by the sum of tensor
product factors that reduces to a commutative tensor product
of just two unital length quantities. And as anticipated, the
tensor structure of physical volume is the same – just replace
L⊗L′ with (L⊗L′)⊗L′′. It is straightforward to see that the
distributive law (L+L′)⊗T =L⊗T +L′⊗T holds on both
sides as usual.23

22Drobot in [5] and others specify dimensions by partitioning a quantity
space into equivalence classes of quantities having the samedimension.

23In order to be able to reason about the values of product quantities, we
need to associate Boolean (sigma) algebrasBQ⊗Q′ of propositions with prod-
uct quantities in exactly the same way that we have done beforefor base

Having made this foray into products of quantities, we now
introduce the notion ofinverseunital quantity of a given quan-
tity and then move on to defining more complex derived unital
quantities. With the help of inverse quantities we will be able
to produce a more fine-grained inventory of derived quantities
than we had in the framework of products. Thanks to seman-
tically specified product and inverse operations, we can define
the notions of mean unital velocity, mean density and many
other commonplace derived unital quantities.

It is common knowledge that physicists and engineers use
meter persecond (in symbolsm/s) as a typical metricderived
measurement unitto unitize a mean velocity quantity. Evi-
dently, unital velocities require everyday inverse ordualunits
of time, such as “per second” 1

second or “per hour” 1
hour .

Similarly, units for unital pressure quantities are conceived in
terms of “per meter square” 1

meter2 , and related inverse units.

3.2. Inverse unital quantities

In this subsection we give a brief introduction to inverse uni-
tal quantities. Our first examples involving inverse quantities
were distance per second and pressure per area. As alluded
to above, before turning to the concept of mean velocity, we
need to introduce the notion of torsor ofinverseunital quan-
tities.

Given a unital quantityQ in torsor

QQQ =d f Isom(S ,R>0)

over the automorphism groupAut R>0, its inverse unital
quantity, suggestively denoted by1Q , is a real-valuedisomor-

phic torsor map of the form1
Q : QQQ −→ R>0, specified by the

ratio formula

[ 1
Q ](Q′) =d f

Q′
Q

for all Q′ ∈QQQ.24 It is easy to see that the function-theoretic
inverse of quantity1

Q is the map (1Q )−1 : R+ −→QQQ, specified

by
( 1
Q
)−1(α) = α · Q, so that

( 1
Q
)−1(1)= Q. According to the

terminology we have just adopted, if unital timeT is unitized
by 1 second, then 1

T is unitized by its “dual” 1/second, and
similarly in the case of other temporal units.

The commutative diagram

〈R>0,1, ·〉×QQQ QQQ

〈R>0,1, ·〉× 〈R>0,+〉 〈R>0,+〉

⊲

IdR>0×
1
Q

�

1
Q

quantities. Usually, the product Boolean algebraBQ ⊗BQ′ (supporting prod-
uct probability measures) is sufficient.

24One might ask why areinverseunital quantities treated as isomorphic
mappings on unital quantities instead of mappings on states? Because, as we
have seen, it is possible to code up the same information that iscontained in a
states in terms of its corresponding unital quantityQ′ satisfyings=Q′−1(1).
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verifies that the inverse unital quantity1Q is an isomorphic
torsor map, satisfying the required commutativity condition

1
Q
(

α⊲Q′) = α�
1
Q (Q′),

where the new group action� of the multiplicative group
〈R>0,1, ·〉 on the additive group〈R>0,+〉 (shown in the bottom
part of the diagram) is defined by

α�
1
Q (Q′) =d f

1
α
· 1
Q (Q′).

Thus, the equalityQ
′

α·Q =
1
α
· Q′Q holds for allQ′ in QQQ andα > 0.

Now that we have a reasonable semantic concept of an in-
verse unital quantity, it is natural to introduce the torsor

QQQ−1 =d f Isom tor(QQQ,R>0) =
{ 1
Q
∣

∣

∣ Q ∈QQQ
}

of all inverse unital quantities associated with unital quantities
of typeQQQ. It is given by the class of isomorphic torsor maps
from torsorQQQ to the trivial torsor 1l of positive reals. Here
the required group action is given by the map

〈R>0,1, ·〉×QQQ−1 �−−−−−−→QQQ−1,

whereα� 1
Q =d f

1
α·Q =

1
α
· 1
Q for all α > 0 andQ.

The respective automorphism transformations of torsorsQQQ
andQQQ−1 are related by the commutative diagram

QQQ QQQ

QQQ−1 QQQ−1

σα

1
(·)

σ
α−1

1
(·)

satisfying the equalities

1
(·) ◦ σα(Q) =

1
α ·Q =

1
α
· 1
Q = σα−1 ◦

1
Q

for all Q andα > 0.
Therefore, relative to a given inverse reference quantity1

Q ,
all inverse unital quantities have the form1

α
· 1
Q with a unique

scale conversion parameterα > 0.
So far, we have avoided a mention of “division” of in-

verse quantities. Notice that sinceQQQ−1 is a torsor, it has its
own induceddivision mapDiv : QQQ−1×QQQ−1 −→ R>0, defined
by Div( 1

Q ,
1
Q′ ) =d f

Q′
Q , satisfying the equation1Q =

Q′
Q � 1

Q′ .
There is an intimate connection between a torsor of uni-

tal quantities and its corresponding torsor of inverse unital
quantities, and tensor products, given by the following natu-
ral torsor-isomorphism conditions:

Proposition 2 For all unital quantity torsorsQQQ andQQQ′ over
the same group of scale transformations, and the tensor prod-
uct unit defined by the trivial torsor 1l=d f R>0, the following
characterizations hold:

(i)
(

QQQ⊗QQQ′
)−1
�QQQ−1⊗ QQQ′−1;

(ii) QQQ �QQQ′ =⇒ QQQ−1 � QQQ′−1;

(iii) QQQ−1⊗ QQQ � 1l;

(iv) QQQ⊗QQQ−1 � 1l;

(v) 1l⊗QQQ �QQQ;

(vi) QQQ⊗1l �QQQ;

(vii)
(

QQQ−1)−1
�QQQ, and

(viii) 1l −1 � 1l.

