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This paper introduces a robust, real-time loop closure correction technique for achieving global consistency in 3D reconstruction, whose
underlying notion is to back-propagate the cumulative transformation error appearing while merging the pairs of consecutive frames in a
sequence of shots taken by an RGB-D or depth camera. The proposed algorithm assumes that the starting frame and the last frame of
the sequence roughly overlap. In order to verify the robustness and reliability of the proposed method, namely, Proportional Error Back-
Propagation (PEB), it has been applied to numerous case-studies, which encompass a wide range of experimental conditions, including
different scanning trajectories with reversely directed motions within them, and the results are presented. The main contribution of the
proposed algorithm is its considerably low computational cost which has the possibility of usage in real-time 3D reconstruction applications.
Also, neither manual input nor interference is required from the user, which renders the whole process automatic.
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1. INTRODUCTION

Reconstruction of 3D objects and scenes has various appli-
cations in research and industry contexts, examples of which
include virtual reality [1–3], 3D Scanning [4], and Simulta-
neous Localization and Mapping (SLAM) [5] by autonomous
systems [6]. The latter goal is usually achieved through tak-
ing multiple shots of RGB, depth or RGB-D frames and reg-
istering each of them onto the previous one through finding
the relevant transformations, using algorithms such as Itera-
tive Closest Point (ICP) [7, 8]. Nevertheless, each individual
transformation usually entails a certain level of error, which
when accumulated throughout a large sequence, will cause a
noticeable misalignment between the two ends.

The problem of correctly closing the loop for achieving
global consistency in 3D reconstruction has been investigated
and approached through different techniques in the exist-
ing literature. In most cases, especially in the presence of
large sequences of frames, the latter is necessary. Incremen-
tally tracking the motion by accumulating the drift through-
out the frame transformations [9] is one of the earliest exam-
ples that has been utilized along with the Structure from Mo-
tion (SfM) [10]. The offline optimization procedure proposed
in [11] is another early example from the foregoing list.

One of the first algorithms accomplishing real-time per-
formance in creating globally consistent 3D representations
of objects based on sequences of frames taken by a handled

camera was devised on the basis of probabilistic analysis of
feature position approximations [12], which was not capable
of dealing with sequences larger than a certain amount. More
clearly, due to the high computational cost involved, the lat-
ter method will fail to demonstrate real-time performance if
a large scene is going to be reconstructed, which demands
creating great feature vectors and incorporating them into the
calculations. Even with smaller scenes, the amount of data to
be handled is larger than what could be sustained along with
a dense filter map, which incurs having to ignore some of the
features, which is tantamount to reducing the accuracy.

Apart from detecting the loop, the majority of the loop
closure correction methods proposed in the literature relies
on complex and time-consuming statistical and mathemati-
cal algorithms and operations, including computationally ex-
pensive optimization procedures, which often require intense
manual input and interference from the user as well, practi-
cally preventing a real-time functionality, even if other ele-
ments of the pipeline comply with it. In [13] the closing of
loop is achieved using a pose graph optimization algorithm
based on the features extracted using the RGB data, for in-
stance. The foregoing approach is an example of the long list
of methods possibly leading to impressive global alignment,
but in the case of being exposed to large databases, either de-
laying the whole reconstruction process or loosing the poten-
tial precision and accuracy due to implementing a global fu-
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sion algorithm, which is responsible for reducing the frames
to representations that are based on dense patches.

In the article proposed by Steinbrucker et al. [14] the loop
closure is estimated based on key-frames, where each new
key frame is matched against all previous key frames. The
loop closure is detected based on entropy ratio, where a small
error between frames coincides with high entropy value.

To reduce the computational cost in frame feature match-
ing, an efficient mechanism detecting loop closures via land-
marks is presented in the article by Liu et al. [15]. The land-
marks are compared between the incoming images and all
landmarks. According to the match information, the loop clo-
sure can be detected.

