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Compressive sensing is a processing approach aiming to reduce the data stream from the observed object with the inherent sparsity using 
the optimal signal models. The compression of the sparse input signal in time or in the transform domain is performed in the transmitter by 
the Analog to Information Converter (AIC). The recovery of the compressed signal using optimization based on the differential evolution 
algorithm is presented in the article as an alternative to the faster pseudoinverse algorithm. Pseudoinverse algorithm results in an 
unambiguous solution associated with lower compression efficiency. The selection of the mathematically appropriate signal model affects 
significantly the compression efficiency. On the other hand, the signal model influences the complexity of the algorithm in the receiving 
block. The suitability of both recovery methods is studied on examples of the signal compression from the passive infrared (PIR) motion 
sensors or the ECG bioelectric signals. 
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1.  INTRODUCTION 

The main idea of the compressive sensing (CS) is to 
recover signals using fewer measurements than the number 
prescribed by the Nyquist theorem for certain classes of 
signals. In particular, CS allows the reconstruction of the 
information parameters describing the observed process by a 
suitable set of basis functions. This recovery is optimal for 
the signals with low information rate. Low information rate 
is reflected by sparsity of the signal in the time domain or 
sparsity in some transformed domain. Reconstruction 
quality depends on particular reconstruction algorithm being 
used. Signals describing aperiodic events in monitoring 
objects can be stored or transmitted in the compressed form. 
Here can be considered signals from the seismic sensors, 
movement detectors in the monitored space or the 
bioelectric signal receiver, etc. The signal in time or 
transformed domain contains a lot of components with low 
importance to the signal characterization. Those components 
can be considered as information samples with zero value, 
impacted just by superimposed noise or uncertainty error.  

There are various architectures aiming to compress signal 
by AIC at the transmitter based on the wide scale of 
processing algorithms [1], [2], [3], [13]. The basic structure 
consists of the cascade of ADC at the input followed by 
digital modulator where the output data from ADC are 
multiplied by Pseudo-Random Binary Sequence (PRBS), 
which provides encryption of sparse input signal. Digital 

low pass (LP) filter compresses the processed signal by 
averaging. Signal reconstruction is based on demodulation 
by the identical PRBS as was used in the compressing 
phase, and the successive signal estimation by optimization 
of the recovered signal (Fig.1.) [4], [5], [6]. It is obvious that 
the algorithm implemented in each CS branch requires an 
adequate processing procedure in the receiving block. The 
mathematical constraints and rules in one branch of the 
parallel AIC are the same as for a parallel structure [7]. 

This paper is organized as follows. Signal prerequisites for 
the application of compressed sensing and corresponding 
signal models in one band are defined in section 2. The 
contribution of this article is presented in section 3. Here the 
two basic recovery algorithms are described together with 
the corresponding AIC architectures. The signal recovery 
and corresponding compression efficiency are shown on 
examples of the selected signals in section 4. Finally, 
section 5 concludes the paper. 
 
2.  INPUT SIGNAL SUITABLE FOR COMPRESSED SENSING 

Let us consider the signal to be compressed as sparse in 
time or in the transformed domain. Let us suppose, that it 
can be described with adequate accuracy by L basis 
functions, where each one is determined by two parameters 
al, bl, and the time sample number i [8], [9]. The input signal 
f(i) carrying the substantial information, sampled according 
to the Nyquist theorem, is: 
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The dimension of the signal vector f is (I×1). The 

amplitudes xl of basis functions are included in the vector 
x = [x1,x2,…,xL]T. The number of samples I in one 
processing time frame T acquired with sampling frequency fs 
determined for signal spectrum width is I = fsT.  

Matrix ΨΨΨΨ with the dimension (I×L) represents the 
parametric signal model described by a set of basis functions 
Ψl(al,bl,i).  
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In the case of harmonic functions, the parameters al, bl 
determine frequency and phase. The data stream 
compression is more efficient for signals which are 
descriptive by some transform components like wavelet, 
Daubechies, Walsh-Hadamard, etc.  

