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The algebraic structure underlying the quantity calculus is defined axiomatically as an algebraic fiber bundle, that is, a base structure which
is a free Abelian group together with fibers which are one dimensional vector spaces, all of them bound by algebraic restrictions. Subspaces,
tensor product, and quotient spaces are considered, as well as homomorphisms to end with a classification theorem of these structures. The
new structure provides an axiomatic foundation of quantity calculus which is centered on the concept of dimension, rather than on the concept
of unit, which is regarded as secondary, and uses only integer exponents of the dimensions.
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1. INTRODUCTION

The foundations of quantity calculus have been the subject
of research for more than a century, and recent papers as
those by Kitano [1], Krystek [2], Atkey et al. [3] or Domo-
tor [4] show that its formalization is not completely settled
yet. Moreover, in the last years many authors are calling for
a discussion of fundamental concepts regarding quantity cal-
culus [5, 6, 7, 8, 9]. In fact, the first two papers mentioned
represent two different visions on the subject. The paper by
Kitano assumes a structure of quantity calculus centered in
the definition of units, upon which the rest of the structure is
built. In contrast, the paper by Krystek recovers the call of
some authors in past decades to locate the concept of dimen-
sion in the center of the scene. The latter view is what the
widespread use of dimensional analysis (see, e.g., [10, 11])
suggests that the structure of quantity calculus should be, but
the fact is that there is not a well defined algebraic structure
supporting it. The goal of this paper is to provide such a struc-
ture. On another basis, the paper by Domotor deserves a sep-
arate comment, for it dives into ontological discussion of the
relationship between quantities and their values and provides
an algebraic tool to describe it by means of torsors, which is
further commented below.

By quantity calculus it is understood the algebra of the op-
erations performed between physical quantities, which are
three: product of quantities, product of a number times a
quantity and addition of quantities of the same kind. It is
customary to write a quantity q as the product of a number
times a unit which, in the present notation of the International
Vocabulary of Metrology (VIM) [12], is denoted as

q = {q} [q], (1)

where [q] stands for the unit and {q} is the number of times q
comprises that unit. Notice that, as the VIM explicitly warns
in its Note 5 under the definition of quantity, this concept is
that of a scalar quantity, and the way to consider vector or
tensor quantities is through their components which accom-
modate to this definition. The operations are then performed
as

q1q2 = ({q1}{q2})([q1][q2]), (2a)
αq = (α{q}) [q], (2b)

q1 +q2 = ({q1}+{q2}) [q1], (2c)

where α is a number, q, q1, and q2 are quantities and, in the
last equation, [q1] = [q2] is assumed. Although this way of
performing the operations is standard, the algebraic structure
to which these three operations give rise is still under study,
and it is the particular form of equation (2c) what makes it
quite different from other usual structures such as rings, vec-
tor spaces or algebras.

The history of quantity calculus, in the words of Do-
motor [4], is the story of the search for the intrinsic alge-
braic structures underlying dimensional analysis, measure-
ment units and measurement uncertainty of quantity values.
This history is unsually long, and the reader is referred to
the excellent review by de Boer [13] for a detailed account.
However, a few landmarks are worth mentioning in order to
situate the contribution of the present paper. Its origin goes
back to Fourier in 1822 [14], when he introduced the idea
of dimension of a quantity and the concept of homogene-
ity of dimensions in a valid physical equation, thus initiat-
ing the view centered on dimensions. Contemporarily, Gauss,
in 1832 [15], proposed the first so called absolute system of
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units, relying on the units for length, mass and time, which
eventually became the cgs system. Another step is due to
Maxwell in 1873 [16], when he stated that the expression of
a quantity has two factors or components, as in equation (1);
in fact, the present notation in that equation comes from that
of Maxwell. In 1914 Buckingham published his celebrated
Pi Theorem [17], although there was not a solid framework
on which to base its proof. For the remaining duration of
the 20th century there is a quest for the formalism under-
lying the quantity calculus. According to de Boer, Wallot
was the first to claim the concept of quantity as central, and
not just as the product of a number and a unit. Then Lan-
dolt [18], in 1945, made the first attemp to give an axiomatic
foundation, with the important step of recognizing the group
properties of the operations between quantities. In the 1950s
Fleischmann [19], also according to de Boer, took another
step forward by distinguishing the quantities from the kinds
of quantities, the latter exhibiting the structure of a group.
In the following years several authors contributed to set up a
description of the algebraic structure but, curiously enough,
two divergent paths were followed. On the one hand authors
such as Fleischmann, Quade [20] or de Boer himself called
for a description centered on the quantities and the concept of
dimension. On the other hand, authors such as Drobot [21],
Whitney [22], and Carlson [23] developed an algebraic struc-
ture which resembled that of quantity calculus, but was cen-
tered on the concept of unit over which the rest of the set
of quantities was built. The recent paper by Kitano [1] can
be seen as the zenith of this viewpoint, for he introduces a
theory of comparison of the different systems of units which
provides new insight into the subject. In a rough summary,
this structure starts with a system of units {u1, . . . ,un} and
writes any quantity q in a unique way as

q = α ur1
1 · · ·u

rn
n , (3)

where α is a real number and r1, . . . , rn are rational numbers.
Therefore, the algebraic structure depicted by this theory is
R×Qn, where the factor R hosts the numerical value of q
relative to this system of units, while Qn hosts the rational
exponents of the units and exhibits a linear space structure.
However, the rules (not the algebraic properties) to perform
the three operations need to be set in the axioms, which is not
quite acceptable in an axiomatic description of an algebraic
structure. As a consequence of the central role of the unit
systems, we can find quantities which, dependending on the
unit system of choice, can be compared or cannot, can be
added or cannot.

Notwithstanding its merits, the accepted description of the
algebraic structure of quantity calculus has two drawbacks
that need to be addressed. Firstly, as said before, it relies on
the concept of unit as central. This is not satisfactory since
units are the result of an arbitrary agreement and, thus, can
be easily changed, while the concept of dimension is more
resilient. (The arbitrariness, of course, is only from the al-
gebraic viewpoint; in fact, the choice of base units in a sys-

tem of units, say the SI, is far from arbitrary, for they need
to be as constant and accurate as possible and reproducible).
The history of the units in electromagnetism at the end of the
19th century and beginning of the 20th shows it clearly: the
mess of different systems of units, all of them trying to de-
scribe electromagnetic quantities in a purely mechanical con-
text, was definitely clarified with the proposal of Giorgi [24]
to introduce a separate unit for one of the electromagnetic
quantities, that is, introducing a new and independent dimen-
sion.