Article by Shiratori et al. [16] describes a method for align-
ing very large sets of 3D point clouds. From an initial esti-
mate of the sensor paths, a 3D graph is constructed and the
alignment problem is decomposed into smaller ones based on
the loop closures that exist in this graph. Data is aligned with
Simultaneous GICP (S-GICP) that exploits the loop closure
property to produce highly accurate intra-loop registration re-
sults. The individual loops are then combined into a single,
consistent point cloud via an inter-loop alignment step that
reconnects the graph of loops, according to a least squares
optimization.

The loop-closure problem is most widely explored int the
SLAM (simultaneous localization and mapping), where the
absence of loop-closure detection and error correction can
cause large errors, as it accumulates over the frames. In
SLAM problems, usually, a pose graph is built and then cor-
rected using the loop-closure constraint.

A popular approach [17] for this problem is the iSAM [18]
algorithm that is based on fast incremental matrix factoriza-
tion for the correction of transformation matrices. With the
help of QR decomposition of the matrix only the values that
change are updated, resulting in fast performance. The infor-
mation matrix was also used for error estimation.
Similar to this solution is the iSAM2 [19] system, where
Keiss proposed to use Bayesian trees, a data structure that
provides a better understanding of the matrix factorization in
terms of probability densities. It was shown how the fairly
abstract updates to a matrix factorization translated to a sim-
ple editing of the Bayes tree and its conditional densities. As
a result this system was faster and more accurate than the pre-
vious one.

Another commonly used approach for loop-closure is using
RANSAC and keyframes as proposed in [20]. Once detected,
to minimize the conflict between sequential constraints and
loop closure constraints, TORO [21] was employed. TORO
provides a gradient descend based error minimization solu-
tion for constraint-networks. The authors ran TORO each
time a loop-closure was detected, using the output of the pre-
vious run as initial guess.

Even though iSAM, TORO and iSAM2 are a great solu-
tion for the SLAM problem, they are overly complicated for
simpler and more controlled environments, where building a
location graph would be unnecessary.

In this paper, a loop closure correction algorithm with a
negligible computational load is proposed, which is referred
to as Proportional Error Back-Propagation (PEB), and aims
at applications where the sequence always possesses similar
first and last frames, whose examples, among others, include
scanning a room while stopping at a pose similar to that of
the starting frame. The main virtue of the PEB is its unpar-
alleled fastness, i.e. it usually takes a fraction of a second
for it to correct the transformations throughout the whole se-
quence. Such algorithm can be used in producing more real-
istic models subject to use in virtual fitting rooms or virtual
reality applications [22–28].

The remainder of the paper is organized as follows: The
proposed method is introduced in the next section. After-
wards, the experimental results are presented and discussed.
Finally, the paper is concluded.

2. THE PROPOSED METHOD

In this section, the underlying idea of the PEB is described,
along with the associated mathematical framework. It is
worth noticing that in a 3D reconstruction context, various
modules shall either precede or succeed the loop closure sys-
tem, none of which is investigated in this paper, where only
a selection of the existing solutions is considered for verify-
ing the efficiency of the PEB. From a broad perspective, the
items from the foregoing list may include preprocessing and
registering the depth frames and post-processing the resulting
point cloud.

The input to the PEB algorithm is a sequence of depth
frames, containing the 3D coordinates of the corresponding
points in the associated systems, and a set of homogeneous
transformations each of which supposedly maps every point
in a frame to the system of coordinates through which the
points from the one preceding it within the sequence are rep-
resented. More clearly, the foregoing transformations have
been calculated by a registration algorithm which is expected
to find the camera poses for all the frames, based on which it
obtains transformations that approximately map every point
in a frame to the one matching it in the previous frame.
However, the above transformations are usually not totally ac-
curate, and the negligible error entailed by each of them still
contributes to a considerable overall error, which causes over-
all inconsistency and prevents the reconstruction loop from
closing. More clearly, all the points in each frame are sup-
posed to be mapped to their locations in the reference coordi-
nate system, which is tantamount to that of the first frame, by
means of a homogeneous transformation resulted from accu-
mulating a sequence of transformations each of which maps
them one step backward, i.e. from the coordinate system as-
sociated with a frame to that of the one preceding it, where
although no outstanding misalignment might show up at ev-
ery step, the aggregated error may be considerable. The latter
errors may have been caused or compounded by a variety of
factors, including vibration of the camera or its movement in
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directions, or under axes, other than the intended ones and
measurement noise.

