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The article describes a method for diagnosing the accuracy of the vehicle scale without using standard weights. The novel method defines 
the possibility to estimate whether the scale would pass the test for error of indication in the next verification or not, only by using the results 
from simple tests with load of estimated weight and appropriate classifier. The method is primarily developed for users of these scales. 
Created classifier is based on the neural network algorithm. The neural network was trained with data from verifications, which are provided 
by Slovak Legal Metrology. Well trained classifier can provide not only information whether the scale will potentially pass the mentioned 
test or not, but reliability which is associated with this result as well. In this way, the user has valuable information about the scale in the 
period between the verifications. 
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1.  INTRODUCTION 

Activities connected with uniformity and correctness of 
measurements, methods and evaluation of measurement data 
are current and widely discussed topics. In general, metrology 
deals with these activities. Legal metrology deals with 
measurements that are connected with transparency of 
business transactions, consumer protection or environment 
protection. The purpose of the legal metrology institute is the 
protection of credibility of the measurement results in the 
government-controlled area. Significant part of the gross 
domestic product in developed countries is from the area of 
metrology and related areas [1].  

Weighting of the vehicles (or vehicles with cargo) belongs 
to the government-controlled area, so vehicle scales are 
legally controlled measuring instruments [2]. Metrological 
aspects, calibration and evaluation of measurement data are 
described in [3]-[6]. Uncertainty evaluation is widely 
discussed in [7]-[14].  

Validity period of verification of this measuring instrument 
is 2 years. During this period the scale is used many times and 
it is difficult to guarantee the same metrological 
characteristics as the scale had at the time of verification. 

The need of information about the condition of the scale 
between verifications resulted in the development of the 
diagnostic method.  

The diagnostic method is primarily designed for the user of 
the scale. For this reason, it should be simple and executable 
without standard weights, only with load of estimated weight. 

Several tests are part of the verification of the vehicle scale. 
Tests include the eccentricity test and test for error of 
indication. Interesting finding is that 87.5 % of the scales that 
do not pass the eccentricity test do not pass the test for error 
of indication as well. 

As a result, we can deduce an assumption that the 
eccentricity test is a good indicator whether the scale will pass 
the test for error of indication. 

 Although the mentioned tests are well-known, it is 
appropriate to briefly describe them. The eccentricity test is 
performed by the application of the adequate standard weight 
mref,ecc (mostly within  the range 8000 – 12000 (kg)) on  the 
defined eccentric point of the load receptor. Then we can 
define maximal error from the eccentricity test Eecc,max: 

 

{ }ecc,max j ref,eccmaxE I m= −                        (1) 

 
Ij is indicated value from the eccentric j-th point of the load 

receptor. It is analyzed whether the results are similar enough 
to the reference value of standard weight, regardless of the 
position of the test load. However, the user of the scale mostly 
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does not have the standard weights at disposal. Therefore, the 
test must be modified in a way that Eecc,max is defined as a 
difference between maximum and minimum of the indicated 
value by weight of estimated value on the defined eccentric 
point of the load receptor. 

 
( ) ( )ecc,max j j

max minE I I= −                       (2) 

 
The load receptor is uniformly loaded with predefined 

values from minimum to maximum and from maximum to 
minimum (with the same values of standard weights) during 
the test for error of indication. In this way, the error of 
indication of the scale is defined in the whole measuring 
range of the measuring instrument. The maximum of the error 
Eind,max from the test for error of indication can be defined as: 

 

{ }ind,max i ref,imaxE I m= −                        (3) 

 
Where Ii is indicated value of scale in i-th point and mref,i is 

standard weight in  i-th point.  
First, we tried to define the analytical formula between the 

results from the eccentricity test and the test for error of 
indication. More specifically, it was the formula between the 
values Eecc,max and Eind,max. In Fig.1. and Fig.2. is shown 
Eecc,max vs. Eind,max. 

 

 
 

Fig.1.  Correlation between Eecc,max and Eind,max  
(chosen data from verifications). 

 

 
 

Fig.2.  The detail of correlation. 

The visualization of the data shows that there is no evident 
correlation. It is necessary to choose another approach. Based 
on this fact, the classifier, which will be able to classify the 
scale as accurate or inaccurate, with the available data, will 
be designed. 
 
2.  THEORY 

Slovak Legal Metrology, n.o. is in the possession of a large 
database of records from verifications – about 1500 
verifications of the vehicle scales (during a period of about 
last 2 years). Some of these data will be used as an input 
dataset for the classifier. The neural network [15]-[20] was 
chosen as the classifier. The neural network operates in two 
modes: learning and working one. In the learning mode, it 
learns on the dataset from the mentioned database, hence it is 
learning with known inputs and known outputs. The neural 
network will try to adjust a limit value for Eecc,max, which will 
be able to divide scales in two classes, those which would 
potentially pass the test for error of indication (or we can say 
accurate scales) or those which would not (inaccurate scales). 
The Eecc,max parameter was chosen for this purpose, because 
small value is a good indicator of the accurate scale. 
Subsequently, the learned neural network saves its 
parameters, called weights. Since neural network can work 
with known inputs and unknown outputs, the output of the 
network is the Bayesian a posteriori probability that new 
scales belong to the class of the accurate scales. The main task 
is how to optimally train neural network as the classifier for 
simple usage. The inputs to the neural network are: 

1. the maximum error from the eccentricity test Eecc,max 

defined in equation (2),   
2. maximum capacity of the scale max, 
3. scale interval d, 

   4. standard weight for eccentricity test mref,ecc.  
The neural network is trained with mref,ecc. After learning 
process, user will use this method with Imid  (indicated value 
of weight of estimated value from the middle of the load 
receptor) instead of mref,ecc.  