Secondly, the use of fractional exponents in the units. It
is a remarkable fact that, albeit the possibilities allowed by
Bridgman’s theorem on dimensional analysis [25], dimen-
sionful physical quantities enter into physically valid equa-
tions only through the three operations mentioned at the be-
ginning. Therefore, only integer exponents of quantities, and
thus of units, should be expected. Although the use of frac-
tional exponents is widespread, we claim that it is not neces-
sary. Several examples come to mind, as the case of square
roots of quantities (the use of Pythagoras’ theorem, the pe-
riod of a pendulum, the standard deviation of a random quan-
tity. . . ) but in all cases the square root acts on a quantity
which is already a square. An algebraic structure for quan-
tity calculus, which allows fractional exponents, is oversized.

It is noticeable that Quade [20], following Fleischmann,
developed a description of the algebraic structure entirely
with integer exponents of the units instead of fractional ones,
and also tried to center it on the concept of dimension. Un-
fortunately, this approach, which pointed in the correct direc-
tion, was superseded by the one described above. The cause
of moving the focus from dimensions to units is, probably,
the absence of a known algebraic structure which fits exactly
the operations between quantities. But, fortunately, the recent
paper by Krystek [2] resumes the quest for this structure.

Drawing from the ideas of Quade and Krystek, the goal
of this paper is to introduce a new algebraic structure, based
on a simple set of axioms, which accounts exactly for the
properties of quantity calculus and overcomes the two afore-
mentioned problems. The structure is centered in the group
of dimensions and the quantities are placed upon it gathered
in fibers over the dimensions. Hence, the structure can be
described as an algebraic fiber bundle. The axioms allow to
define systems of units and, as a consequence, but not as a
definition, to write quantities as in equation (1). Then the
properties of the maps {·} and [·] are studied and the valid-
ity of equations (2) is established (not postulated, as usual).
These are the contents of section 2. Section 3 shows how to
construct new spaces of quantities from old ones as subspaces
or by means of tensor products or quotients. The quotient of
a space of quantities is seen to be the tool to reduce dimen-
sions as it is usually done, for instance, to get natural units. In
section 4 the tool for the comparison is defined and studied:
the homomorphism of spaces of quantities, which allows us
to characterize and classify the spaces. This classification is
compared with that of Kitano in a final section of conclusions
and also a comment on Domotor’s torsor theory is considered.

148



MEASUREMENT SCIENCE REVIEW, 18, (2018), No. 4, 147–157

2. GROUP OF DIMENSIONS AND SPACE OF QUANTITIES

Our object of study is a set Q of quantities and the operations
defined within it, which is referred to as a space of quantities.
The elements of Q will be denoted by lowercase latin letters,
particularly q, r, s. These quantities, as it is detailed below,
can be multiplied and added among them and also multiplied
by scalar numbers from a field F , whose elements will be
denoted by lowercase Greek letters, particularly α , β .

Example 2.1. For further reference, we assign symbols to
the following spaces of quantities: Qgeom, the space of quan-
tities of geometry, that is, all the quantities needed to deal
with lengths, areas, volumes, angles, etc. Qtime, the space
of quantities to measure time. Qkin, the space of quantities
of kinematics. Qmech, the space of quantities of mechanics.
Qphys, the space of quantities of physics.

2.1. Group of dimensions
As noticed in the introduction, main role in the structure is
played by the dimension of a quantity. Under this viewpoint,
the dimension is an intrinsic property of a quantity, in contrast
to its numerical value, which depends on the unit chosen, or
the unit itself, which can be changed arbitrarily. Therefore,
each quantity must have a firm link with its dimension in the
present scheme better than a link with a unit or its numerical
value with respect to that unit, despite the latter being what
equation (1) suggests. To that end, let us first define prop-
erly the set of dimensions. The properties which characterize
this set have been well described in the paper by Krystek [2],
and they are just summarized here: dimensions can be mul-
tiplied and show the structure of an Abelian group with two
further properties which characterize this group. First, no el-
ement is torsion, for there is no dimensionful quantity which
multiplied by itself finitely many times becomes a quantity of
dimension one. Second, it is finitely generated. Therefore,
we adopt the following definition.

Definition 2.2. A group of dimensions is a finitely generated
free Abelian group.

In this paper such a group is generally denoted by D and its
elements by uppercase letters in roman sans-serif type such
as A,B . . . (as stated in the VIM). The identity element of
the group, denoted 1D , is the dimension of the so called di-
mensionless quantities (quantities of dimension one are pre-
ferred).

Two properties of finitely generated free Abelian groups
(or, equivalenty, free Z-modules) are of interest to us [26].
In the first place, there exists the concept of basis: an inde-
pendent (finite) set of generators. If {A1, . . . ,Ak} is such a
basis for a group D then any element B has a unique expres-
sion in terms of the form B=An1

1 · · ·A
nk
k , where the exponents

n1, . . . , nk are integer numbers. The number k of generators
of any basis is called the rank of the group, and is a charac-
teristic property of it. In the second place, such a group is
isomorphic with the direct product of k infinite cyclic groups:
D ∼= 〈A1〉× · · ·×〈Ak〉, where 〈Ai〉= {An

i : n ∈ Z}.

Example 2.3. The groups of dimensions of the systems of
quantities given in example 2.1 are, respectively, the follow-
ing: Dgeom = 〈L〉, the free Abelian group generated by L,
which denotes length. Dtime = 〈T〉, generated by T (time).
Dkin = 〈L,T〉, generated by L and T. Dmech = 〈L,T,M〉, gen-
erated by L, T and M (mass). Dphys = 〈L,T,M, I,Θ〉, gener-
ated by L, T, M, I (electric current) and Θ (temperature).

2.2. Space of quantities
The link between a quantity and its dimension is made by
means of a projection map dim: Q→ D . This map is a sur-
jection.

Example 2.4. If h is Planck’s constant then dim(h) =
L2T−1M; and θ , the angle at a vertex of a triangle, yields
dim(θ) = 1D ; each one in the appropriate setting.

In order to reflect that the dimension of a product of quan-
tities is the product of the dimensions of the quantities the
projection map must be a homomorphism with respect to the
product of quantities.