The purpose of the PEB is to overcome the above error, and
correct the loop closure, taking the following principle into
account as the criterion: If the first and the last frames are ex-
actly the same, the cumulative homogeneous transformation
taking the latter to the former must be equal to the identity
transformation. If the aforementioned condition is met, i.e.
if the first and the last frames are the same, the overall error
is equivalent to the existing cumulative transformation sup-
posedly mapping the last frame to the first one. By the PEB,
to correct the foregoing error, it is back-propagated through-
out the chain of transformations based on their proportional
contribution to the overall transformation.

In order to do so, the rotation and translation components
of the transformations are modified separately and respec-
tively, where an extra module mediating between them com-
pensates for the effect of the modification of the rotation on
the translation. It should be noted that the condition that the
first and the last frames input into the PEB must be the same
necessitates making a copy of the first frame and inserting it at
the end of the sequence before performing registration, where
the difference between the poses of the camera between the
first frame and the original last one needs not to be larger
than the threshold that could be tolerated by the registration
algorithm when finding the transformation mapping one to
the other, meaning that the scanning process should finish at
a pose close enough to its starting one.
The underlying methodology of the PEB will be described in
mathematical terms in what follows. Assuming that n distinct
frames, being each stood for by a set Fi, i= 1,2, . . . ,n, exist in
the whole sequence, the points in the ith one, i.e. Fi, are rep-
resented through a Cartesian coordinate system Fi which is
defined by the origin Oi and the axes Xi, Yi, and Zi, as follows:

∀ j, j ∈ {1,2, . . . ,ni}=⇒
[

pppi j(3×1)

]
Fi

∈ Fi, (1)

where pppi j
represents the position vector of the jth point in

Fi, namely, Pi j , and ni is the total number of the points in
Fi. It should be noted that i and j are dummy variables to
be changed throughout the paper. Then, having in mind that
a copy of the first frame, Fn+1 = F1, has been added to the
end of the sequence, i.e. there are now n+ 1 frames in the
sequence, upon constructing the homogeneous coordinates of
Pi j , namely,

{
pppi j

}
Fi

, as follows:

∀i∀ j, i ∈ {1,2, . . . ,n+1}∧ j ∈ {1,2, . . . ,ni}=⇒{
pppi j

}
Fi

=

[[
pppi j

]T

Fi
1
]T

,
(2)

the homogeneous transformation matrix TTT i(4×4) , which has
been obtained by the registration algorithm, maps the ho-
mogeneous coordinates of every point in the (i+ 1)th frame,{

pppi+1 j

}
Fi+1

, from its native coordinate system, being Fi+1,

to that of a point
{

ppp∗i+1 j(3×1)

}
Fi

supposed to match it in the

preceding one, namely, Fi, meaning that:

∀i∀ j, i ∈ {1,2, . . . ,n}∧ j ∈ {1,2, . . . ,ni+1}=⇒{
ppp∗i+1 j

}
Fi

= TTT i

{
pppi+1 j

}
Fi+1

, (3)

where:

TTT i =

[
QQQi(3×3)

ttt i(3×1)

000(1×3) 1

]
, (4)

in which QQQi and ttt i stand for a rotation matrix and a transla-
tion vector, respectively, and 000 denotes a vector of all-zeros.
If the camera poses have been calculated flawlessly, the lat-
ter transformation will map the homogeneous coordinates of
every point from the corresponding coordinate system to its
own representation in the coordinate system associated with
the previous frame, i.e. ideally,

