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This paper presents a modified particle swarm optimization (MPSO) algorithm for the evaluation of geometric characteristics defining 

form and function of planar surfaces. The geometric features of planar surfaces are decomposed into four components; namely 

straightness, flatness, perpendicularity, and parallelism. A non-linear minimum zone objective function is formulated mathematically for 

each planar surface geometric characteristic. Finally, the result of the proposed method is compared with previous work on the same 

problem and with other nature inspired algorithms. The results demonstrate that the proposed MPSO algorithm is more efficient and 

accurate in comparison to other algorithms and is well suited for effective and accurate evaluation of planar surface characteristics.  
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1.  INTRODUCTION 

Planar features are the most basic primitive elements of 

mechanical parts. The utmost elementary geometric 

characteristics that are used to control form and function of 

planar features are straightness, flatness, perpendicularity, 

and parallelism [1]. During manufacturing of the part as per 

the drawing specifications, significant errors are developed 

in the form of these characteristics. For proper functioning 

of the parts and assemblies, it is essential to provide 

tolerances on the features that are functional, regardless of 

variation in their form. Accurate measurement of the 

aforesaid errors is crucial to conform to the tolerance 

specification. In general practice, sometimes it becomes 

impractical to acquire variation over the whole surface. 

Consequently, only finite points are taken which represent 

features of the surface and these points are sufficient for 

evaluation of form errors. Earlier, coordinate measuring 

machines (CMM) were widely used for acquiring 3D cloud 

points and off-line and on-line inspection activities [2]-[4]. 

Least square method (LSM) is used technique for these 

geometric characteristics in industries because of its 

simplicity in computation and uniqueness in solution.  

However,  LSM  does  not  adhere to the standards and will 

not guarantee the minimum zone solution as specified by 

standards which may lead to overestimation  of   tolerances   

and   ultimately   leading   to rejection of good parts [5].    

To replace LSM, several algorithms have been suggested 

and the majority of them follow the minimum zone 

principle. Wang et al. [6] presented a generalized non-linear 

optimization procedure for circularity evaluation based on 

minimal radial separation criterion. Cheraghi et al. [7] 

proposed criteria based on the least square cylinder, 

minimum circumscribed cylinder, and maximum inscribed 

cylinder for evaluation of cylindricity error. Endrias and 

Feng [9] formulated the objective function which is a 

function of the rigid body coordinate transformation 

parameters. A standard direct search algorithm and downhill 

simplex search algorithm are employed to minimize the 

form tolerance objective function. Carr and Ferreira [10] 

formulate straightness, flatness, and cylindricity as non-

linear problems, which were then transformed into a series 

of linear problems. 

Venkaiah  and Shunmugam, [11]-[12], introduced distinc-

tive optimization algorithms such as numerical and 

computational geometry optimization approaches that are 

used for evaluation of circularity and cylindricity. Seun and 

Chang [13] developed an interval bias linear neural based 

approach with least mean squares learning algorithm for 

straightness and flatness evaluation and analysis. Weber et 

al. [8] propounded a unified linear approximation technique 

for use in evaluating the form errors. The non-linear 

equation  for  individual  form  was linearized implementing  
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Taylor expansion and it was solved using a linear program. 

Although, numerical approaches are ubiquitous methods to 

solve optimization problems and they are also 

computationally efficient, they may lead to inaccurate 

results due to mathematical approximations. On the 

contrary, some of the nature inspired optimization 

algorithms have been used for form tolerance evaluation and 

they include genetic algorithm (GA), ant colony 

optimization (ACO), particle swarm optimization (PSO), 

and artificial bee colony (ABC) [14]-[17]. GA was to be 

more complex than PSO in the principle for the same work 

[3], [18]. ACO is time consuming and convergence time is 

also uncertain. ABC has slow convergence rate, easy to fall 

in local optimum and difficult to find best out of available 

feasible solutions.  