In this way we follow the general concept studied by Atkey
et al. [3] of a fiber bundle approach to quantities and dimen-
sions. All the quantities with the same dimension, say A, form
a set called a fiber, for it can be written as the inverse image
of that dimension: dim−1(A). As the VIM explicitly states,
quantities of the same kind belong to the same fiber, while the
opposite is not necessarily true. However, the algebraic struc-
ture cannot distinguish this detail. In each fiber quantities can
be added and multiplied by scalars in a field F , resulting in
quantities of the same dimension. These operations give the
fiber the structure of a vector space over the field F . More-
over, since the comparison of each quantity in the fiber with
a reference in the fiber, the unit, yields a single number, as in
equation (1), that vector space is one dimensional (the latter
in the sense of vector space dimension over F). There are
some quantities which are intrinsically positive (mass, abso-
lute temperature) and, thus, a full linear space seems to be
oversized for them. However, differences of these quantities
must also be considered in the framework. Since the algebraic
structure cannot distinguish if a quantity is an absolute tem-
perature or a difference of temperatures, the full linear space
structure has to be allowed.

The field F is usually assumed to be that of the real num-
bers but so far there is no algebraic reason to restrict the defi-
nition to it. We are now ready to give an axiomatic definition
of a space of quantities which takes into account all the afore-
mentioned elements.

Definition 2.5. A space of quantities with group of dimen-
sions D over the field F is a set Q, together with a surjective
map dim: Q→D such that:

(i) for each A ∈ D , the fiber dim−1(A) has the structure of
a one dimensional vector space over F,
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(ii) there is a product defined in Q which makes it into an
Abelian monoid and the map dim is a monoid homomor-
phism, that is, for q,r ∈ Q,

dim(qr) = dim(q)dim(r),

and

(iii) the product distributes over the addition in each fiber,
that is, for q,r1,r2 ∈ Q with dim(r1) = dim(r2),

q(r1 + r2) = qr1 +qr2,

and the product associates with the product by scalars
in the sense of

α(qr) = (αq)r,

where q,r ∈ Q and α ∈ F.

The rank of Q is the rank of its group of dimensions.

This structure can be thought of as an algebraic fiber bun-
dle, where the base structure is the group D and where over
each element of it we place a fiber which is a one dimen-
sional vector space. If A is a dimension and we denote
QA = dim−1(A) the fiber over it, then the space is made of
the disjoint union of its fibers Q = ∪A∈DQA. Therefore, this
structure is a particular instance of the structure presented in
[3] as a pair dimension group – fibers: 〈D ,{QA}〉.

The fibers are not independent, for they have algebraic
bounds given by the condition of the projection map being
a monoid homomorphism. All fibers are isomorphic as vec-
tor spaces, and isomorphic to the field F , but there is one
fiber of particular interest: the fiber dim−1(1D ), the set of
quantities of dimension one. The identity element in Q is
denoted 1Q and, since dim is a homomorphism, necessar-
ily dim(1Q) = 1D , so 1Q is a quantity of dimension one, as
expected. Therefore, the fiber dim−1(1D ) is not only an F-
vector space, but an F-algebra of dimension 1, that is, nat-
urally isomorphic with the field F by means of the isomor-
phism assigning the number 1 in F with 1Q. For this reason,
this fiber can be identified with F when needed.

2.3. System of units
We now turn to the task of defining system of units. It has
been noticed that a system of units is nothing but a choice of
a nonzero quantity of each dimension, that is, a basis in each
fiber. Remember that a system of units is called coherent if
the product of the units of any two quantities q and r gives
the unit in the system for the quantity qr. The tool for a pre-
cise definition is the concept of section, which is a map that
chooses one, and only one, element in Q from each fiber.

Definition 2.6. A section of the space of quantities Q is a
map σ : D → Q such that dim◦σ = idD . A section is called
coherent if the map is a group homomorphism. The zero sec-
tion, denoted σ0, is the section which selects the zero element
of each fiber. A nonzero section is a section none of which
images is a zero element.

Then we have the following definition.

Definition 2.7. A system of units in a space of quantities is
a nonzero section of it. The system is called coherent if the
section is coherent.

Before proceeding further, a word on the zeros of Q is nec-
essary. Since each fiber has a zero element there are many
zeros in the space Q, all of which constitute σ0(D), the im-
age of the zero section. In this construction each zero has a
dimension, so 0ms−1 is a different quantity than 0kg.

Therefore, rather than speaking of the zero element, in this
structure we have to speak of a zero element to refer ourselves
to any of these elements in the image of the zero section. De-
spite of that, when no confusion is possible we write q = 0
to symbolize that the quantity q is a zero, without stating ex-
plicitly its dimension. Nevertheless, these zeros behave as
is expected from an ordinary zero: the product of a quantity
with a zero is a zero, as can be easily verified. However, it
must be noticed that there is nothing in the definition of a
space of quantities to prevent the existence of zero divisors,
i.e. nonzero quantities q and r such that their product qr is a
zero. As an extreme example consider a space of quantities
with a product defined as qr = 0 for any dimensionful quan-
tities q and r; it satisfies all the axioms of definition 2.5. Zero
divisors, if any, are by no means isolated for, if q is a zero
divisor, then αq, with α ∈ F is also a zero divisor, so the en-
tire fiber of q is made of zero divisors. Also if s is another
quantity such that sq is not zero, then sq is another zero di-
visor. Of course zero divisors do not show up in spaces of
quantities of actual measurements, therefore in what follows
we only consider spaces of quantities free of zero divisors.
Some advantages we gain from that are collected in the next
proposition.

Proposition 2.8. In a space of quantities the following prop-
erties are equivalent:

i. There are no zero divisors.

ii. The set of nonzero quantities is a group with respect to
the product.

iii. There exists a coherent system of units.

PROOF. We show the first property to be equivalent to each of
the other two. In order to show that the set of nonzero quanti-
ties is a group we need to show it is closed under the product
and every element has an inverse. The absence of zero divi-
sors is just the former condition, so let us show the inverse
of a nonzero quantity q. Let q̃ be a nonzero quantity in the
inverse fiber of q, meaning dim(q̃) = dim(q)−1. Therefore,
qq̃ is nonzero and dimensionless and, thus, there is a nonzero
scalar α such that qq̃ = α1Q. The quantity s = α−1q̃ satisfies
qs = 1Q. On the contrary, if there are zero divisors, the set of
nonzero quantities is not closed under the product, so it is not
a group.

Now assume again Q is free of zero divisors and define a
section σ : D→Q by assigning a nonzero element in the cor-
responding fiber to each element in a basis of D and the rest
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of elements by asking σ to be a homomorphism. The absence
of zero divisors ensures that σ is a nonzero, in addition to co-
herent, section. On the contrary, assume now that q and r are
nonzero elements of Q such that qr is a zero, and let σ be
a coherent section of Q. Assume σ(dim(q)) and σ(dim(r))
are nonzero. Then they are of the form σ(dim(q)) = αq and
σ(dim(r)) = β r for some nonzero α and β in F . We have
σ(dim(qr)) = (αq)(β r) = αβ qr which is a zero. Hence, a
coherent section is not nonzero, so there exits no coherent
system of units.