{
ppp∗i+1 j

}
Fi

should be equiv-

alent to TTT i

{
pppi+1 j

}
Fi+1

=
{

pppi+1 j

}
Fi

, which is usually not

the case, due to the errors having, as aforementioned, arisen
because of a variety of reasons. The foregoing inconsistency
explains the cause of the loop closure error, i.e. the accumu-
lation of the error throughout the transformations prevents the
ends of a closed loop of the frames from coinciding with each
other at the pose they are supposed to do.
In order to define measures describing the overall error, which
is tantamount to the loop closure error and should be back-
propagated so as to correct the loop closure by modifying
the transformations, one could find the overall transformation
supposedly mapping the points from the coordinate system
associated with the newly inserted last frame to that of the
first frame, which are in fact the same, and upon noticing that
ideally it has to become an identity homogeneous transfor-
mation, deriving the loop closure pose error from it. In other
words, the accumulation of the first to the nth homogeneous
transformations, namely, TTT T(4×4) , which can be found as fol-
lows:

TTT T =
n

∏
i=1

TTT i, (5)

can be considered as a homogeneous transformation con-
structed on the basis of the parameters standing for the loop
closure error, such that with the following representation:

TTT T =

[
QQQT(3×3)

tttT(3×1)

000 1

]
, (6)

QQQT and tttT denote a cumulative rotation matrix and a cumu-
lative translation vector, respectively, which could be utilized
to extract the rotation and translation loop closure errors.
For extracting the loop closure error correction terms based
on the overall homogeneous transformation, i.e. TTT T , first,
Eq. (5) can be expanded through substituting each individual
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homogeneous transformation by the expression describing it
from Eq. (4) in order to find QQQT and tttT in Eq. (6), as follows:

QQQT =
n

∏
i=1

QQQi, tttT =
n

∑
i=1

(
i−1

∏
j=0

QQQ j

)
ttt i, (7)

where QQQ0(3×3)
= III3 is an identity matrix.

In fact, the goal of the PEB is to find modified rotation ma-
trices Q̂QQi(3×3)

and translation vectors t̂tt i(3×1) , according to the
original ones QQQi and ttt i, respectively, i = 1,2, . . . ,n, based on
their proportional contributions to the overall rotation ma-
trix QQQT and the overall translation vector tttT , respectively,
such that the resulting homogeneous transformation matrices
T̂TT i(4×4) constructed as follows:

T̂TT i =

[
Q̂QQi t̂tt i
000 1

]
, (8)

would overall accumulate the identity homogeneous transfor-
mation, represented by the 4× 4 identity matrix III4, meaning
that:

T̂TT T =

[
Q̂QQT t̂ttT
000 1

]
=

n

∏
i=1

T̂TT i = III4, (9)

where Q̂QQT and t̂ttT denote the corrected cumulative rotation
matrix and the corrected cumulative translation vector, re-
spectively.

In the context of the transformation correction procedure
of the PEB, first, the rotation matrices are corrected. The pur-
pose is to modify each rotation matrix QQQi, i = 1,2, . . . ,n, such
that the corrected overall rotation would become an identity
rotation. In order to do so, a set of rotation correction matri-
ces QQQei(3×3)

, i= 1,2, . . . ,n, should be calculated to be incorpo-

rated into the construction of the corresponding corrected ro-
tation matrices. In what follows, the proposed mathematical
framework for achieving the latter goal is explained, where
the virtue of the fact that the inverse of every rotation matrix
is equal to its own transpose has been resorted to for the sake
of reducing the consequent computational cost.

In order to format the structure of the rotation correction
procedure, an expression for each corrected rotation matrix,
Q̂QQi, i = 1,2, . . . ,n, in terms of the rotation and rotation cor-
rection matrices, is first derived in a way that would enable
the algorithm to manipulate the corrected overall rotation,
which must become identity, by adjusting the rotation cor-
rection matrices. To this end, the cumulative rotation matri-
ces QQQci(3×3)

, i = 1,2, . . . ,n, and their corrected counterparts

Q̂QQci(3×3)
are defined as follows:

QQQci =
i

∏
j=1

QQQ j, Q̂QQci =
i

∏
j=1

Q̂QQ j. (10)