PSO has been widely used to solve continuous problems 

due to the simplicity of concept and fewer parametric 

settings than other population based optimization algorithms 

[19]-[22]. However, classical PSO still has some 

disadvantages, such as weak local search ability, and may 

lead to entrapment in local minimum solutions that affects 

the convergence performance and results in uncertainties in 

the results obtained. In PSO, updating of new solution is 

performed only over the existing one without comparing 

which one is better. This is considered to be caused due to 

the lack of exploitation capability in classical PSO, which 

makes it hard to find the best possible solutions [23]. To 

improve the exploitation capability, a modified particle 

swarm optimization (MPSO) is proposed for effective form 

error evaluation, based on the generation of new improved 

position using the difference in the global and local best 

positions. The results of proposed algorithm for geometric 

error evaluation were compared with previous literature and 

other nature inspired algorithms which confirm the 

effectiveness of the modified PSO. 

 

2.  MATHEMATICAL FORMULATION 

The most basic geometric features of planar surfaces 

contribute significantly to various mechanical products such 

as rotational parts, assembly part, and injection molds to 

achieve the desired functionalities. Numerous mechanical 

components depend on small form error to have adequate 

performance. 

 

Minimum zone straightness formulation 

By measuring a line element of a surface, the measured 

data points obtained are represented as ��(�� , ��) where (	 =
1,2,3 … �). Then, the minimum zone solution of straightness 

error is calculated by finding two parallel lines minimally 

distant from each other that enclose all data points, which 

also defines the smallest feasible region. These lines are 

represented by � = �� + ��and � = �� + ��, where �, �� 

and �� are coefficients. If � and � coordinates are known 

then �� and ��  become a function of �, where � is the slope 

of line. Now, the shortest distance, � between these two 

lines can be calculated by:  

The above equation is written in the form of ℎ(�) =
���� − ����  i.e., straightness error as: 

 

� =
max(�� − ���) − min (�� − ���)

√1 + ��
 (2) 

  

The distance �, between two parallel lines is a function of 

�. Now, the minimum zone straightness error 

objective/fitness function can be expressed as: 

 

#(�) = min (
max(�� − ���) − min(�� − ���)

$(1 + ��)
) (3) 

  

The above objective function can be represented in 

vectorial form as below:  

 

X = f (m) 

 

where  (�� , �� , %�) are 3D point data measured by CMM. The 

above objective function is a function of �. Accordingly, 

using PSO and its proposed variant, � is calculated for 

which the value of the above expression is minimum. 

 

Minimum zone flatness formulation 

For calculating the minimum zone flatness error, the two 

parallel planes are represented by % = �� + &� + �� and 

% = �� + &� + ��, where �, �, % are coordinates and 

�, &, �� and �� are coefficients. Similar to straightness, the 

flatness error can be represented as: 

 
max(%� − ��� − &��) − min ((%� − ��� − &��)

$(1 + �� + &�)
 (4) 

  

where �, � and % are coordinates of point data and � and & 

are the optimization variables. So, the objective/fitness 

function for minimum zone flatness error is 

 

#(�, &) = min (
max(%� − ��� − &��) − min(%� − ��� − &��)

$(1 + �� + &�)
) (5) 

  

The above objective function can be represented in 

vectorial form as below:  
 

X = f (m, b) 

 

This is a function of m and b. Consequently, for solving 

the above objective function by searching the value of � 

and & for which the objective function #(�, &) is minimum. 

 
Minimum zone perpendicularity formulation 

According to ISO [24], perpendicularity can be measured 

by finding two parallel lines that are perpendicular to datum, 

minimum distance apart containing the whole data points. 

Assuming all the measured data points ��(�� , ��) where (	 =
1,2,3 … . �) lie between the two parallel lines minimally 

apart as shown in Fig.1. The two parallel lines signifies the 

� =
|c� − c�|

√1 + m�
 (1) 
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minimum tolerance value within which all data points must 

fall. The minimum zone method for perpendicularity is 

defined by the minimum actual datum for planar surfaces. 

Assuming actual datum line equation can be expressed as: 

 
� = �� + �    (6) 

  

The distance �� between the measured points ��(�� , ��) of 

datum line and actual datum line can be expressed as:  

 

�� =
�� − ��� − �

√1 + ��
 (7) 

  

where � is the number of points measured for defining the 

datum line. Further, the minimum zone objective function 

for datum line can be expressed as an unconstrained 

optimization problem. 