The following is an explicit construction of a space of
quantities given a group of dimensions D . Moreover, in sec-
tion 4 we justify that, to some extent, this is the only example
of a space of quantities free of zero divisors.

Example 2.9. For a field F and a finitely generated free
Abelian group D , the set F ×D together with the map dim:
F ×D → D which projects onto the second component, and
the operations

(α,A)+(β ,A) = (α +β ,A),

β (α,A) = (βα,A),

(α,A)(β ,B) = (αβ ,AB),

for α,β ∈ F and A,B ∈ D , becomes a space of quantities
free of zero divisors. A coherent system of units is given from
a group homomorphism χ : D → F∗, where F∗ denotes the
multiplicative group of the field, by σ : D → F ×D : A 7→
(χ(A),A).

The first goal of a formalization of quantity calculus is to
justify within the formalism the actual way in which opera-
tions between quantities are performed, that is, with the aid
of a system of units and operating with the numerical values
and with the units separately. The following paragraphs do
this. Let us start by writing down the expression of any quan-
tity in Maxwell’s form. Let q be a quantity in a space Q free
of zero divisors, and let σ be a system of units in Q. The di-
mension of q is dim(q) and the unit in its fiber is σ(dim(q)).
Now, since the latter is not a zero, by proposition 2.8 it has
an inverse so we can define the map ν : Q→ F , in which
we make use of the identification of the field F with the fiber
dim−1(1D ) of quantities of dimension one, by

ν(q) = qσ(dim(q))−1. (4)

The quantities q and σ(dim(q)) have the same dimension,
so the product in equation (4) gives a quantity of dimension
one which, after identification with an element of F , can be
regarded as a number: the numerical value of q with respect
to the unit σ(dim(q)). Then we have

q = ν(q)σ(dim(q)), (5)

where we identify ν(q) with {q} and σ(dim(q)) with [q] as
given in equation (1). In other words, the symbols {·} and [·]
are nothing but the maps {·} = ν and [·] = σ ◦ dim. Let us
study their algebraic properties.

Proposition 2.10. In a space of quantities free of zero divi-
sors, the map [·] : Q→ Q verifies

(i) for q1, q2 quantities in the same fiber, and α , β in F

[αq1 +βq2] = [q1] = [q2],

(ii) it is a homomorphism with respect to the product of
quantities if and only if σ is a coherent section.

PROOF. Both items stem directly from the splitting of [·] as
the composition σ ◦ dim. For the first one, since q1 and q2
are in the same fiber, then so is αq1 + βq2, so it is clear
that dim(αq1 + βq2) = dim(q1) = dim(q2) and, therefore,
the same applies to the map [·]. For the second item, if σ

is a group homomorphism, then [·] is the composition of two
homomorphisms with respect to the product, so it is also a
homomorphism. For the other way around, if [·] is a homo-
morphism, so is σ because the map dim is surjective.

Proposition 2.11. In a space of quantities free of zero divi-
sors, the map {·}= ν defined by equation (4) is

(i) an F-linear homomorphism and

(ii) a homomorphism with respect to the product of quanti-
ties if and only if σ is a coherent section.

PROOF. For the first item consider two quantities q1 and
q2 in the same fiber and two scalars α and β in the field
F and compute {αq1 + βq2} = (αq1 + βq2)σ(dim(αq1 +
βq2))

−1. Since dim(αq1 + βq2) = dim(q1) = dim(q2) as
in the previous proposition, the former expression can be
written as αq1σ(dim(q1))

−1 + βq2σ(dim(q2))
−1, that is,

α{q1}+β{q2}.
In the second item the if part is trivial. For the only if part

consider A and B in D and choose two nonzero quantities q
and r such that A = dim(q) and B = dim(r). Then σ(AB) =
qr{qr}−1, since qr is not a zero, then {qr} 6= 0. Now, be-
cause {·} is a homomorphism with respect to the product, the
previous expresion gives q{q}−1 r{r}−1 = σ(A)σ(B).

These propositions set the condition to operate with quan-
tities in the usual way: for quantities q1 and q2 in the same
fiber and scalars α and β

{αq1+βq2}= α{q1}+β{q2}; [αq1+βq2] = [q1] = [q2],

and for any quantities q and r, only in case of a coherent sys-
tem of units,

{qr}= {q}{r}; [qr] = [q][r].

In other words, the equations (2) have been justified from the
axioms.
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3. NEW SPACES FROM OLD ONES

3.1. Subspace
Definition 3.1. A subset S of a space of quantities Q is a
subspace if, with the operations of Q and the restriction of
the projection map, it is a space of quantities.

Since the projection map dim restricted to S is the projec-
tion map of S, its image, dim(S), must be a subgroup of D .
Fortunately, it is a well known result of group theory that a
subgroup of a free Abelian group is itself free Abelian [26,
Theorem 10.17]. This is equivalent to the condition of S be-
ing closed under the product of quantities. In particular, 1D

is in this subgroup. The subset S is also closed under addi-
tion of quantities of the same fiber and product by scalars so,
if s is a nonzero quantity in S, then αs, for any scalar α , is
also in S. In other words, the complete fiber containing s is
in S, as should be, and for the fibers in S must be one di-
mensional vector spaces. This observation rules out a fiber
in S containing only the zero element. As a consequence, the
fiber of dimensionless quantities is contained in S. Thus, we
have characterized the subspaces of a space of quantities as
follows.

Proposition 3.2. Let Q be a space of quantities with projec-
tion map dim: Q→ D . A subset S ⊂ Q is a subspace if and
only if it is of the form S = dim−1(E ), where E is a subgroup
of the group of dimensions D .

Trivially Q= dim−1(D) is a subspace, arising from the im-
proper subgroup of D , and so is the fiber dim−1(1D ), the sub-
space arising from the trivial subgroup of D . Some nontrivial
examples follow.

Example 3.3. The space Qgeom can be seen is a subspace of
Qkin, for Qgeom = dim−1(〈L〉), and 〈L〉 is a subgroup of Dkin.
Analogously, Qkin as a subspace of Qmech, which in turn is a
subspace of Qphys.

But also dim−1(〈L2〉) is a subspace of Qgeom with group of
dimensions 〈L2〉.