Then by noticing that each corrected cumulative rotation ma-
trix should assimilate all the associated rotation correction

matrices, meaning that:

∀i, i ∈ {0,1, . . . ,n}=⇒ Q̂QQci =

(
i

∏
j=0

QQQe j

)
QQQci , (11)

where QQQe0
= III3, a closed-form expression can be found for

the corrected rotation matrices Q̂QQi, i = 1,2, . . . ,n, as follows:

∀i, i ∈ {1,2, . . . ,n}=⇒ Q̂QQci = Q̂QQci−1
Q̂QQi =⇒ Q̂QQi = Q̂QQ

T
ci−1

Q̂QQci =((
i−1
∏
j=0

QQQe j

)
QQQci−1

)T(
i

∏
j=0

QQQe j

)
QQQci =

QQQT
ci−1

(
i−1
∏
j=0

QQQe j

)T(
i−1
∏
j=0

QQQe j

)
QQQeiQQQci = QQQT

ci−1
QQQeiQQQci ,

(12)

where QQQc0
= Q̂QQc0

= III3.
Assuming that the accumulation of the above rotation correc-
tion matrices is represented as QQQeT(3×3)

, which is calculated as

follows:

QQQeT =
n

∏
i=1

QQQei , (13)

one has:

Q̂QQT =

(
n

∏
i=1

QQQei

)
QQQT = III3 =⇒

n

∏
i=1

QQQei = QQQT
T , (14)

meaning that QQQeT shall become the inverse of the overall ro-
tation matrix, i.e. QQQT , meaning that the individual rotation
correction matrices can be constructed such that they stand
for rotations around the same axis as that of QQQT , but lead to
rotation angles which accumulate the negation of that of QQQT .
Therefore, assuming that QQQT is represented by eeeT and φT as
the unit vector along the rotation axis and the rotation angle,
respectively, using the same rotation axis and the following
rotation angles:

∀i, i ∈ {1,2, . . . ,n}=⇒ φei =−
|φi|

n
∑

i=1
|φi|

φT , (15)

meaning that:

n

∑
i=1

φei =−
n

∑
i=1

|φi|
n
∑

i=1
|φi|

φT =−φT , (16)

the corresponding rotation correction matrices, i.e. QQQei , can
be obtained, where φi stands for the rotation angle associated
with QQQi, the ratio |φi|

n
∑

i=1
|φi|

being meant to make each rotation

correction matrix proportional to the contribution of the cor-
responding original rotation matrix to the overall one.

However, the correction of the rotation matrices affects the
translation vectors as well. More clearly, while the rotations
are being fixed, further drift will be introduced into the align-
ments, which appears as a higher level of error in the trans-
lations. Therefore, the translations are first revised such that
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the effect of the changes in the rotation would be minimized.
In order to do so, it is assumed that the average position of
the points from a given frame must be affected in the same
manner before and after revising the corresponding rotation,
which can be mathematically represented as follows:

∀i, i ∈ {1,2, . . . ,n}=⇒ QQQi

ni+1
∑

j=1
pppi+1 j

ni+1
+ ttt i =

Q̂QQi

ni+1
∑

j=1
pppi+1 j

ni+1
+uuui =⇒ uuui = ttt i +

(
QQQi− Q̂QQi

) ni+1
∑

j=1
pppi+1 j

ni+1
,

(17)

where uuui, i = 1, . . . ,n, is the revised translation vector. Thus,
the overall translation based on the newly obtained rotation
matrices and translation vectors could be found based on
Eq. (7), as follows:

vvvT =
n

∑
i=1

(
i−1

∏
j=0

Q̂QQ j

)
uuui = Q̂QQc j−1

uuui, (18)

Similarly to what preceded regarding correcting the rota-
tions, when it comes to doing so on the translations, the above
vector, i.e. vvvT , can be considered as the new overall transla-
tion error, since given the fact that the sequences consisting of
n+1 frames stands for a fully closed loop with identical first
and last frames, if the transformations had been calculated
perfectly, then it would need to become zero.