Proof:

(i) The torsor isomorphism map is given by the assignment
1
Q⊗Q′ 7−→

1
Q ⊗

1
Q′ .

(ii) In view of one-to-one correspondence betweenQ and
Q−1, the isomorphism assignmentQ 7−→ Q′ automati-
cally transfers toQ−1 7−→ Q′−1.

(iii) The natural isomorphism is specified by the assignment
1
Q ⊗Q′ 7−→ α, whereQ′ = α ·Q.

(iv) Choose the same map as above, composed with the iso-
morphism map for commutativity.

(v) Use the assignmentα⊗Q 7−→ α ·Q.

(vi) Start with the same assignment as above and compose it
with the isomorphism for commutativity.

(vii) By definition, the isomorphism is given by the identity
map.

(viii) Assign α−1 to α.

The foregoing isomorphism relationships between torsors
justify the earlier chosen symbol 1l for the trivial torsorR>0

of positive reals. Notice that in this new notation, 1l may be
interpreted as theunit torsor associated with the product oper-
ation ⊗ , and the inverse unital quantity is a two-sidedtensor
productinverse of the given unital quantity. To choose a uni-
tal quantity (or measurement unit) of quantity typeQQQ means
to specify a torsor map of the formpQq : 1l −→QQQ, defined by
pQq(α) = α ·Q for all α > 0.

Inverse torsor constructions readily extend to negative ten-
sor powers. For example, in the case of the inverse length
quantity torsor we haveLLL⊙−2 =d f LLL−1⊙ LLL−1 �

(

LLL⊙LLL
)−1. One

can proceed in the same spirit and introduce higher negative
tensor powersLLL⊙−n � LLL−1⊙ LLL−1⊙ · · · ⊙LLL−1 iteratedn-times,
includingLLL⊙0 � 1l. So now we have tensor powersLLL⊙m of
torsorLLL for all integer degreesm∈ Z, and similarly for all the
other torsors of unital quantities.

We can now make a fundamental conclusion about quantity
torsors that is of paramount importance in our investigation
of dimensional analysis. Remarkably, with respect to tensor
product and inverse operations, the class of quantity torsors
forms a commutative group, modulo torsor isomorphism.
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In order to specify the dimensional structure of quantities,
we start with aspace of quantity torsors, say,Tors

(

LLL,TTT,MMM
)

,
generated by base quantity torsorsLLL,TTT andMMM of the respec-
tive length, time, and mass unital quantities, closed underten-
sor products and integer exponentiation operations. So this
space of torsors includes product terms of the familiar form
MMM⊗ (LLL⊙2⊗ TTT−1) and all of their torsor-isomorphic variants.
Now by simple algebraic considerations we arrive at the fol-
lowing proposition:

Proposition 3 Thedimension spaceDims
(

LLL,TTT,MMM
)

of quan-
tity torsorsdefined by the quotient

Dims
(

LLL,TTT,MMM
)

=d f Tors
(

LLL,TTT,MMM
)

/

≃

of the space of quantity torsorsTors
(

LLL,TTT,MMM
)

, generated by
base quantity torsorsLLL,TTT andMMM together with thequotient
mapDim : Tors

(

LLL,TTT,MMM
) −−−−−→ Dims

(

LLL,TTT,MMM
)

, is a commu-
tative (Picard) group under the operations specified by the
conditions

1. Dim QQQ •Dim QQQ′ = Dim
(

QQQ⊗QQQ′
)

, and

2.
(

Dim QQQ
)−1
= Dim

(

QQQ−1).

Proof: It is well known (see, e.g., [1]) and easy to verify that
the category of torsors over a groupG forms a symmetric ten-
sor category in which every object is invertible (i.e., all torsors
have an inverse counterpart) with respect to the tensor product
unitG. Furthermore, it is also known that under the smallest
congruence relation≃ generated by the natural isomorphisms
for commutativityQQQ⊗QQQ′ �QQQ′ ⊗QQQ, associativity and inverse
QQQ⊗QQQ−1 � G properties, the category of torsors overG be-
comes a commutative (Picard) group. The congruence class
Dim QQQ =d f

{

QQQ′
∣

∣

∣QQQ′ ≃ QQQ
}

of quantity torsorQQQ is an element of
the dimension spaceDims

(

LLL,TTT,MMM
)

, interpreted as a physical
dimension, i.e., the physical type of a quantity.

Notice that the torsor-isomorphismLLL⊗TTT�TTT⊙2⊗(LLL⊗TTT−1)

induces a unit congruenceL⊗T � T ⊙2⊗ (L⊗T −1) between
the corresponding unital quantities.

It should be obvious that the unit congruence relationQ �
Q′ between any pair of unital quantitiesQ andQ′ belonging to
a congruent pair of torsorsQQQ ≃QQQ′ in spaceTors

(

LLL,TTT,MMM
)

, is
formally equivalent to the unit congruence relationQ⊗Q′−1 �

α for someα > 0 over the isomorphic pairQQQ⊗QQQ′−1 � 1l, stat-
ing that the unital quantitiesQ andQ′ have the same physical
dimension.

This leaves us still with the question of existence of rational
powers of torsors, modeling more general derived quantity
types. Specifically, do torsors admit square root and related
algebraic operations? Evidently, the inverse operation does
not directly extend to exponentiating unital quantities byarbi-
trary rational numbers. But we need these types of nonlinear
operations on unital quantities to calculate, say, the period of
a simple pendulum as the square root of unital length divided
by earthbound acceleration or the length of the chosen side of
a square-shaped region in terms of the square root of its area.
Next, we turn to the construction of rational powers of unital

quantities, pausing first for a more detailed look at how to ex-
press complex rational powers in terms of products, inverses
and roots.