3.2. Tensor product
From the examples one intuitively expects to be able to build
the space Qkin of kinematics quantities from Qgeom and Qtime,
the spaces of quantities of geometry and time, respectively.
But a simple cartesian product is not enough, for running 10
meters in 1 second gives the same speed as running 100 me-
ters in 10 seconds. The technique is somewhat similar to the
tensor product of linear spaces so we adopt the notation. Let
Q and R be spaces of quantities free of zero divisors, over the
field F and with groups of dimensions DQ and DR, respec-
tively, and projection maps dimQ and dimR.

In the set Q×R define the element (q1,r1) to be related to
(q2,r2) if there is α ∈ F such that q1 = αq2 and r2 = αr1
or such that q2 = αq1 and r1 = αr2. It is straightforward to
check it is an equivalence relation. The quotient set is de-
noted Q⊗R and the equivalence class of the element (q,r)
is denoted q⊗ r. Notice αq⊗ r = q⊗ αr, in particular
q⊗0 = 0⊗0 = 0⊗ r.

We now define a structure of space of quantities in Q⊗
R. Its group of dimensions is the direct product of DQ and
DR, which is a free Abelian group with rank the sum of the
ranks of each one. The projection map is defined by dim(q⊗
r) = (dimQ(q),dimR(r)), which is well defined because all
the elements in the class q⊗r have the same image under dim.
Define a product in Q⊗R by (q1⊗ r1)(q2⊗ r2) = (q1q2)⊗
(r1r2), which is independent of the representatives chosen, is
commutative and associative and has an identity element: the
class 1Q⊗1R.

Define the product of the scalar γ ∈ F times q⊗ r by
γ(q⊗ r) = (γq)⊗ r = q⊗ (γr). Finally, define the addi-
tion of two elements in the same fiber q1 ⊗ r1 and q2 ⊗ r2
in the following manner. From the absence of zero divisors
and proposition 2.8 there are nonzero q ∈ Q and r ∈ R such
that qi = αiq and ri = βir for some αi, βi ∈ F , i ∈ {1,2};
define q1⊗ r1 + q2⊗ r2 = (α1β1 +α2β2)(q⊗ r). The addi-
tion and product by scalars in the set of elements of a fiber
satisfy the properties of a vector space over F and, more-
over, this vector space is of dimension one, for, if q and r
are nonzero elements and α and β are arbitrary scalars, then
(αq)⊗ (β r) = (αβ )(q⊗ r). The zero element in each fiber is
0⊗0.

Finally, it is also straightforward to see the projection map
behaves well under the product: dim((q1⊗ r1)(q2⊗ r2)) =
dim(q1⊗r1)dim(q2⊗r2). Then we have the following result.

Proposition 3.4. The set Q⊗R, together with the operations
defined above, is a space of quantities over the field F with
group of dimensions DQ×DR and rank rank(Q)+ rank(R).

The spaces Q and R can be identified, respectively, with
Q⊗ dim−1

R (1DR) and dim−1
Q (1DQ)⊗R, which are subspaces

of Q⊗R.

Example 3.5. As announced before, we have Qkin ∼= Qgeom⊗
Qtime. Also Qmech ∼= Qkin⊗Qmass.

3.3. Quotient space
The quotient space is a construction intended to reduce the
rank of a space of quantities by identifying certain quantities
of different dimensions. The quotient cannot be taken with
respect to a subspace, but another kind of subset of Q, namely,
that given by a subsection.

Definition 3.6. Let Q be a space of quantities free of zero
divisors. A subsection of Q is the restriction of a nonzero
coherent section σ : D → Q to a subgroup E of D .

Its image Σ = σ(E ), which is also called subsection for
brevity, is the intersection of the subspace dim−1(E ) and
σ(D), the image of the section. Notice that 1Q ∈ Σ because
the section σ is coherent. With the aid of Σ we can define an
equivalence relation in Q. The quantity q2 is equivalent mod-
ulo Σ to the quantity q1 if q2 = q1s for some quantity s in Σ.
It is reflexive for, as noticed before, 1Q ∈ Σ. It is symmetric,
because s is not a zero and, by the absence of zero divisors, it
is invertible in Q and q1 = q2s−1, where s−1 is in Σ because
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the section is coherent. Finally, if q2 = q1s and q3 = q2s′ for
s and s′ in Σ then q3 = q1ss′, so q3 is equivalent modulo Σ to
q1 since ss′ is in Σ by the coherence of σ .

The quotient set of this equivalence relation is denoted Q/Σ

and its elements, the equivalence classes, are of the form qΣ,
which denotes the set of the elements qs with s running in
Σ. We now provide the quotient set with suitable operations
to convert it into a space of quantities. First we describe its
group of dimensions. Since equivalent elements q1 and q2 =
q1s are identified in the quotient set, their dimensions must
be identified as well. The obvious candidate for the group of
dimensions is, thus, the quotient group D/E . In such a case it
is only natural to define the projection map, d̂im: Q/Σ→D/E
by making the following diagram commutative.

Q
ρ−−−−→ Q/Σ

dim

y yd̂im

D
ρ̂−−−−→ D/E

where the maps ρ and ρ̂ are the natural projections of each
set into its respective quotient set. In other words, ρ̂ ◦dim =

d̂im◦ρ . Unfortunately, the quotient of a free Abelian group is
not necessarily free Abelian and, hence, D/E does not nec-
essarily qualify as a group of dimensions. Therefore, though
the algebraic structure is well defined, the subsection must
be carefully chosen so as the subgroup E makes the quo-
tient D/E a free Abelian group. For instance, in the group
of dimensions of kinematics quantities, Dkin ∼= 〈L〉× 〈T〉 the
quotient D/〈L〉 ∼= 〈T〉 is free Abelian, while the quotient
D/〈L2〉 ∼= 〈L〉/〈L2〉× 〈T〉 is not. From now on we assume
that E is chosen so as to make D/E free Abelian.

The product in Q/Σ is defined by the rule
(
q1Σ
)(

q2Σ
)
=

(q1q2)Σ which is easily checked to be independent of rep-
resentatives. We have to check the condition which links
the product and the projection map, but d̂im

(
q1Σq2Σ

)
=

d̂im
(
(q1q2)Σ

)
= d̂im◦ρ(q1q2) by the definition of the prod-

uct in Q/Σ and the definition of ρ . Now, by the commuta-
tivity of the diagram and because both, dim and ρ̂ , are ho-
momorphisms, the latter expression equals ρ̂ ◦ dim(q1q2) =

ρ̂ ◦dim(q1)ρ̂ ◦dim(q2)= d̂im(q1Σ)d̂im(q2Σ), so we conclude
that d̂im is a monoid homomorphism.