Thus the task of correcting the translations will consist of
distributing the aforementioned overall translation error to the
individual translation vectors, uuui, proportionally to their con-
tributions. The latter are represented as follows:

∀i, i ∈ {1,2, . . . ,n}=⇒ vvvi =
[
vi1 vi2 vi3

]T
=

Q̂QQc j−1
uuui.

(19)

Thus the translation correction vectors can be constructed
as follows:

∀i, i ∈ {1,2, . . . ,n}=⇒ tttei =

−
[
|vi1 | |vi2 |

∣∣vi3

∣∣]T� n
∑
j=1

([∣∣v j1

∣∣ ∣∣v j2

∣∣ ∣∣v j3

∣∣]T)� vvvT ,
(20)

which are proportional to the corresponding contributions vvvi
to the overall error, i.e. vvvT , and their cumulative value is its
negation, being realized as follows:

n
∑

i=1
tttei =

−
n
∑

i=1

([
|vi1 | |vi2 |

∣∣vi3

∣∣]T� n
∑
j=1

([∣∣v j1

∣∣ ∣∣v j2

∣∣ ∣∣v j3

∣∣]T)� vvvT

)
=

−
n
∑

i=1

([
|vi1 | |vi2 |

∣∣vi3

∣∣]T)� n
∑
j=1

([∣∣v j1

∣∣ ∣∣v j2

∣∣ ∣∣v j3

∣∣]T)� vvvT =

−vvvT .

(21)

Subsequently, the revised contributions to the overall trans-
lation are obtained as follows:

∀i, i ∈ {1,2, . . . ,n}=⇒ v̂vvi = vvvi + tttei = Q̂QQc j−1
uuui + tttei . (22)

Lastly, in order to incorporate the above conclusion into the
calculation of the corrected translation vectors, Eq. (19) is re-
called, and the relationship between the translation contribu-
tion vectors found through Eq. (22) and the corrected transla-
tion vectors is establishes as follows:

∀i, i ∈ {1,2, . . . ,n}=⇒ v̂vvi = Q̂QQc j−1
t̂tt i, (23)

based on which, utilizing Eq. (22), the corrected translation
vectors can be obtained as follows:

∀i, i ∈ {1,2, . . . ,n}=⇒ t̂tt i = Q̂QQ
T
c j−1

v̂vvi =

Q̂QQ
T
c j−1

(
Q̂QQc j−1

uuui + tttei

)
= uuui + Q̂QQ

T
c j−1

tttei .
(24)

3. EXPERIMENTAL RESULTS AND DISCUSSION

As mentioned before, the PEB has been devised such that
given the assumption that the sequence showing a sequence or
object possesses first and last frames which have been taken
from similar poses, the raw transformations which have been
found using an alignment method could be revised, thereby
removing the apparent overall misalignment from the point
cloud resulting from merging the individual depth maps.

A typical task to be left upon the PEB could be to mod-
ify the preliminary outcome of a standard 3D reconstruction
pipeline consisting of filming an object while being rotated
on top of a turntable, using an RGB-D sensor such as the
Microsoft Kinect 2 RGB-D camera [29]. In such a scenario,
although the individual transformations may appear to be rea-
sonable, the slight misalignments present in them usually ac-
cumulate, and appear as a noticeable diversion between the
parts of the reconstructed point cloud corresponding to the
initial and final images from the sequence.

Thus, the aim of the PEB would be to distribute the overall
misalignment to the individual transformations, so that the
structure of the object would be maintained. Similarly, if a
scene, e.g., a rectangular room, has been filmed instead, the
PEB can be employed to modify an initial reconstructed point
cloud.

However, filming scenes, as opposed to objects, usually
takes a higher number of frames, which is due to the fact
that every pair of consecutive frames fed into an alignment
algorithm need to have been taken such that the pose of the
camera in the second frame relatively to that of the first one
would lead to a reasonable difference, in order for the opti-
mization routine to converge with a tolerable level of error.
More clearly, if the pairs of consecutive frames are too dif-
ferent from each other, then the transformation returned by
the alignment algorithm may be wrong enough for the PEB
to perform weakly in terms of compensating for the present
misalignments.