3.3. Rational powers of unital quantities

The purpose of this subsection is to discuss rational powers
of unital quantities. In order to specify the algebraic structure
of torsorsQQQ

m
n of derived unital quantities with rational expo-

nents m
n for m∈ Z andn ∈ N>0, we will follow the strategy

used above for derived unital quantities with integer powers.
We saw that all negative integer-powered quantity torsors can
be described by reference to iterated products of inverse quan-
tity torsors. So if we have a definition of thenth root torsor
n
√

QQQ =QQQ
1
n of unital quantities for alln ∈ N>0, then we get all

torsors with positive rational exponents for free, i.e., they can
be specified by the iterated product

QQQ
m
n =d f

n
√

QQQ ⊙ n
√

QQQ ⊙ · · · ⊙ n
√

QQQ

in which the nth root n
√

QQQ is iteratedm times. And simi-

larly, upon settingQQQ−
1
n =d f

(

QQQ−1) 1
n �
(

QQQ
1
n
)−1, we can define

QQQ
−m

n =d f
(

QQQ−1)m
n for all negative rational exponents. There-

fore, to specify unital quantities with arbitrary rationalexpo-
nents, all we need is a definition of the notion of thenth root
of unital quantities withn ∈ N>0. We should always keep in
mind that although most unital quantities with rational ex-
ponents do not have any direct physical significance, we do
not expunge them from the class of mathematically specified
torsors. For example, even if we agree that the 17th root of
unital length to the power of 11 has no known direct physical-
geometric meaning, it is nevertheless a legitimate elementof
a quantity torsor. In order to get a quantitative account of a
given phenomenon, we focus only on unital quantities that are
theoretically and experimentally significant in that account.

While it is a mathematical fact thenth root must be used in
defining all unital quantities with rational exponents, in our
exposition we will introduce only the square root unital quan-
tities because we can calculate them easily. Happily, follow-
ing the construction method for square roots, one can specify
exactly in the same way thenth root of quantity types for any
natural numbern> 0.

To complete our torsor-theoretic account of thesquare
root

√
Q quantity of a given unital quantityQ, we have to

specify thesquare roottorsor, written
√

QQQ = QQQ
1
2 , of torsor

QQQ. The key to the notion of square root of unital quantities
lies in the idea of isomorphic torsor maps of the form
H : QQQ −→ R>0 satisfying the conditionH(α ⊲Q) =

√
α ·H(Q),

as the commutative diagram

R>0×QQQ QQQ

R>0×〈R>0,+〉 〈R>0,+〉

⊲

IdR>0×H

�

H

169



MEASUREMENT SCIENCE REVIEW,17, (2017), No. 4, 152–177

illustrates. Here the required special group action is defined
by α� H(Q) =d f

√
α ·H(Q) for all Q andα > 0. It is obvious

that the key axiom which the new left action� must satisfy
is the following:

√
α′�
(√
α�H(Q)

)

=
√
α′ ·α�H(Q) for all

positiveα andα′. We now have all of the conceptual ma-
chinery we need to define the square root torsor of a given
quantity torsor.

Let Isom
1
2
(

QQQ,R>0
)

be the set of all isomorphic torsor maps
from torsorQQQ to the trivial torsorR>0, satisfying the torsor
map requirementH(α⊲Q) = α�H(Q) =d f

√
α ·H(Q).

Upon examining the elements ofIsom
1
2
(

QQQ,R>0
)

for a mo-
ment, we can see that each isomorphic torsor mapH is deter-
mined by the value it takes on a given (fixed) reference unital
quantity inQQQ and conversely, each quantityQ ∈QQQ determines
a unique mapHQ by the ruleHQ(Q)=1, so thatHQ(α ·Q)=

√
α

holds. What is essential here is the crucial one-to-one and
onto correspondence between the elements of torsorQQQ and

Isom
1
2
(

QQQ,R>0
)

.

Now, to arrive at the concept of asquare root unital quan-
tity
√

Q : QQQ −→ R>0, all we need to do is to emulate the fore-
going construction of isomorphic torsor mapsH and accord-
ingly set for all unital quantitiesQ

√
Q (Q) =d f 1 &

√
Q (Q′) =d f

√
α,

whereQ′ = α ·Q for someα > 0.25

We now have the conceptual resources to define the notion
of asquare root quantity torsor

√

QQQ as follows:

√

QQQ =d f Isom
1
2
(

QQQ,R>0
)

To be concrete, for this purpose we use the commutative dia-
gram

R>0×QQQ QQQ

R>0×
√

QQQ
√

QQQ

⊲

Id ×
√ √

�

in which
√

QQQ =QQQ
1
2 is a torsor overAut R>0 and thesquare

root map
√

is an isomorphic torsor map satisfying the equal-
ity
√
α⊲Q= α�

√
Q= √α ·

√
Q, in which we employ the def-

inition α �
√
Q =d f

√
α ·
√
Q for all α > 0 andQ in QQQ. Torsor

√

QQQ consists of all square root unital quantities of the form√
Q.

We note in passing that there is a dual relationship between
quadraticandsquare rootisomorphic torsor maps, as indi-
cated by the diagram

25As we noted earlier, since there is a one-to-one correspondence between
states and unital quantities, we are free to use either of them in our definitions.
A further point is that if quantityQ is unitized by 1cm (centimeter), then the
square root quantity

√
Q is unitized by unit

√
cm, satisfying the equality

(
√

cm
)2
= cm.

√

QQQ
(·)⊙2

−−−−−−−−→←−−−−−−−√ QQQ

In particular, we have the following obvious isomorphism re-
lationships between quantity torsors:

√

QQQ ⊙
√

QQQ�
(

√

QQQ
)⊙2
�

√

QQQ⊙QQQ �QQQ.
Once a unital quantity has been chosen for prediction or

measurement, dynamical laws involving square roots (e.g.,√
Q) can be stated in an algebraic form relative toQ. This

is what is commonly done in concrete calculations. For ex-
ample, consider the calculation of the length of one side of a
square area in themeter unit:

√
9m2 = 3m.

In the setting of square root torsors the automorphism
transformations are related by the commutative diagram

QQQ QQQ

√

QQQ
√

QQQ

σα

√

σ√α

√

satisfying the equality
√

σα(Q) = σ√α
(

√
Q ) for all unital

quantitiesQ. Alternatively and more intuitively, we have√
α ·Q = √α ·

√
Q. Complete understanding of physical di-

mensions would require a detailed account of the extension of
congruence relations to rational power constructions on tor-
sors. Due to space constraints we leave it as an exercise.

The next step in the development of the torsor approach to
quantities is a natural generalization totime-dependentand
other types ofvariableunital quantities.