 
Min #(�, �) = max. (��) (8) 

 

The above objective function can be represented in 

vectorial form as below:  

 

X = f (m, c) 

 

Now suppose the actual datum line based on optimal 

solution *(�∗, �∗) obtained is based on the equation below: 

 
� = �∗� + �∗    (9) 

  

After the establishment of actual datum lines, draw line 

passing through the earlier measured point ��(�� , ��) which 

will be perpendicular to the actual datum. This equation of 

line can be written by taking ,� as intercept of the lines 

along the y-axes:  

 

 
 

Fig.1.  Schematic for determining perpendicularity. 

 
,� = �∗�� + ��    (10) 

 

Now, let the length of line in y axis intercepted by two 

lines with maximal and minimal intercept of above lines be 

L, 

 

L = ,���� −  ,����  (11) 

  

As the direction cosines can be written in form: 

 cos / =  �∗

$�0�∗1
 (12) 

  

So, final perpendicularity error equation can be expressed 

considering the direction cosine as 

 

# = 2
�∗

√1 + �∗�
 (13) 

 

The above objective function can be represented in 

vectorial form as below:  

 

X = f (m*, L) 

 

Minimum zone parallelism formulation 

As per the ISO definition, parallelism can be defined by 

measuring two parallel lines with minimal distance apart 

and parallel to a defined datum as shown in Fig.2. Assuming 

all the measured data points ��(�� , ��) where (	 =
1,2,3 … . �) lie between the two parallel lines minimally 

apart. The two parallel lines are referred to as smallest 

feasible region within which all points must fall. Based on 

the minimum zone method, the assumed actual datum line 

equation can be expressed as: 

 
� = �� + �    (14) 

  

The distance �� between the measured points ��(�� , ��) of 

datum line and actual datum line can be expressed as:  

 

�� =
�� − ��� − �

√1 + ��
  (15) 

  

where � is the number of points measured for defining the 

datum line. Further, the minimum zone objective function 

for datum line can be expressed as an unconstrained 

optimization problem. 

 

 
 

Fig.2.  Schematic for determining parallelism error. 

 

 
Min #(�, �) = max. (��)  (16) 

  

The above objective function can be represented in 

vectorial form as below:  

 

X = f (m, c) 
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Similar with case of perpendicularity, the actual datum 

line based on optimal solution *(�∗, �∗) obtained is based 

on the equation below: 

 
� = �∗� + �∗    (17) 

  

The distance ��
∗ between the measured points ��(�� , ��) of 

surface measured and actual datum line can be expressed as:  

 

�� =
�� − �∗�� − �∗

√1 + �∗�
  (18) 

  

The minimum objective function for minimum zone 

parallelism can be expressed as: 

 
# = min (max(��) − min(��)) (19) 

 

The above objective function can be represented in 

vectorial form as below:  

 

X = f (m*, c*) 

 

3.  MODIFIED PARTICLE SWARM OPTIMIZATION ALGORITHM 

This section describes the proposed modified variant of the 

classical particle swarm optimization algorithm. The 

exploitation ability directly influences the quality of results, 

as it is an essential property for any swarm based heuristic 

optimization technique. The modified variant will help in 

overcoming the classical PSO drawback of slow 

convergence due to lack in exploitation abilities.  

 

Standard particle swarm optimization algorithm 

The basic particle swarm optimization is a population 

based method suggested by Kennedy and Eberhart in 1995. 

PSO is modeled after the simulation of social behavior of 

birds in a flock [25]-[26]. PSO is initialized by distributing 

each particle randomly in a D-dimensional search space. 