Thus due to the higher number of frames, and as a result,
transformations reconstructing a scene are usually associated
with higher levels of misalignments, handling which would
be more challenging for the PEB. Therefore, in this paper, it
is assumed that if the capabilities of the PEB are verified in
modifying reconstructions of scenes, its reliability in recon-
structing objects would be implied as well. Based on the latter
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Fig.1. The first initial reconstruction result.

Fig.2. The second initial reconstruction result.

Fig.3. The third initial reconstruction result.

Fig.4. The corrected counterpart of the result shown in Fig. 1.

Fig.5. The corrected counterpart of the result shown in Fig. 2.

Fig.6. The corrected counterpart of the result shown in Fig. 3.
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reasoning, in this paper, the performance of the PEB is exam-
ined only in the context of reconstructing scenes, where rect-
angular rooms are considered as case-studies. The sequences
have been taken using Kinect 2.

While filming, it is ensured that the camera will stop at a
pose which is close to the starting one, being demanded by the
PEB. In order to evaluate the performance of the PEB under
arbitrary conditions, and examine its robustness, various tra-
jectories have been considered for the motions of the camera,
which include wavy patterns and movements of the camera in
the opposite direction of the general trend. The latter is neces-
sary for realizing whether the PEB could handle cases where
the experimental setup requires the user to perform indisci-
plined movements, e.g., due to the restrictions caused by the
lengths of the cables connecting the camera and the computer
to each other, as well as to the electricity outlet.

The sequences considered for the purpose of evaluating the
PEB consist of series of RGB-D frames taken while the user
moves throughout the room and holds the camera such that it
is facing a part of one of the walls at all of the timestamps,
which leads to around 500 frames for a 3× 4 m rectangu-
lar room, using a frame-rate of 30 Hz. The foregoing frames
have all been intentionally kept and fed into the reconstruc-
tion pipeline, i.e. downsampling has been avoided, for the
sake of introducing a strong amount of misalignment, thereby
verifying the robustness of the PEB.

The initial results of reconstructing the sequences using
the Iterative Closest Point (ICP) [30] algorithm are shown
in Figs. 1 through 3, whose counterparts which have been
improved through applying the PEB can be found in Figs. 4
through 6, in the same order.

It is noteworthy that the end of the sequence is determined
by taking the first frame of the sequence and iteratively com-
paring it to the frames from the end of the sequence, starting
from the last frame and going backwards. The frame simi-
larity is determined by SSIM and once a frame with highest
similarity is found, the process is stopped. If the first frame
is placed at the end of a partial loop, the algorithm will still
consider the sequence as a full loop, meaning that the final
results will be incorrect. Currently the implementation, does
not check for such cases.

As it could be seen from the results shown in the afore-
mentioned figures, although the PEB incurs a negligible com-
putational load, it provides a reliable platform for revising
the transformations returned by a typical alignment algorithm
such as ICP, which leads to smoothly distributing the overall
error to the relative poses, thereby obtaining a visually appeal-
ing representation of the scene that believably corresponds to
the expected 3D structure.

4. CONCLUSION

In this paper, a fast loop closure correction algorithm, namely,
Proportional Error Back-Propagation (PEB), was proposed,
which performs the task in a fraction of a second on a se-
quence of frames meant to reconstruct a 3D representation of
a scene, where the overall transformation error is distributed

to the individual relative poses proportionally to their con-
tributions to the cumulative transformation. The underlying
assumption was that the initial and final frames from the se-
quence need to be taken at similar poses of the camera, which
makes it a suitable choice for reconstructing a room, where
the camera films its surroundings trying to stop at a similar
pose as it had started. The proposed method was verified in
terms of visual and computational efficiency through apply-
ing it to a variety of sequences. The future works may in-
volve incorporating the possibility of correcting the transfor-
mations in case multiple closures appear in a given sequence
of frames.
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