4. Torsors of variable unital quantities

In this section we consider quantities that depend on or vary
with other quantities. It is undeniable that in theoreticaland
applied sciences, dynamical laws of motion and continuous
measurement results are regularly formulated in terms of ap-
propriate functions ofcontinuouslyor smoothlyvarying unital
quantities, endowed with suitable domains of variation, such
as time, space and temperature. Quantities used in signal the-
ory in particular are regularly presented through the medium
of time-dependent quantities.

Since we have already laid the groundwork in the static
case of unital quantities, we want at this point to proceed with
the introduction of a dynamical variant of quantities.

To give a simple illustration, we consider the question of
what happens when we replace the notion ofmeanunital
quantity (e.g., mean velocity) with the concept ofdifferen-
tiableunital quantity (e.g., instantaneous unital velocity). We
only discuss time-dependent quantities because they are quite
simple and are most frequently encountered in applications.
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4.1. A paradigmatic example of mean versus instantaneous
unital quantities

Before turning to the investigation of variable quantities, we
consider the basic difference between the definitions of mean
and instantaneous unital velocities in the framework of tor-
sors. We take velocity to be a common attribute of moving
bodies or particles, captured by their spatial paths through
time. The most obvious modeling route is though torsors for
lengthLLL = Isom(LLL ,R>0) andinversetime

TTT−1 =d f Isom(TTT>0,R>0)−1
� Isom tor(TTT>0,R>0).

We begin with the most elementary example of a single
classical particle, moving uniformly on a straight spatialline,
considered between the line’s two distinct designated points.
By definition, theunital mean velocityis given by the product
V =d f L⊗ 1

T , whereL is a unital length quantity in the torsor
LLL = Isom(LLL ,R>0) of length and1

T is the inverse of the unital
time quantityT belonging to the torsorTTT = Isom(TTT>0,R>0)
of time.

As desired, the additive property of unital velocity is given
by

(L+L′)⊗ 1
T =L⊗

1
T +L

′⊗ 1
T

and the scale conversion satisfies

(α ·L)⊗ 1
α′ · T =

α

α′
· (L⊗ 1

T ).

Suppose the line segment instantiated by the particle’s motion
between the line’s two designated points isℓ with lengthL(ℓ)
in meter base units. In addition, let the elapsed time between
the successive moments of the particle’s passing through the
respective initial and final points be realized byτ with du-
rationT (τ) in second base units. Then the particle’s mean
velocity in its instantiated physical-geometric state of motion
(ℓ,τ), unitized bymeter persecond unit, is given by the equal-
ities

V(ℓ,τ) =L⊗ 1
T (ℓ,τ) =L(ℓ) · 1

T (τ∗) =L(ℓ) · TτT =
L(ℓ)
T (τ)

,

whereτ∗ =d f Tτ denotes the unital time quantity unitized ex-
actly by the time intervalτ, satisfyingT (τ) · Tτ = T , i.e.,

1
T (τ) =

Tτ
T .26

26It cannot be emphasized strongly enough that in order to be able to per-
form any kind of classical measurement of most common derived physical
quantities (e.g., velocity, acceleration and energy), first we must specify a
designated Newtonian space-timecoordinate systemthat fixes the simulta-
neous spatial location of the target system, measuring instrument, and ex-
perimenter, without significantly affecting the measurement operations. Of
course, there is no privileged coordinate frame and the experimenter can se-
lect the one that best suits his or her measurement needs. Also,remember that
experimenters situated in different coordinate frames will generally observe
the target system in different shapes, sizes and states of motion. For example,
since velocity of a moving particle has different values in different (moving)
frames, so will its kinetic energy and all the other velocity-dependent quan-
tities.

From the relatively simple notion of unital mean velocity
we now want to advance to the significantly more powerful
notion of instantaneousunital velocity.

So far, we have examined a rather narrowstatic aspect of
unital quantities. In particular, we discussed the lengthsof
rods and beams in terms of their constant values, and sim-
ilarly, we focused on the fixed durations of events and pro-
cesses. There is, however, an entirely different line of reason-
ing about quantities that concentrates onvariable or depen-
dent unital quantities that vary with (and hence depend on)
time, space, temperature or some other indicator of variation.

The basic example is the instantaneous velocity of a single
moving particle, e.g., moving in a time-varying gravitational
potential during a given time period. The particle’sstate of
motion is encoded by a mappingx : T −→ L that assigns to
each instant of timet the particle’s unique positionx(t) on the
Euclidean spatial lineL on which the particle moves. We take
the function spaceM (T,L) of mappingsx to be the space of
all potential smooth paths or trajectories that can be instan-
tiated by a particle moving in the one-dimensional spaceL.
In order to get a concrete account of motion, these trajecto-
ries may be specified as solutions to Newton’s second law of
motion.

The key to the whole analysis of motion is the recogni-
tion that (i) velocity is a unital quantityV(x) = dL

dT (x) that is
associated with each particle-pathx, encoding the particle’s
motion in its entirety, and (ii) in addition, it is also associated
with temporal points. Here is the definition of the particle’s
instantaneous unitized velocity in state of motionx and at time
t0:

dL
dT (x)

∣

∣

∣

∣

∣t=t0
=d f lim

t→t0

L(x[t] − x[t0]
)

T (t− t0)

In the definition,x[t] =d f BC(x, t) denotes theevaluationof tra-
jectoryx at time instantt, obtained from the evaluation func-
tion BC : M (T,L)× T −→ L. If time instants are not specified,
then the unital velocity associated with thestate of motionx
can be viewed as a time-dependent map of the form

dL
dT (x) : T −−−−−→LLL⊗TTT−1,

modeling the “velocity field” which upon evaluation at a cho-
sen time instant gives the particle’s instantaneous velocity at
that instant along the particle’s pathx.