The performance of each particle is measured using a fitness 

or objective function which depends on the optimization 

problem. Each particle 3 is represented by the following 

information: 

• �4, the current position of the particle 3 

• 54, current velocity of the particle 3 

• 64, personal best position of the particle 3 

• 74, global best position of the particle 3 

 

The personal best position signifies the best position that 

particle 3 has been at so far. The fitness or objective 

function is defined by eqns. (3), (5), (13), and (19) and 

lowest for that position of the 389 particle. Here, velocity 54 

acts like a vector which helps in guiding the particle from 

one position to another with updated velocity and position at 

every iteration. The below equation is divided into three 

parts. First is inertia part described by : ⋅ 54(<), used for 

providing motion to the algorithm. Second part is cognitive 

component=,��>0,1@ ⋅ A64(<) − �4(<)B, which is based on 

individual knowledge and experience. The third and last part 

=,��>0,1@ ⋅ (74(<) − �4(<)), is known as social component 

based on individual interaction with their neighbors. New 

position and velocity for 389 particle is updated at every 

iteration and expressed as: 

 
54(< + 1) = 54(<) + ��=,��>0,1@A64(<) − �4(<)B

+ ��=,��>0,1@(74(<) − �4(<)) 
    

(20) 

 
 

�4(< + 1) = �4(<) + 54(< + 1) (21) 

  

=,��>0,1@ and =,��>0,1@ are two statistically independent 

and uniformly distributed random numbers within the given 

interval [0,1]. The acceleration coefficients ��  and �� are 

also important parameters in PSO. �� pulls the particle 

towards the local best position whereas �� pulls the particle 

towards the global best and the sum of these two should be 

greater than 4 and less than 4.2 (4 D (�� + ��) D 4.2) [27]. 

So, for balancing exploration and local convergence, the 

value of �� and �� is taken 2 each. 6(<) is the best position 

parameter of an individual particle and 7(<) is global best 

position parameter of entire swarms. Shi and Eberhart [28] 

introduced an inertia weight : into the velocity updating of 

the PSO that helps in controlling the scope of the search. 

Often, : decreases linearly from 0.9 to 0.4 over the whole 

iteration. Here, whole iteration is the maximum iteration 

needed to get the final result. The velocity updating with 

inertia weight is shown in (22).  

 

54(< + 1) = :54(<) + ��=,��>0,1@A64(<) − �4(<)B
+ ��=,��>0,1@(74(<) − �4(<)) 

 

(22) 

  

The different steps of basic PSO are as follows: 

Step 1: Define the PSO parameters and randomly generate 

a population with initial position (�4 = �4�, �4�, … �4E) and 

velocity (54 = 54�, 54�, … 54E) of all the particles in the 

entire search space.  

Step 2: Evaluate the objective (fitness) function (#F) of 

each particle according to eqns. (3), (5), (13), and (19) for 

each form error. The lower the objective function value is, 

the better the corresponding particle performs.   

Step 3: Update or change the velocity and position of each 

particle according to relative positions from local best 

(6&GH<) and global best (7&GH<) using eqns. (21) and (22). 

Step 4: Apply boundary constraints on design variables so 

that the value of design variables lies within the lower 

bound (LB) and upper bound (UB) and particle does not fly 

outside the search space. 

 
	#   �(3, I) J 2K(I);     �(3, I) = 2K(I); 

GMHG 	#    �(3, I) N OK(I);            �(3, I) = OK(I) 

 

Step 5: Again, fitness function for each particle is 

calculated using the same eq. (3), (5), (13), and (19). If the 

current objective function value is less than the previous 

6&GH< value then 6&GH< is replaced by the current position. 
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Step 6: If the current objective function value is less than 

the previous 7&GH< value then 7&GH< is replaced by the 

current position. 

Step 7: The termination criterion is checked and if it is not 

met, go back to step 3. The termination criterion could be 

either max. iteration or good objective or fitness value.  

It is observed from the above steps that basic PSO 

performs exploration in step 3 using equation (21) and (22) 

by generating new solutions in the search space. However, 

the exploitation part is seen nowhere in the algorithm, as 

selection mechanism is missing in PSO. In PSO, only 

updating of new solution takes place without comparing 

which one is better. So, basic PSO has only explorative 

tendency and it lacks the exploitation ability. Therefore, in 

order to overcome this limitation a modified PSO algorithm 

is presented here.  

 

Modified particle swarm optimization (MPSO) algorithm 

A new variant of PSO is proposed in this paper for the 

effective form error evaluation. The exploration and 

exploitation capabilities are two important factors that are 

considered during the design of an optimization algorithm. 