The simpler signal model ΨΨΨΨ consists of L non-parametric 
basis functions Ψl(i) of the sample number i. The utilized 
basis functions may differ in the analytical expression (3). 
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In general, any signal can be modeled by a set of L 

Heaviside functions Ψl(i)=h(i-l-1) with the specific delays l.  
In order to suppress incoherency between processed signal 

and the model (3), the synchronization signal is required. It 
determines the point linked with the time frame T. Let us 
consider constant length of the time frame T for one 
processing frame marked by a synchronization event. The 
synchronization signal ensures coherency and suppresses 
possible leakage effects among signal components Ψl(i). 
Threshold crossing in compressing of the one-shot events 
like seismic, or an aperiodic process is a typical case, where 
it is difficult to choose a suitable signal transformation for 
the data compression. 

Contrary to the parametric signal model (2), the non-
parametric signal model (3) contains basis functions with 
exactly defined position and shape in the time frame. The 
basis functions are not mutually limited by any analytically 
defined condition. The contribution of each basis function 
Ψl(i) to the signal f to be compressed is determined by the 
vector x. 

In general, the number of unknown parameters carrying 
the measurement information represents the sparsity s of the 
signal. In the case of the signal model (3) the sparsity s = β, 
while s = 3β in the model (2). Result of the compressed 

sensing is the reduction of the data stream from I samples 
down to at least s samples, where s < I. Another 
consideration for further analysis is that one CS procedure  
is implemented in one processing time frame T. Information 
parameters a, b, x are compressed in the transmitting and 
recovered in the receiving block for each time frame T. 
Maximal frequency of the parameter  a, b, x changes must 
be lower than the half of processing frame frequency (T/2)-1 
according to the Nyquist theorem. 

The signal acquired from the observed process is corrupted 
at the input of Analog to Digital Converter (ADC) by 
additive thermal and quantization noise ni. Basic 
consequence of the sparsity in time domain for signal f(i) is 
the presence of (I-s) samples in the time frame T with zero 
value or value under uncertainty level. 

 
3.  MATHEMATICAL CONCEPT OF COMPRESSED SENSING 

The signal sparsity means that a huge amount of samples 
in the time or in the Fourier domain is without information 
content. Compressed sensing represents stressing the 
frequency bandwidth of the transmitted signal. Modulation 
by wide band random signal breaks the signal coherence and 
spreads the information content over the whole frequency 
range. It is achieved by the multiplication of the input signal 
vector f by the measurement matrix ΦΦΦΦ represented by a set 
of functions ϕϕϕϕm(i), i = 1,...I, formed by the random numbers. 
They are formed by Gaussian, Pseudo-random or any 
distribution spreading the spectrum of the signal f. Functions 
ϕϕϕϕm(i) are ordered in M mutually uncorrelated rows. 
Dimension of the measurement matrix ΦΦΦΦ is (M×I). The 
multiplication by the measurement matrix ΦΦΦΦ in one row 
represents the low pass (LP) filtering and the compression of 
the data flux. The compressed output signal y is equal to 

 
ΦΨAAxΦΨxΦfy ==== where;           (4) 

 
Pseudo-random number generator converges to the 

uniform distribution with increasing sequence length. 
Pseudo-Random Binary Sequence (PRBS) is a subgroup of 
pseudo-random number generator and is represented by the 
numbers ±1 and can be reconstructed in the receiving block 
for known length and initial seed value [16], [17]. 