We cannot conclude this subsection without mentioning the
nature of truth makers of statements about velocity values.
When we say that the straightline mean velocity of a projec-
tile in a given Galilean coordinate frame is 15meters in 3
seconds, what we mean is that (i) the projectile traverses a
spatial interval of 15meters, and (ii) the projectile’s journey
lasts for the time interval of 3seconds. Thus, metrological
propositions about the mean velocity of a moving object in-
volve two kinds of truth-makers:spatial and temporal. The
first kind instantiates the object’s traversed spatial interval,
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and the second underwrites the object’s temporal mode of ex-
istence during motion and thereby instantiates the time inter-
val spent during its journey. We use a similar account of truth
makers also for metrological statements about instantaneous
velocities, involving realizations of states of motion belong-
ing to the state spaceM (T,L).

We now have all of the differential calculus machinery to
calculate the particle’s unitalacceleration, given by the map
d2L
dT 2 (x) : T −−−−−→ LLL ⊗TTT−2, and similarly for unital density,
unital kinetic energy, and so forth.

We have said enough about differentiable unital quantities
to see that they are not captured by the apparatus of the classi-
cal approach. The next step in the development of our torsor-
theoretic framework for quantities is an extension todepen-
dentunital quantities that depend on other quantities.

4.2. Bundles of quantity torsors over time domains

In this subsection we look more closely at temporally
parametrized torsors of unital quantities. We begin with the
most familiar case of variable unital length that varies with
time. Consider the case of atemporally varyingunital length
quantityLtreet : LLL tree

t −−−→ R>0, instantiated by the variable
height of, say, a tall growing tree, denotedtree and consid-
ered at time instantt. As might have already become clear,
the living tree’s temporally parametrized state spaceLLL tree

t
plays two essential roles: (i) asynchronicrole in the quantity-
constrained specification of the target tree’s mode of beingat
a particular time, sufficient for the determination of the quan-
tity values of interest, and (ii) adiachronicrole in modeling
the temporal evolution of the tree’s stages of growth. In this
example we assume that the tree’s height grows linearly with
velocityV. However, in the case of a nonlinear tree growth
we might demand that the height be dependent also on a fixed
acceleration. A truly technical formulation of the law govern-
ing the growth may include instantaneous speed and instanta-
neous acceleration. However, it is obvious that since the tree
grows at a particular rate, there will be just one correct law
for the temporal dynamics of the tree’s variable height.

How should this kind of temporal dependence of length be
understood formally? One obvious possibility is to consider
in place of the static torsorIsom(LLL ,R>0) of unital lengths
theparametrizedtorsorIsomT(LLL ,R>0) over the scale group
AutR>0 and relative to the chosen domain of variation,
namely the affine spaceT of temporal points.

What this means is that now we have a time-indexed family
(technically a principalbundle) of torsors on the base spaceT
of time points, comprised of isomorphicfibersof the form

Lt =d f IsomT(LLL ,R>0)t � Isom(LLL t,R>0)

at each temporal base pointt that vary continuously from
point to point within the time domainT, as the diagram below
illustrates. In more detail, the bundle (i.e., the disjointunion
LLL=
⋃

t∈T Lt) in the diagram consists of isomorphic torsorsLLLt,
specified in terms offiberslocated at each time instantt in T:

Lt′

b

Lt

b

bα·Lt′

Lτ

t′t
τ−−→

T

R>0

b α

In addition, to each temporal pathτ : t→ t′ in T (associated
with the time lapseτ = t′ − t with t < t′) there corresponds a
unique torsorconnectionmapLτ between the fibers of length
quantities that captures the empirical law, characterizing the
tree’s dynamical evolution in terms of its varying unital height
in the total spaceLLL along the paths in the base spaceT, related
by projection. As the diagram indicates, the torsor connection
mapLτ, specified by durationτ, sends the unital lengthLt in
fiber Lt to a unique unital lengthLt′ belonging to fiberLt′ .
For example, in simple situations of tree growth with velocity
V we may demand that the variable quantityLt′ for height
be defined by the linear deterministic equation

Lt′
(

ℓt′
)

=Lt
(

ℓt)+V
(

ℓt′ − ℓt, t′− t
) · T (t′− t

)

for all time instantst andt′ and corresponding tree heightsℓt
andℓt′ .

The foregoing bundle approach to variable unital quantities
is completely general. For example, a similar fiber bundle
diagram (and dynamical law) applies also to a unital resis-
tance quantity that varies with temperature. And it should
also be noted that in view of the underlying complete ordered
semigroup or one-dimensional vector space framework it is
possible to define the temporal (and spatial) derivativesdQ

dt of
unital quantities, needed in formulating differential equations.

We have now gone as far as we can in the world of unital
quantities, using only the torsor language. We will now ex-
pand the method of torsors to include the pointer (indicator)
quantities of measuring instruments.

5. Bundle of semitorsors of instrument pointer quantities

Up to this point, we have only investigated the torsors of uni-
tal quantities and have said little about the torsor approach
to their measurement. In this section we give a brief intro-
duction to bundles of semitorsors of unitalpointerquantities,
associated with the measurand’s measuring instruments and
methods, characterized by assorted degrees of deterministic
uncertainty. We will confine our attention solely to single di-
rect deterministic measurements of unital quantities.

One of the central points of measurement science is that
in general the measured quantity’s values cannot be known
with 100% accuracy. Most of us are aware that in view of
limited accuracies and resolutions of measuring instruments,
parallax errors in meter reading, environmental perturbations,
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imperfections of the underlying theory, and uncertaintiesof
other kind, the outcomes of measurement operations tend to
be far from being perfectly accurate. The numerical values
of unitized quantities realized by target systems embody far
more detail than the pointer quantities of interacting measur-
ing devices can reproduce. Because generally the result of
measurement is only adiscrete approximationof the mea-
surand’s actual value, some original information is inevitably
sacrificed. Similar losses of information are encountered in
making predictions that depend on the approximate nature of
initial conditions and discretized solutions of the targetsys-
tem’s differential or integral equations.

We make a fundamental distinction between two sorts of
states and two kinds of associated quantities: (i) states in-
stantiated by the quantity-bearing system together with the
quantity to be measured, i.e., themeasurand, and (ii) the
instrument’spointer states instantiated by the measurand’s
calibrated measuring device or measurement method, to-
gether with its correspondingpointer quantitythat numer-
ically presents the instrument’s (or method’s) final pointer
state to the measurer, after the completion ofsystem + instru-
ment physical interaction.