Exploitation refers to the use of existing information 

whereas exploration means generation of new solution in the 

search space. In PSO, an old solution is replaced by the new 

one. To overcome all these problems, the modified variant 

of PSO algorithm generates new swarm position and fitness 

solution based on the new search equations (23) and (24): 
 

5�PQ = 6RPS8 + =,��>0,1@(7RPS8 − 6RPS8) (23) 

��PQ = 6RPS8 + 5�PQ (24) 

 

where 6RPS8 is the particle best position, 7RPS8  is the particle 

global best position. =,��>0,1@ is the random number 

generator between 0 and 1 that controls the rate at which the 

population evolves. The random number generator typically 

is initialized by this parameter, allowing to yield different 

values at each trial. The best solutions in the current 

population are very useful sources that can be used to 

improve the convergence performance. Also, Eqn. (23) can 

drive the new candidate solution only around the best 

solution of the previous iteration. Therefore, the proposed 

search and updated equations described can increase the 

exploitation capability of the classical PSO. 

Any selection strategy in the algorithm is usually 

considered as exploitation, as the fitness solution of the 

individual is used to determine whether or not an individual 

should be exploited. Therefore, the MPSO particle swarms 

employ greedy selection procedure among two parallel 

fitness functions to update the best candidate solution which 

also helps in improving the exploitation ability of the 

algorithm. The flowchart of the proposed modified PSO 

algorithm is shown in Fig.3.  

MPSO begins with step 1 of basic PSO algorithm and 

remains the same till step 5. Afterwards, an additional path 

for generating new solution by position and velocity 

updating is introduced in the algorithm using equation (24) 

and (24). This additional path will provide an extra option 

for velocity and position updating besides the basic updating 

used in PSO, providing new objective function (#�). Both 

paths run independently for each iteration. The best particle 

with minimum fitness or objection function will be chosen 

for the next iteration using greedy selection procedure. A 

greedy selection scheme is used for selection of the best 

solution among two possible solutions (the new solution and 

the old one) and the better one is preferred for inclusion in 

population based on the fitness or objective function value. 

In this way, the information of a good particle of the 

population is distributed among the other particles due to the 

greedy selection scheme applied, and thus, enhancing the 

exploitation ability of the algorithm. Further, the final 

objective function is updated as #� with corresponding 

position of the best particle and is used in the next iteration. 

At last, the termination criterion is checked and if it is not 

met, go back to step 3. 

 

4.  EXPERIMENTAL IMPLEMENTATION 

To test the robustness and efficiency of the proposed 

MPSO algorithm, various examples from literature are taken 

for evaluating the geometric characteristics of planar 

surfaces. A set of data points are taken from literature [29]-

[30] for possible solutions (as in this case minimization of 

form error). However, the data for perpendicularity and 

parallelism are measured using touch probe CMM. As GA, 

PSO and MPSO algorithms are stochastic in nature, 

consequently the results are not repeatable. For the aforesaid 

reason, all algorithms are run 25 times independently with 

similar parameters to evaluate these datasets. Further, 

average of these 25 datasets are taken for providing reliable 

estimate of the accuracy in results. The algorithm is 

programmed and implemented in MATLAB R2014a. The 

parameters used for PSO and MPSO optimization 

techniques are shown in Table 1. 

 
Table 1.  Parameters used for PSO and MPSO. 

 

S. No. PSO and MPSO parameters 

1 Swarm Size: 50 

2 Maximum Number of iterations: 100 

3 c1, c2 = 2.05, 205 

4 wstart, wend = 0.9, 0.4 

 

Practical examples (straightness) 

For the purpose of comparison, four examples available in 

literature [29] are selected. The real data points measured 

using CMM for straightness evaluation are shown in 

Appendix A with allowable tolerance of 0.00165 inch. Table 

2 shows the results presented in literature [30] along with 

the solution provided by the proposed MPSO algorithm. For 

example 1, it is observed that minimum zone straightness 

error obtained by LSM is 0.0017, Optimization Technique 

Zone (OTZ) [8] is 0.0017, Linear Approximation Technique 

(LAT) [8] is 0.0017, GA [3] is 0.001672, and PSO [29] is 

0.001711, while the minimum zone straightness error 

obtained by the proposed MPSO is 0.00160. If the allowable 

straightness  tolerance  is  0.00165  inch,  all  the  algorithms  
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Fig.3.  Flowchart of modified particle swarm optimization (MPSO) algorithm.