These data create the input column vector X: 
 

ecc,max

ref,ecc

 
 
 =
 
 
  

E

max

d

m

X                                       (4) 

 
The sequence of these vectors creates the dataset for the 

network. Input data are visualized in Fig.3.: 
 

 
 

Fig.3.  Input data of the neural network. 
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The used network is two-layered. It is composed of the 
input, hidden and output layer. The input layer performs data 
decorrelation. There is no universal rule to determine the 
optimal number of parameters for a network [15], but it is 
important to consider a fact, that the number of parameters of 
the whole neural network should be smaller than the number 
of inputs. In this case, the network has 25 parameters with 43 
inputs. Inappropriate large network can cause overfitting 
[21], [22]. The result is: 4 units in the hidden layer with the 
sigmoidal activation function and 1 unit in the output layer. 
The output of the hidden layer is column vector O1: 
 

( )1 1 1s= +O W X B                            (5) 

 
Where matrix W1 contains weights from hidden layer, B1 is 

column vector of biases of hidden layer and s is a sigmoidal 
function. 
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B          (6) 

 
The output layer contains 1 unit with softmax activation 

function. Network output p (number from 0 to 1) is the 
Bayesian a posteriori probability whether the scale is accurate 
or not. This a posteriori probability is defined by: 
 

( )T
1 2softmax 2p = +O W B                         (7) 

 
W2 is column vector of the weights of the output layer and 

B2 is bias of the output layer. 
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 =
 
 
 

W  [ ]2 21b=B                        (8) 

 
We used dichotomous classification, when each output p 

which has greater value than 0.5 means accurate scale 
(belonging to class of the accurate scales, marked as 1) and 
value smaller than 0.5 means inaccurate scale (belonging to 
the complement of the accurate scales class, marked as 0) 
[23]. The scheme of the used neural network is shown in 
Fig.4. 
 

 
 

Fig.4.  Classification neural network. 
 

Neural network uses the scaled conjugate gradient 
propagation algorithm as a learning rule [24]. During the 
learning, the network tries to find optimal values of W1, W2, 
B1, and B2. 

3.  RESULTS 

The input dataset contained 43 scales, whereas 16 were 
inaccurate and 27 accurate. This dataset is relatively small for 
sufficient training of the neural network. It is due to a limited 
number of the scales which do not pass the given tests and 
because the input space must be uniformly distributed 
(approximately the same number of accurate and inaccurate 
scales in the input dataset), that the training dataset is quite 
small.   

The dataset was divided into 3 sub-datasets: training, 
validation, and test set.   

Stop criterion was the point where mean squared error MSE 
on the validation dataset reached the minimum for the 
previous epochs and for the next 100 epochs. Epoch is a part 
of learning period, when network learns with whole data from 
the training dataset. In this way, we can avoid overtraining 
situation, a situation when neural network does not learn only 
with systematic components but with random components as 
well.  

The results from the learning process are shown as a 
“confusion matrix” [25] for all datasets. 

 
Table 1.  “Confusion matrix” for training dataset. 

 
O

ut
pu

t c
la

ss
 

0 8 1 88.9% 

1 1 21 95.5% 
 88.9% 95.5% 93.5% 

 0 1  

 Target class 
 

Table 2.  “Confusion matrix” for validation dataset. 
 

O
ut

pu
t c

la
ss

 

0 1 0 100% 

1 2 3 60.0% 
 33.3% 100% 66.7% 

 0 1  

 Target class 
 

Table 3.  “Confusion matrix” for test dataset. 
 

O
ut

pu
t c

la
ss

 0 3 0 100% 

1 1 2 66.7% 

 75.0% 100% 83.3% 

 0 1  

 Target class 
 

Table 4.  “Confusion matrix” for all datasets. 
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0 12 1 92.3% 

1 4 26 86.7% 
 75.0% 96.3% 88.4% 

 0 1  

 Target class 



 
 
 

MEASUREMENT SCIENCE REVIEW, 19, (2019), No. 1, 14-19 
 

17 

The target class can be: 0 – the scale, which does not pass 
the test for error of indication or inaccurate scale, 1 – the scale 
which passes the test for error of indication or accurate scale. 
Output class can be 0, when a posteriori probability p is 
smaller than 0.5 or 1, when p is bigger than 0.5. For instance, 
p = 0.51 means the scale is rather accurate and p = 0.49 means 
the scale is rather inaccurate, but this classification is 
unreliable. In the ideal case, the target class is equal to output 
class for all data. In the green field is the number of the scales, 
which the network classified correctly. In the red field is the 
number of scales classified incorrectly.  