The product with a scalar α from the field F is defined
by α

(
qΣ
)
= (αq)Σ, which is also independent of the choice

of representative q in the class qΣ. For the addition notice
that if q1Σ and q2Σ are elements in the same fiber in Q/Σ,
i.e. d̂im(q1Σ) = d̂im(q2Σ), its sum cannot be defined simply
as (q1 + q2)Σ, because q1 and q2 need not be in the same
fiber in Q. We only know dim(q2) = dim(q1)A for some A ∈
E . Denote s = σ(A), an element in Σ, and define q′1 = q1s,
so q1Σ = q′1Σ, hence dim(q′1) = dim(q1)dim(s) = dim(q2),
so they are in the same fiber in Q. Now we can define the
addition as

(
q1Σ
)
+
(
q2Σ
)
= (q′1+q2)Σ. We could have taken

instead an equivalent element of q2 in the fiber of q1 getting
the same result. In the fiber of qΣ, the zero element is the
class q0Σ, where q0 is the zero in the fiber of q, and is formed

by the zeros of the fibers of Q represented in the class qΣ.
It is straightforward to check that the conditions of defini-

tion 2.5 hold for Q/Σ, so we state the result as follows.

Proposition 3.7. If E is a subgroup of D such that D/E is
free Abelian then the set Q/Σ, together with the operations
defined above, is a space of quantities with group of dimen-
sions D/E and rank given by rank(D)− rank(E ).

The mechanism of taking quotients is the algebraic tool
underlying what is common practice in physics of choosing
“systems of units" such that some specified universal con-
stants become dimensionless and take on the numerical value
1. The extreme examples of this procedure are the systems
of natural units, which do not cease to be a current subject
of research as seen in [27]. But it has to be remarked that
the mechanism goes beyond a change of system of units; it is
indeed a change of space of quantities.

Example 3.8. A usual agreement in particle physics is to
“choose units such that c = h̄ = 1”, where c is the speed of
light and h̄ is the reduced Planck’s constant, and all the quan-
tities are measured in powers of units of energy. In fact, it is
a reduction of the space of quantities of mechanics, of rank 3,
to a space of rank 1, by the way of a suitable quotient.

Consider the dimensions of the quantities c, h̄ and a unit of
energy, say the electronvolt, eV: dim(c) = LT−1, dim(h̄) =
L2T−1M and dim(eV) = L2T−2M. They are independent
in the group Dmech, as can be seen by solving the equation
dim(c)m1dim(h̄)m2dim(eV)m3 = 1D , whose unique solution
is m1 = m2 = m3 = 0. Moreover, they can generate the group
since the equation dim(c)m1dim(h̄)m2dim(eV)m3 = LaTbMc

in the group is translated as the following system of linear
equations in Z: 

m1 +2m2 +2m3 = a
−m1−m2−2m3 = b
m2 +m3 = c

(6)

The matrix of coefficients is unimodular, so it is invertible and
the system has a unique solution for any values a, b, c in Z.
Therefore, we can write Dmech = 〈dim(c),dim(h̄),dim(eV)〉
and consider the subgroup E = 〈dim(c),dim(h̄)〉. Define a
coherent section σ : Dmech→ Qmech by its action on this ba-
sis:

σ(LT−1) = c,
σ(L2T−1M) = h̄,
σ(L2T−2M) = eV.

Now this section, when restricted to the subgroup E , de-
fines a subsection Σ. The quotient Qmech/Σ has group of
dimensions Dmech/E ∼= 〈dim(eV)〉 and rank 1. The dimen-
sionless quantities include h̄ and c, which are identified with
1Qmech , as desired, and the rest of quantities have dimen-
sions of a power of energy. For instance, the dimension
L = dim(c)dim(h̄)dim(eV)−1, when carried to the quotient
group, is ρ̂(L) = dim(eV)−1, so lengths are measured as in-
verse energies.
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4. HOMOMORPHISM OF SPACES OF QUANTITIES. ISO-
MORPHIC SPACES

In this section the tool for comparison of spaces of quantities
is defined and its properties studied. The goal is the classifi-
cation of spaces of quantities, which is achieved in theorem 2.

Definition 4.1. Let Q and R be spaces of quantities over the
field F. A map ψ : Q→ R is a homomorphism of spaces of
quantities if

(i) for any two quantities q1, q2 in Q

ψ(q1q2) = ψ(q1)ψ(q2),

that is, it is a monoid homomorphism with respect to the
product, and

(ii) if q1 and q2 are quantities in the same fiber of Q, then
ψ(q1) and ψ(q2) are in the same fiber in R and

ψ(αq1 +βq2) = αψ(q1)+βψ(q2),

for α and β in F, so ψ is a linear map in each fiber.

The homomorphism ψ induces a group homomorphism
between the base groups, DQ and DR. If dimQ and dimR are
the respective projection maps, define the map φ : DQ→ DR
so that the following diagram commutes,

Q
ψ−−−−→ R

dimQ

y ydimR

DQ
φ−−−−→ DR

that is, dimR ◦ ψ = φ ◦ dimQ. It is well defined because
dimQ and dimR are surjective and ψ preserves fibers and it
is straightforward to check that φ is a group homomorphism.

The map φ says which fibers of Q are mapped into each
fiber of R. As an example, if q is a quantity of dimension
one in Q then dimR(ψ(q)) = φ(dimQ(q)) = φ(1DQ) = 1DR ,
so the fiber of quantities of dimension one in Q is mapped to
the fiber of quantities of dimension one in R.

An isomorphism Q→ R is a bijective homomorphism and
defines Q and R as isomorphic spaces, denoted Q ∼= R. The
natural maps such as the identity map idQ : Q→Q, the inclu-
sion map i : Q ↪→ R, where Q is a subspace of R, and the nat-
ural projection map ρ : Q→ Q/Σ, where Σ is a subsection of
Q, are all homomorphisms of spaces of quantities. The trivial
homomorphism is the map which sends every element in Q
to the dimensionless zero of R. By a zero homomorphism we
understand a homomorphism in which all the elements in Q
are mapped to zero elements in R, such as the trivial map, but
there are other zero homomorphisms, as many as group ho-
momorphisms between DQ and DR. For given such a group
homomorphism φ , which in turn defines which fibers in Q are
mapped to which fibers in R, it is enough to define ψ : Q→ R
by sending each q ∈ Q to the zero element of the fiber as-
signed by φ .