From the standpoint of classical physics, a deterministic
measurement process is commonly characterized by a dy-
namical interaction between the measured and measuring sys-
tem that results in a post-interaction transmission of informa-
tion from the measurand to the instrument’s pointer quantity.
The key to understanding this information transmission lies in
a mapping (a.k.a. information channel) from system states to
instrument states, given by the composition of input, dynamic
interaction, and output maps

S
in−−−−−−→S ×

�

SI
out−−−−−−−→SI

For example, in the process of measuring the voltage of a
battery with a voltmeter, the two systems are coupled by con-
ducting wires to form a closed circuit. Prior to measurement,
the battery is in its initial electrical state and the voltmeter is
in its null state. After the circuit’s activation and termination
of subsequent dynamical changes in the joint system, the bat-
tery’s initial state is transduced to the voltmeter’s final state,
captured by the pointer quantity’s value on the instrument’s
reading scale.

It is important to note that metrologists treat this kind
of measurement processfunctionallyfrom inputs to outputs,
without appeal to system and instrument states, crucial for
causal explanations. In short, a typical metrologist start-
ing point is an equationally presentedmeasurement model
V̇ = FA/D

(V′) together withV′ = V+N , treating all perti-
nent unital quantities as input or output signals of some sort.
In this model,V denotes the measurand, i.e., the battery’s
voltage, andV′ stands for the voltmeter’s output, specified
by the sum of the measurand and a (random thermal) “noise”
N (assumed to be present in the connecting wires and volt-
meter). The details of the voltmeter’s governing physical laws
are suppressed. And lastly, the voltmeter’s pointer quantity V̇

is defined in terms of an analogue-to-digital conversion map,
applied to the mediating quantityV′. As well known, mea-
surement operations are often far more complicated than this.
But there is also a considerably simpler approach (practiced,
e.g., by carpenters and electricians) which focuses only onthe
analogue-to-digital conversion aspects of measurement, and
this is the conception that will concern us here.

On the side of quantities, this sort of simplified measure-
ment scenario leads to modeling a deterministic measure-
ment operation in terms of a projective transfer map from a
given measurandQ : S −→ R to the measuring instrument’s

pointer quantity
•
Q : SI −→ εZ. The pointer quantity sends

the instrument’s pointer states inSI to the discrete additive
groupεZ =d f

{· · · ,−2ε, −ε, 0, ε, 2ε, · · · } of rationals (the in-
strument’s idealized numerical reading scale), specified by
integer multiples of a rationalleast significant bit0 < ε < 1.
The parameterε (encoding the smallest numerical difference
between the pointer quantity’s values) is commonly realized
by pairs of adjacent marks displayed on the instrument’s cal-
ibrated analog reading scale. Experimenters reporting their
measurement results tend to round off the result to the nearest
multiple of the granted unit of precision (deterministic mea-
surement uncertainty)ε, formulated in the measurand’s mea-
surement unit. We should not forget that the main motiva-
tion for the introduction of parameterε is to provide a the-
oretical basis for the earlier discussed measurement proposi-
tions of the formLength( f lagpole) = Lengthmeas( f lagpole)±
ε meters.27

To handle the botany of error and uncertainty types aris-
ing in deterministic measurement operations in a fundamen-
tal way and to numerically coordinatize the measuring instru-
ment’s state spaceSI (determined in part by the interacting
target system’s state spaceS ), we shall regularly use a con-
crete version of the instrument’s reading scale. Specifically,
for this purpose we introduce the additive group〈10−nZ,0,+〉
of rationals, generated by the deterministic uncertainty inter-
val ε= 10−n = 0.00· · ·01 withn> 0 decimal places behind the
decimal point, thought to encode all the available information
on the upper bound of measurement errors expressed in the
measurand’s metric units.28

27In view of statistical errors encountered in repeated measurements, the
size of the additive uncertainty intervalε is not constant and therefore it is
necessary to switch to (frequentist or Bayesian) probabilistic measurement
propositions of the formP

(

~Length( f lagpole) = α ± ε�) = p, where the
arithmetic mean valueα is the estimate of the length quantity’s expected
value andε denotes the normalized empirical standard deviation. In thispa-
per we shall continue to work in a deterministic setting.

28For example, in the case of length measurement performed in theme-
ter unit of measure we may visualize the numerical additive semigroup
〈10−nN,0,+〉 as a one-dimensional discrete positively oriented uniform grid
of equally spaced points, say, one millimeter apart (so the chosenstep-size
10−3 is one millimeter wide), capturing the multiply applied meter stick’s
uniform scale structure, starting from zero and serving as the discrete 10−3 -
approximationof the measurand’s continuum value spaceR>0. We know that
when a skillful experimenter wishes to measure the length of a straight rigid
rod with a meter stick to the nearest millimeter, he or she typically rounds off
the displayed value on the meter’s scale to the closest millimeter mark. Thus
the rod’s actual length will be off (i.e., shorter or longer) by a small amount,
not exceeding1

2 millimeters.
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In order to complete the quantity-theoretic account of de-
terministic measurement operations, we have to specify a
transfer operator from measurands to their pointer quantities.
To do this, we need two mappings: one from the measurand’s
target system states to instrument pointer states, and the other
from the measurand’s numerical values to the instrument’s
pointer quantity values.

Since the treatment of the respective numerical values of
measurands and their pointer quantities requires some care,
it will be our starting point. First, we introduce adis-
cretizing(round-off) uniform transfer mapℜn : 〈R,0,+〉 −→
〈10−nZ,0,+〉 with a stipulated discretizing step size 10−n

(n > 0) that sends the measurand’s values to discrete pointer
quantity values. The most basic and fundamental discretizing
(analogue-to-digital conversion) of the measurand’s values is
given by the floor function

ℜn(α) =d f
1

10n ·
⌊

10n ·α+ 1
2

⌋

for all realsα and natural numbersn> 0.

Recall that the floor function
⌊

•
⌋

: R −→ Z is defined by
⌊

α
⌋

=d f Max
{

n ∈ Z | m≤ α}, so that
⌊

α
⌋

= n ⇐⇒ n ≤ α <
n+1 for all α > 0. Intuitively, the floor function returns the
greatest value inZ that is less than or equal to its real number
argument, and it projects an entire half-open interval of real
numbers to its proximal integer.