Optimal network weights of hidden layer after learning 
process were adjusted as: 
 

1

1.086 0.610 0.667 1.205

0.010 1.535 1.181 0.699

5.651 0.641 0.111 0.427

2.614 2.180 0.282 0.202

− − − 
 − − − =
 − −
 

− − 

W  1

2.178

1.264

5.505

2.483

 
 − =
 
 
 

B  

     (9) 
 

Optimal network weights of output layer: 
 

2

0.020

0.623

8.247

3.185

 
 
 =
 −
 
− 

W   [ ]2 0.480=B             (10) 

 
For better graphical visualization of the output function p (a 

posteriori probability) defined in the equation (7), we set 
inputs defined in equation (4) d and max as the parameters. 
Eecc,max and mref,ecc were set as the variables. Fig.5. is for the 
case of vehicle scale with max = 30000 (kg) and d = 10 (kg). 
Fig.6. is for the scale of max = 60000 (kg) and d = 20 (kg). 

As we can see, the output function is rippled. It is caused by 
the fact that the neural network is trained for values mref,ecc ∈ 
{8000, 12000} (kg), what is the range for the test load of 
eccentricity test. Outside this interval the output function is 
unreliable. It is generally known that the regression network 
should be used for such inputs as it has been previously 
trained. It results in the fact that the user should use this 
algorithm with the test load from 8000 (kg) to 12000 (kg). In 
that case, when the user does not have such test load at his 
disposal, he might linearly extrapolate the Eecc,max. Only in 
that case Eecc,max will be in the desired range.  

Second test dataset with scales without service before last 
verification was created. These are the best data for testing 
the correctness of the algorithm, because they reflect the long-
time period between verifications. 

 
Table 5.  “Confusion matrix” for second test dataset. 

 

O
ut

pu
t c

la
ss

 0 2 0 100% 

1 0 9 100% 
 100% 100% 100% 

 0 1  

 Target class 

 
 

Fig.5.  Output function for scale with  
max = 30000 (kg) and d = 10 (kg). 

 

 
 

Fig.6.  Output function for scale with  
max = 60000 (kg) and d = 20 (kg). 

 
After the satisfying training and testing, we can use the 

neural network as the classifier. The use is shown in the next 
block diagram, Fig.7.: 
 

 
 

Fig.7.  Block diagram of a posteriori probability determination. 
 

1 – update of the classifier with new information 
2 – information about the scale: max, d 
3 – load of the estimated weight 
4 – indicated value in the middle of the load receptor Imid 
5 – modified eccentricity test  
6 – the calculation of the Eecc,max 
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7 – a posteriori probability determination by classifier  
8 – a posteriori probability whether scale is accurate or not 

The user performs only the eccentricity test in the modified 
form and with the maximum capacity max, scale interval d 
and indicated value Imid has all the needed input information 
for the classifier. The classifier can be implemented on the 
online website, which is very user friendly. With the growing 
number of new verifications, it is possible to create new and 
larger datasets, so that the classifier can be updated and can 
improve its classification performance. 

 
4.  CONCLUSIONS 

The goal of this article was to verify the options of the 
diagnostics of the vehicle scale only with test load of 
estimated weight, which is primarily designed for the user of 
the scale. The best method for such verification is certainly 
with the standard weights, however, the user usually does not 
dispose of it. 

With this method, the user can diagnose the condition of the 
scale during the period between verifications. It is important 
for the question of accuracy, because the owner of the scale 
protects himself from the loss of profit, protects the state to 
which he levies the taxes and protects his clients. 

Data from the verifications were used to create the 
classifier. After the simple test with test load of estimated 
weight, the classifier can determine a posteriori probability, 
whether the scale is accurate or not, hence whether the scale 
would pass the test for error of indication or not in the next 
verification.   

The experiment confirmed that the reliability of this 
classifier is 83.3 %, which is the rate of the correct 
classification on the testing dataset. Moreover, additional 
available test dataset created from scales without the service 
has 100 % reliability.  

It is assumed that the accuracy of the classification will be 
improved by acquisition of more appropriate data from 
verifications and by the division of the scales according to the 
industry in which they are used. Different results could be 
provided by the classifier trained on the scales used, e.g. in 
stone quarry and by the classifier trained on the scales used 
in the stores. Specific operating conditions can impact 
mechanical parts of the vehicle scales [26]. These 
improvements should increase reliability of the classifier. The 
reliability 83.3 % for a dataset this small only confirms the 
quality of the proposed classifier.  

Classification function is simple to implement. The user 
who wants to diagnose his vehicle scale needs to know only 
the scale interval, maximum capacity, indicated value in the 
middle of the scale and the result of the modified eccentricity 
test. 
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