In fact it is necessary to understand the behaviour of fibers
and zeros under a homomorphism. It is clear that the image

of a zero is a zero. If q is a nonzero element of Q but ψ(q) is a
zero in R, then all the fibers of q are mapped to the same zero,
for ψ(αq) = αψ(q) which is the same zero for any α ∈ F .
On the other hand, if ψ(q) is not a zero, then the fiber of q
is mapped isomporphically (as vector spaces) to the fiber of
ψ(q). In particular, if ψ(1Q) is zero, then the homomorphism
is a zero homomorphism, for ψ(q) = ψ(q1Q) = ψ(q)ψ(1Q)
which is a zero for any q. This expresion also proves that if
ψ(1Q) is not a zero then it is 1R, the identity in R.

So far a homomorphism can be defined by setting which
fiber of R is the image of each fiber of Q and by setting which
fibers of Q are mapped to zero and which of them are mapped
isomorphically to their corresponding fibers. In the case of
interest of spaces free of zero divisors the result can be im-
proved.

Proposition 4.2. Let Q be a space of quantities free of zero
divisors and ψ : Q→ R a homomorphism of spaces of quan-
tities. Then ψ(1Q) = 0 implies ψ is a zero homomorphism,
while ψ(1Q) 6= 0 implies that each fiber is mapped isomor-
phically onto a fiber in R.

PROOF. The first part has already been proved. Assume now
that ψ(1Q) is not a zero and let q be a nonzero element of Q
which, thus, has an inverse q−1. Since ψ(1Q) = ψ(qq−1) =
ψ(q)ψ(q−1) is not a zero, we conclude that ψ(q) is not a
zero. Since its fiber is a one dimensional vector space, the
latter says that the fiber of q is mapped isomorphically to the
fiber ψ(q).

Of course, only the nonzero homomorphisms are of interest
for us to be able to compare spaces of quantities, so from
now on we only consider this kind of homomorphisms. The
following are basic properties of homomorphisms of spaces
of quantities.

Proposition 4.3. Let ψ : Q→ R be a nonzero homomorphism
of spaces of quantities. Then:

(i) the image of a subspace of Q is a subspace of R,

(ii) the preimage of a subspace of R is a subspace of Q,

(iii) the preimage of a section of R is a section of Q and

(iv) the preimage of a subsection of R is a subsection of Q.

PROOF. Let S be a subspace of Q, which is characterized, by
proposition 3.2, as S = dim−1

Q (E ) for a subgroup E of DQ.
The projection of its image is dimR(ψ(S)) = φ(dimQ(S)) =
φ(E ), which is a subgroup of DR. Since ψ is a nonzero ho-
momorphism, every fiber in S is mapped onto a fiber in ψ(S),
so we conclude that ψ(S) coincides with dim−1

R (φ(E )), so it
is a subspace of R.

Consider now S to be a subspace of R. Its inverse im-
age ψ−1(S) is made of the fibers which are mapped into S.
But these fibers are given by dim−1

Q (φ−1(dimR(S))). Since
dimR(S) is a subgroup of DR, so is φ−1(dimR(S)) with re-
spect to DQ and, thus, ψ−1(S) is a subspace of Q.
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Let σ be a section of R. Since all fibers of R are represented
in the section, it is clear that its inverse image, ψ−1(σ(DR)),
contains at least an element from each fiber in Q. We now
show that there is no more than one from each fiber. Assume
q1 and q2 are elements in the same fiber in Q with ψ(q1) and
ψ(q2) in the section of R. Then ψ(q1) and ψ(q2) belong
to the same fiber in R, which means ψ(q1) = ψ(q2) because
they are in a section. Therefore, since fibers in Q are mapped
isomorphically to fibers in R, this leads to q1 = q2.

Finally, considering a subsection as the intersection of a
subspace and a section in R it is clear that the inverse image of
such intersection is a intersection of a subspace and a section
in Q, thus, a subsection.

The kernel of a nonzero homomorphism ψ : Q→ R is de-
fined as kerψ = ψ−1(1R). Since {1R} is a subsection of R,
its inverse image defines, by proposition 4.3, a subsection in
Q. The image of a homomorphism, imψ = ψ(Q) is, by the
same proposition, a subspace of R. The kernel and the image
so defined satisfy an isomorphism theorem.

Theorem 1. Let ψ : Q→ R be a nonzero homomorphism of
spaces of quantities. Then

Q/kerψ ∼= imψ

as spaces of quantities.

PROOF. The first step is to check that the quotient of the the-
orem is indeed a space of quantities. Let us denote by K
the kernel of ψ , which is a subsection of Q. Thus, we only
have to show that the group of dimensions of Q/K is free
Abelian and, to that end, we have to identify the projection
of K on DQ. We claim this projection to be precisely the ker-
nel of the induced group homomorphism: dimQ(K) = kerφ .
Let q be in K. Then φ ◦ dimQ(q) = dimR ◦ ψ(q) = 1DR ,
so dimQ(q) ∈ kerφ which shows one inclusion. Now let
A be in kerφ , and let q be a nonzero element in the fiber
dim−1

Q (A). Then 1DR = φ(A) = dimR ◦ψ(q), so ψ(q) has di-
mension one and can be written as ψ(q) = α1R for a nonzero
α in F (since ψ is a nonzero homomorphism). Consider
the element q1 = α−1q. Then ψ(q1) = 1R, so q1 ∈ K and
dimQ(q1) = dimQ(q) = A, so A ∈ dimQ(K), which shows the
other inclusion and the claim is proved. The group of dimen-
sions of Q/K is, thus, DR/kerφ , which is isomorphic with
imφ by the isomorphism theorem for groups. Since imφ is a
subgroup of DR it is free Abelian, and so is DR/kerφ . There-
fore, Q/K is a space of quantities.

The rest of the proof is standard. Define the map ψ̂ :
Q/K → imψ by ψ̂(qK) = ψ(q). It is straightforward to
check, first, it is well defined; second, it is a homomorphism
of spaces of quantities; third, it is a bijection.

Example 4.4. Let us revisit example 3.8 from the viewpoint
of homomorphisms. Consider the map ψ : Qmech → Qenergy
given in the following form: the image of the quantity eV be
itself, while the image of the speed of light, c, be 1Qenergy as

well as the image of the reduced Planck’s constant, h̄. Then
kerψ = {cn : n∈Z}∪{h̄n : n∈Z} and imψ = Qenergy. The-
orem 1 says that Qmech/kerψ is isomorphic with Qenergy.

The next result is the classification theorem for spaces of
quantities free of zero divisors.

Theorem 2. Two spaces of quantities over the same field,
free of zero divisors, are isomorphic if and only if they have
the same rank.