Although there are many choices, floor function-based
transfer functions provide highly effective models of
measurement-induced discretizations, as apparent from the
studies of analog-to-digital converters and sensors. One
advantage of using such models is that they allow us to
treat measurement operations as ways of extracting restricted
amounts of information about the measured system’s extant
state. To illustrate, suppose the numerical value of measur-
andQ at system states is equal to the numberQ(s) = α from
a continuous range, encoded in the decimal system with a
countably infinite number of digits. Then (in the absence of
instrument errors) thetruncatedstorable value ofα, given by
n digits to be kept behind the decimal point, is specified by
ℜn(α). We can now interpret the discrete valueℜn(α) as the
outcome ofQ’s measurement, executed by a measuring in-
strument (or method) with a pointer quantity characterizedby
deterministic uncertainty (quantization interval) 10−n.

Further advantage of the discretizing transfer mapℜn is
provided by its crucial torsor map property

R×10−nZ R

10−nZ×10−nZ 10−nZ

+

ℜn×1 ℜn

+

stating that the transfer map commutes with the additive
group of translations of the trivial torsor 10−nZ. That is to say,

the torsor map conditionℜn
(

α+ k ·10−n) =ℜn(α)+ k ·10−n

holds for all realsα and integersk.
The key to understanding the role ofℜn in measure-

ment lies in the observation that the additive translations
ℜ−1

n
( k

10n
)

=d f ℜ−1
n
(

0
)

+ 1
10n · k =

[

(k− 1
2) ·10−n, (k+ 1

2) ·10−n)

(for all integers k) of the inverse valueℜ−1
n (0) =

[−1
2 ·

10−n, 12 · 10−n) at 0 form a uniform partition ofR. And
this partition stands in a one-to-one relationship with then-
indistinguishabilityequivalence relation defined by the kernel
biconditional

α ≡n β ⇐⇒ ℜn(α) =ℜn(β)

for all α,β ∈ R. As a simple illustration of the importance
of indistinguishability equivalence relations, note thatthe nu-
merical orderm< n induces arefinementordering

α ≡n β =⇒ α ≡m β

on the corresponding equivalence relations. In general, to
each unital quantity there corresponds an entire lattice ofin-
distinguishability equivalence relations, modeling the quan-
tity’s associated pointer quantities and instruments character-
ized by varying levels of accuracy and resolution. It turns out,
however, that generally≡n is not a congruence relation.

With this line of thinking we can conclude that the mea-
surand’s actual value is an element of one of the equivalence
classes specified by a half open interval.29 This is an ele-
gant and appealing description of uncertainty in deterministic
measurement operations. The only serious downside is the
obvious failure of conservation of additivity. The issue can
be put in terms of absolute-value inequality

∣

∣

∣

∣

∣

ℜn(α+β)− (ℜn(α)+ℜn(β)
)

∣

∣

∣

∣

∣

≤ 1
10n ,

which is an immediate consequence of the floor function’s
nonlinear property. In the circumstances described, if we con-
sider three summands as inℜn(α+β+γ), then the error bound
jumps to 2

10n , and so forth. Simply, any increase of the num-
ber of summands leads to potentially larger errors. It is worth
our while to ask whether or not there is a way to handle the
lack of additivity in an insightful manner. Here one should
take a clear stand and declare that pointer quantities not only
fail to preserve the information about the measurand’s values,
but also they do not always behave additively. Fortunately,
not all measurement structure is lost:ℜn is an isotone func-
tion that preserves the lattice operations.

By taking a clue from the above-discussed partition of
R into half-open intervals generated byε = ℜ−1

n
(

0
)

, it is
easy to see that the transfer mapℜε : R>0 −→ εN restricted
to positive reals with values in the set of positive rationals
εN =

{

0, ε, 2ε, · · · } has the following staircase-shaped graph:

29In a general model of deterministic uncertainty that handles offset, non-
linear and other errors, the measurand’s potential values are partitioned into
non-uniform equivalence classes.
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2ε

4ε

6ε

8ε

10ε

2ε 4ε 6ε 8ε 10ε

measurand′s values inR>0

2kε

pointer′s values in10−nN

Figure 1. A numerical transfer map with a shaded uniform
uncertainty zone.

One can see that the round-off map always rounds up at

the step edges, i.e., we haveℜε
(

(k+ 1
2)·ε
)

= (k+ 1)·ε. In

less idealized measurement models that include target sys-
tem noise, nonlinearity, and other sources of uncertainty,the
transfer maps are correspondingly more involved.

We can now advance to the problem of specifying the in-
strument’s pointer state spaceSI together with a projection
mapM : S −→SI that sends (as part of measurement inter-
action) each state of the measured system to a unique pointer
state. The easiest strategy is to simply regard the pointer state
space as isomorphic to the measured system’s quotient space
SI �S/≡, relative to the indiscernibility equivalence relation
≡ that characterizes the measuring system’s deterministic un-
certainty.

In our idealized version of deterministic measurement, the
specification of the pointer state space is starightforward. We
construct a projective transfer mapMn : S −→Sn from the
measured system’s state spaceS onto the measuring instru-
ment’s pointer state spaceSn, parametrized by determinis-
tic uncertainty 10−n. In complete detail, the definition of the
transfer map is given by the commutative diagram

S R

Sn 10−nZ

Q

Mn ℜn

•
Q

indicating that the equalityℜn
(Q(s)

)

=
•
Q(Mn(s)

)

holds for all
system statess.

By inspecting the foregoing diagram, we can see that the
only undefined notions are the instrument’s state spaceSn and

the measurement projection mapMn. The main motivation
for the introduction of instrument pointer state spaces is to
circumvent the complex problem of having to give a detailed
physical account ofsystem + instrument interaction. Because
a measurandQ is an isomorphism between a state space and
reals, the earlier definedn-indistinguishabilityequivalence re-
lation ≡n immediately carries over to the system states inS

by setting

s ≡n s′ ⇐⇒ ℜn
(Q(s)

)

=ℜn
(Q(s′)

)

By way of an example, our point here is that if two potential
length statesℓ andℓ′ of a target straight rod are so proximal
geometrically that the meter stick with measurement accu-
racy set at 10−3 meters cannot discern their actual difference,
i.e., the indistinguishability relationshipℓ ≡3 ℓ

′ holds, then
the meter stick’s pointer quantity reading should provide the
same value for both. As presented here, the indistinguishabil-
ity relation on states is directly tied to the round-off map.