Initialize population randomly 

       Set parameters �, �, :��� , :��� , ��, ��, �,�	<G=, 5   

Evaluate initial fitness #Fof each new particle 

Update position and velocity for each particle 

5(	, I) = : ∗ 5(	, I) + �� ∗ =,��(1) ∗ A6&GH<(	, I) − �(	, I)B + �� ∗ =,��(1) ∗ (7&GH<(	, I) − �(	, I); 
�(	, I) = �(	, I) + 5(	, I) 

Applying boundary constraint 

	#   �(	, I) J 2K(I);     �(	, I) = 2K(I); 
GMHG 	#    �(	, I) N OK(I);            �(	, I) = OK(I) 

Evaluate fitness Evaluate fitness for 6RPS8and 7RPS8updation 

Update 6RPS8 and fitness #F  Position updation 

5�PQ = 6RPS8 + =,��(7RPS8 − 6RPS8) 

��PQ = 6RPS8 + 5�PQ  

Update 7RPS8  and fitness #F 

Evaluate new objective function value 

based on above updation #� 

Start 
B

 

Greedy selection 

b/w #F and #� 

If #F J #� 

Yes No 

#F = #� ,�� �F = �� 

Is the 

termination 

criterion met? 

Update fitness as #� and 

corresponding position �� 
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No 

B
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except the MPSO algorithm overestimate the tolerances and 

hence result in rejection of good parts. This signifies the 

importance of the proposed algorithm in accurate evaluation 

of minimum zone tolerance and also helps in preventing the 

rejection of good part based on product specifications. This 

will further help in minimizing the economic loss occurring 

in manufacturing of the part. The result shows that MPSO 

algorithm has higher computational accuracy and its 

optimization result surpassed those from the other methods 

[3], [8], [29] and from LSM. The iterative curve for PSO 

and MPSO is shown in Fig.4.a), Fig.4.b) confirming better 

performance and efficiency of the proposed MPSO 

algorithm.  

 

Practical examples (flatness) 

The sampling data available in literature [30] are selected 

as shown in Appendix B with 25 data points for each 

measurement. A plane part with length and width of 

140 mm and 120 mm, respectively, is considered with 

allowable tolerance of 0.018 mm. For part inspection, it is 

important to follow an appropriate sampling strategy.  The 

sampling strategy suggests selection of exact location for 

each measurement point. Two sampling data sets are taken 

which means location of points is the same for both 

measurements. The results for flatness error evaluation are 

tabulated in Table 3. It is observed that the minimum zone 

flatness error obtained by the proposed MPSO for 2 times 

sampling are 0.0174 and 0.0178, respectively, with a mean 

of 0.0176. The result is of practical significance as the 

allowable maximum tolerance is 0.018 mm, with GA and 

PSO providing 0.0187 mm tolerance. On the contrary, the 

result of MPSO is 0.0176 mm, which is under the allowable 

tolerance limit. This result shows that the good part may get 

rejected if LSM, GA and PSO algorithm is used, due to 

overestimation of flatness. Also, it is well in agreement with 

the results reported in literature [30] and far better than 

those obtained by LSM. The iterative curves when making 

assessment of flatness for PSO and MPSO are shown in 

Fig.5.a), Fig.5.b).  
 
 

Table 2.  Results of straightness evaluation. 

 
Ex OTZ [8] LAT [8] GA [3] PSO [29] MPSO 
1 0.0017 0.0017 0.001672 0.001711 0.001602 

2 0.0014 0.0014 0.001428 0.001401 0.001395 

 

 
Table 3.  Results of flatness evaluation (mm). 

 

Examples LSM 
Improved 

GA 
PSO MPSO 

1st time 

sampling 
0.0219 0.0184 0.0184 0.0174 

2nd time 

sampling 
0.0229 0.0189 0.0189 0.0178 

Mean  0.0187 0.0187 0.0176 

 
a) 

 
b) 

Fig.4.  PSO and MPSO Convergence for straightness error. 