PROOF. First consider two spaces of quantities Q∼= R. Then
there is an isomorphism ψ : Q→ R which induces a group
homomorphism φ : DQ→DR. We only need to show the lat-
ter to be an isomorphism for it is a well known result of the
theory of free Abelian groups that two such groups are iso-
morphic if and only if they have the same rank [26, Theorem
10.14]. But that is obvious since the map φ is nothing but the
rule which says which fiber in Q is mapped to what fiber in
R and, since ψ is an isomorphism, this mapping of fibers is a
bijection.

Second, assume Q and R are two spaces of quantites of the
same rank, that is, their groups of dimensions DQ and DR
have the same rank. Therefore, there is a group isomorphism
φ : DQ→DR and it defines a bijection of the fibers in Q with
the fibers in R. If we can assign a linear isomorphism between
each pair of fibers, we are done. To that end it is enough to
map a nonzero element of each fiber in Q with a nonzero ele-
ment of its corresponding fiber in R. Now, since both Q and R
are free of zero divisors, by proposition 2.8 each of them has
a coherent system of units, say σQ and σR, respectively. De-
fine a map ψ : Q→ R by giving its action on the set σQ(DQ)
so that the following diagram commutes,

Q
ψ−−−−→ R

σQ

x xσR

DQ
φ−−−−→ DR

and extend it linearly in each fiber. This map is easily seen to
be an isomorphism of spaces of quantities, so Q∼= R.

As a last example, we show that, up to isomorphism, the
example 2.9 is the only space of quantities over a group of
dimensions and a field free of zero divisors.

Example 4.5. Let Q be a space of quantities over the field
F with group of dimensions D and free of zero divisors. Let
σ be a coherent system of units and ν the map defined in
equation (4). Then the map ψ : Q→ F×D given by ψ(q) =
(ν(q),dim(q)) is an isomorphism of spaces of quantities. Its
inverse is ψ−1(α,A) = α σ(A).

This is to say that every space of quantities Q, free of zero
divisors, is isomorphic with F ×D . But the isomorphism is
not canonical, for it depends on the system of units chosen.
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5. CONCLUSIONS

A brand-new algebraic structure has been defined and studied
which fits exactly the algebra of quantity calculus. This struc-
ture is centered in the concept of dimension of a quantity as
its main property, and considers only integer exponents in the
combination of dimensions (and, thus, of units).

The axioms of definition 2.5 permit to deduce the usual
expresion of a quantity as the product of a number times a
unit, and to deduce the way the operations are usually per-
formed. In addition, it has been shown how to construct new
spaces from old ones by means of subspaces, tensor products
or quotients. The latter construction is seen to be the correct
interpretation of the usual procedure in physics, misleadingly
referred to as a change of units, which sets some universal
constant to 1. Finally, a characterization and classification has
been obtained in terms of the rank of the space of quantities,
that is, the rank of its group of dimensions. This classifica-
tion must be compared with that of Kitano [1], for they share
some elements in common, but are not equivalent.

Kitano studies a set of physical quantities under different
‘systems of units’, even though these systems of units may
have different number of basic units. In our approach, this
should be considered as different spaces of quantities. Ki-
tano then defines the relation V - U between the systems of
units V and U if every pair of quantities q and p which are
equal in U are also equal in V (equivalently, if every pair of
distinguishable quantities in V are also distinguishable in U).
This relation is a preorder in the set of systems of units. In
case V - U and U - V then U and V are said to be equiva-
lent. If the system U is supported by the algebraic structure
R×Qn and V by R×Qm, then V - U implies m ≤ n, and
U and V can be equivalent only if m = n. But the contrary
is not necessarily true, for there are systems of units with
m = n which are not comparable. An example of the latter
is given by the electrostatic and the electromagnetic systems
of units (esu and emu respectively). In the esu system the
quantities µ0/4π and 1/c2, where µ0 is the permeability of
empty space and c is the speed of light, are not distinguisable,
while 4πε0 is distinguishable from any of the former, being ε0
the permittivity of empty space. In the emu system, however,
4πε0 is not distinguishable from 1/c2, but µ0/4π is; there-
fore, these systems are not comparable. It must be stressed
that Kitano’s classification is based on physical grounds, not
algebraic ones, and thus is different from the one introduced
in the present paper as we see in the next paragraph.

Within the context of the algebraic fiber bundle introduced
in this paper, a similar preorder can be defined. We can write
Q - R for two spaces of quantities Q and R, over the same
field F and free of zero divisors, if there is a homomorphism
Q→ R which is an injection (i.e. a monomorphism). The in-
jection property ensures that different quantities in Q have dif-
ferent images in R. This is possible only if rankQ≤ rankR, as
can be easily seen, and moreover, this condition is sufficient.
Under this relation all spaces of quantities are comparable,
and their comparison depends only on their ranks, in contrast
with Kitano’s classification. Resuming the previous example,

the esu and emu systems can be understood as suitable quo-
tients of the MKSA system. The MKSA system of units is
defined in the space of quantities with group of dimensions
D = 〈L,T,M, I〉, of rank 4. In this space, the quantity 1/4πε0
has dimension L3T−4MI−2, while the dimension of the quan-
tity µ0/4π is LT−2MI−2. The esu system is obtained by mak-
ing the quantity 1/4πε0 equal to 1, that is, since the group
D can be written as D = 〈L,T, I,L3T−4MI−2〉, by taking the
quotient of the space of quantities which gives the group of
dimensions D/E , where E = 〈L3T−4MI−2〉, we thus, get a
new space of quantities of rank 3. The emu system, on the
other hand, is obtained by making µ0/4π equals 1, that is,
by the quotient in the group of dimensions D/F , where now
F = 〈LT−2MI−2〉, so it is also a new space of quantities of
rank 3. According to theorem 2, these two spaces of quanti-
ties are isomorphic, regarded as algebraic structures, although
Kitano’s classification states them, righteously from a physi-
cal point of view, as incomparable. Nevertheless, it must be
stressed that, under the algebraic theory depicted in this pa-
per, the MKSA system and the esu (or emu) system are not
different unit systems, but different spaces of quantities.

Finally, a comment on Domotor’s torsor theory, which ex-
plains, in a series of three papers [28, 29, 4], in a convenient
way, the passage from the state space of a physical measure-
ment device to the space of quantities. His description of tor-
sors is well suited to the algebraic structure of quantities given
by Drobot and subsequent authors up to Kitano, but the same
ideas may be adapted to the structure presented in this paper
so as to provide the same foundation of the aforementioned
passage. Indeed, the tool of torsors explains exactly, as he
shows in his paper, the structure of the fibers, each of which
is a vector space of dimension one.
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