Although it may seem difficult to do at first glance, in a
general case it is more natural to introduce the equivalence
relation≡n on the state spaceS as a basic partition structure
that intrinsically characterizes the applied measurementoper-
ation. However, with the round-offmap being available to us,
we have chosen this simpler definitional alternative.

So now the measuring instrument’s state space can be de-
fined as the quotient spaceSn =d f S/≡n of the measured
system’s state space. As we already remarked, the state
transfer map is given by the natural projection, defined by
Mn(s) =d f [s], where [s] = {s′ | s ≡n s′}. In addition, it is clear
that the pointer quantity
Q̇n : Sn −→ 10−nZ of the instrument measuringQ can be

defined by the composite

S/≡n

Q/≡n−−−−−→ R/≡n

ℜ̇n−−−−−−−→ 10−nZ

of two simple isomorphism maps, i.e., we have
•
Qn = ℜ̇n ◦

Q/≡n, whereℜ̇n([α]) =ℜn(α). Finally, we see that the mea-
surand’s measurement-basedestimatemay be reconstructed
directly from the pointer quantity as a real-valued map

Q̂n : S −→ R, defined by Q̂n(s) =d f ℑ0
(

•
Qn([s])

)

, where
ℑ0 : 10−nZ −→ R is the obvious embedding map. Thus the
quality of the measurand’s estimate is determined by the mea-
surement’s deterministic uncertainty.

As shown in Figure 1, based on the discretization function
ℜε, the measurand’s estimatêQ (having the geometric form
of a staircase) is a non-linear approximation of the diagonal,
picturing the graph of measurandQ. These concepts embody
the crux of the quantity approach to deterministic measure-
ment operations.

For the remainder of this subsection, we will investigate
a bundle of semitorsors of pointer quantities over the base
space of measurands. Each measurandQ of a given type in
the base spaceQQQ comes with a countable set of associated

pointer quantitiesQ̇̇Q̇Q = {
•
Qn,

•
Qm, · · ·

}

, furnished with varying
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degrees of deterministic uncertainty 10−n,10−m, · · · , with pos-
itive natural numbersn andm. This set provides an unlimited
catalog of staircase functions (displayed in Figure 1), mod-
eling measurement operations at different levels of accuracy
and resolution.

There is one major structural feature of pointer quantities
which deserves our close attention. In the torsor regime we
have a semitorsor action

Q̇̇Q̇Q×10−N
⊳−−−−−−→ Q̇̇Q̇Q

on pointer quantities inQ̇̇Q̇Q by the multiplicative semigroup
〈10−N,1,···〉 of rationals {1, 10−1, 10−2, 10−3, · · · }, defined
by Q̇n ⊳ 10−k = Q̇n+k for all natural numbersk. So on
this account, to each less accurate deterministic pointer
quantity (signified by a smaller number of decimal places)
there corresponds a suitably more accurate pointer quantity
(indicated by more decimal places), determined by the action
of semigroup〈10−N,1,···〉. In this way, each measurandQ
comes with a countable fibeṙQ̇Q̇Q of pointer quantities, forming
a semitorsor over〈10−N,1,···〉, as indicated in the diagram
below:

Q̇̇Q̇Q

b

Q̇̇Q̇Q′

b

b

Q̇m

Q̇n

Q̇′p

Qα

QQ′ ←−α
QQQ

10−N

b 10−k

Mathematically, a semitorsor is less powerful than a torsorbe-
cause it is defined by a partial action that does not support all
inverse transformations. This must always be kept in mind
when interpreting a passage from a coarse-grained pointer
quantityQ̇n to a fine-grained pointer quantitẏQm, satisfying
n<m. As noted earlier, in the pointer quantity fiber of mea-
surandQ, the semigroup actioṅQn⊳10−k = Q̇m with k=m−n
transforms each pointer quantitẏQn with a larger uncertainty
interval (coarser reading scale) to a unique pointer quantity
Q̇m with a smaller uncertainty interval (finer reading scale)
by refining the measurement operation that includes the addi-
tional k decimal places of accuracy. It should be noted that
transitions from finer pointer quantitieṡQm to coarser ones
Q̇n are not defined. This approach to pointer quantity trans-
formations follows the actual laboratory practices that aim at
constructing and using increasingly more accurate measuring
devices.

Finally, as the diagram above shows, the pointer-quantity
fiber of measurandQ′ = α ·Q, isomorphic to the fiber of mea-
surandQ, is related by aconnectionmapQα induced by the
scale changeα. Simply, it sends each pointer quantityQ̇m in
fiber Q̇̇Q̇Q to a uniqueα-rescaled pointer quantitẏQ′p in fiber Q̇̇Q̇Q′.

With this construction we bring our torsor-based investi-
gation of unital quantities and their pointer counterpartsto a
close.

6. Concluding remarks

In this paper, we have developed a novel effective torsor-
theoretic framework for quantity calculus and supervening
deterministic measurement operations. The calculus is based
on torsors of unital quantities and accompanying state spaces
that provide the truth conditions for metrological statements
about quantity values. In our investigation of the structure
of quantities we used length, time and velocity as illustrating
examples. For simplicity’s sake and for reasons of space, we
have restricted our analysis to the case of deterministic mea-
surement processes.

In bridging the gap between what experimenters regard as
theoretical and what they take to be measurement-based, we
have also investigated the torsor structure of pointer quan-
tities, characterizing measuring instruments, together with
tightly connected deterministic measurement uncertainties,
and the formal relationship between measured unital quan-
tities and their associated pointer quantities.

There are vast areas of the subject of unital quantity calcu-
lus and measurement uncertainty which remain unexplored,
including probabilistic and stochastic extensions to repeated,
combined and distributive measurements, built over measur-
able state spaces, random unital quantities, and their unital
probability density functions. We intend to take up these top-
ics in the near future.
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