 

 
 

 
 

Fig.5.  PSO and MPSO Convergence for flatness error. 
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Practical examples (perpendicularity and parallelism) 

The test parts for the perpendicularity and parallelism error 

evaluation are shown in Fig.8.a), Fig.8.b). The coordinates 

of the datum are measured first and then the target surface is 

sampled using CMM with PC-DMIS software. The 

coordinates of measured data of datum A and the target 

surface for perpendicularity and parallelism are shown in 

Appendix C and D, respectively. The results for 

perpendicularity and parallelism error are tabulated in 

Table 4. It is observed that the minimum zone 

perpendicularity error obtained by the least square method 

(LSM), particle swarm optimization (PSO) and the proposed 

MPSO algorithm are 16.581 µm, 9.820 µm and 8.631 µm, 

respectively. The straightness error for datum line for LSM, 

PSO and MPSO is reported as 12.865 µm, 9.37 µm and 

8.52 µm, respectively. It can be seen from the results that 

the perpendicularity error for the proposed MPSO algorithm 

shows better results than LSM and standard PSO. Similarly, 

for parallelism error, the MPSO algorithm outperforms the 

other mentioned methods. 
 

 

Fig.6.  Test parts for a) perpendicularity and b) parallelism 

evaluation. 

 

Fig.7. shows the searching process of PSO and MPSO 

with iteration for the two geometric errors (i.e. 

perpendicularity and parallelism). Obviously, the 

convergence and optimization accuracy of MPSO is higher 

than standard PSO, which indicates that MPSO reaches to 

the optimum value earlier than standard PSO. The result is 

of practical significance as the allowable maximum 

tolerance is 0.010 mm for perpendicularity and 0.015 mm 

for parallelism, with LSM and PSO providing 0.016 mm 

(16.58 µm) and 0.011 mm (10.82 µm) tolerance, 

respectively. On the contrary, the result of MPSO is 

0.0086 mm (8.63 µm), which is under the allowable 

tolerance limit as shown in Fig.7.a). This result shows that 

the good part may get rejected if LSM and PSO algorithm is 

used, due to overestimation of perpendicularity. Similarly, 

the MPSO algorithm obtained the parallelism error within 

the allowable tolerance of 0.015 mm as reported in Table 4. 

The proposed algorithm can significantly affect the 

inspection procedure as good parts get rejected if LSM and 

simple PSO are used. 

 

 
 

Fig.7.  PSO and MPSO algorithm for perpendicularity and 

parallelism error. 

 
Table 4.  Perpendicularity and parallelism results (µm). 

 

Method 
Perpendicularity Parallelism 

Measured 

surface 

Datum 

straightness 

Measured 

surface 

Datum 

straightness 

LSM 16.581 12.865 15.983 11.760 

PSO 10.820 10.37 13.212 10.232 

MPSO 8.631 8.52 12.145 9.875 

 

5.  CONCLUSION 

This paper presents a novel improved particle swarm 

optimization (MPSO) algorithm for geometric 

characteristics evaluation of the planar surfaces, which are 

in accordance with ISO 1101. The proposed algorithm 

overcomes the insufficiency of the classical PSO in terms of 

a weak exploitation behavior by introducing an improved 

solution search equation based on the best solution of the 

previous iteration. Additionally, a greedy selection 

procedure is added to further improve the exploitation 

ability of the classical PSO. A simple objective function for 

all geometric characteristics in planar surfaces was 

formulated as an unconstrained optimization problem. 

Numerical examples have been illustrated to verify 

geometric errors from coordinate data effectively. Compared 

to conventional or existing heuristics optimization methods, 

the proposed MPSO algorithm not only has the advantage of 
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a simple realization in computers and good flexibility, but it 

was shown to have improved the geometric error evaluation 

accuracy. The implementation of the proposed MPSO 

algorithm can ensure that direct form error can be evaluated 

without any conversion. Consequently, this algorithm could 

be implemented for inspection and form error evaluation on 

CMMs. 
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