Let us consider the signal f(i) transformable on the base of 
signal model ΨΨΨΨ. Signal can be reconstructed according to 
the measurement matrix ΦΦΦΦ, which is incoherent with the 
matrix ΨΨΨΨ. The maximum similarity that can be found 
between basis functions ψψψψl and component of the 
measurement matrix ϕϕϕϕm is determined by the mutual base 
coherence, 
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absolute value represents the product of two vectors. 
Considering the normalizing factor, the mutual coherence 
lies in the range of [1, √I], and determines the independence 
between the measuring base and signal base [5], [10]. The 
minimum required number of compressed samples is  
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The hardware implementation of AIC with the minimal 
signal processing operation in the analog domain [6], [12] 
has been chosen. It consists of baseline high-speed ADC 
with integrated S&H block at the input with ideal code bin 
width Q and sampling period TS. Successively, digital signal 
processing (DSP) is performed in any digital processing unit 
like FPGA. Digital samples from the ADC output are 
acquired in one-time frame T and registered in vector f. The 
spectrum spreading is realized digitally in AIC by 
multiplication by chipping block pm(i) = (-1 or 1). It is 
implemented by changing sign according to the output from 
a subprogram representing PRBS [14]. Requirement on the 
incoherency between matrices Φ  and Ψ  is achieved by 
taking subsequently successive M chipping blocks pm(i) with 
the length I from the whole PRBS with the length MI. 
According to equation (4) the registered input samples 
modulated by PRBS are summed y(m)= Σf(i)pm(i) for each 
chipping block m = 1,...,M. The components y(m) defined 
this way are results of digital low pass (LP) filtering [15], 
[16]. Compressed digital data stream y of M samples is 
transmitted to the receiving block. The transmission 
frequency is M/T, which is lower than input sampling 
frequency Ts

-1 = I/T.  
Compressed digital signal y from AIC is transmitted to the 

receiver with the frequency rate M/T. The synchronization 
mark at the beginning of each time frame with M samples is 
required for recovery of the identical PRBS in the 
transmitting block.  

In the receiving block the signal recovery requires 
restoration of the matrix Φ  represented by M rows with the 
length I created by identical PRBS as it was used in the 
transmitting block. It can be done on the base of known 
code length MI and initial value seed of numerically 
reconstructed PRBS [11], [14]. Both information serve as 
encoding key for the CS procedure. Identified header 
synchronization mark is another condition for the recovery 
of sparse signal f parameters from the digital data stream y 
for each data frame.  

The receiving block is expected to be implemented on the 
processing server able to perform the complex mathematical 
operations sufficiently fast [20], [25]. Structure for the input 
signal compression and its reconstruction by the recovery of 
its sparse parameters is shown in Fig.1.  

It is based on the minimization of the objective function 
for lp norm where p is equal to 1 or 2 over the solution 

space.  
 

ε≤−
pl

in xbaΦΨy
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Using l1 norm leads to the minimization by some, i.e. 

Basis Pursuit, Orthogonal Matching Pursuit, etc. strategies 
by solving simple convex optimization problems through 
linear programming [16], [17].  

Classical Least Mean Squared (LMS) minimization of l2 
norm represents the universal reconstruction algorithms in 
CS. It leads to calculation of vector  using pseudoinverse 
solution of the equation (4). Moreover, the LMS 
minimization of (7) by suitable optimization algorithm is 
only a method to reconstruct concurrently two vectors of 

model parameters ba ˆ,ˆ  and weighting vector x̂ for the 
parametric signal model (2). l2 norm is more efficient for the 
recovery of strongly sparse signals in contrary to the l1 norm. 
ADC at input causes that noise input samples under ideal 
code bin width Q will be rounded off to the 0 value. 
Suppression of thermal noise from analog input increases 
the sparsity of the compressed signal in DSP.  

Let us consider a special case when the matrix A=ΦΨ is 
constant. The non-parametric (3) signal model Ψ meets this 
condition. If the matrix is a full rank matrix (i.e. AAT  
exists), then the amplitude vector x̂  is determined by:  

 

( ) inyAAAx TT 1
ˆ

−
=

                         (8) 
 
Direct estimation of x̂  using pseudoinverse solution is 

limited by the condition that the matrix A has to have more 
than M linearly independent rows. This condition is fulfilled 
thanks to uncorrelated rows in matrix Φ  generated from the 
whole PRBS and the full rank signal matrix Ψ .  

The reconstruction of the signal described by the 
parametric signal model (2) excludes the possibility of using 

analytical calculation of vectors xba ˆ,ˆ,ˆ . The LMS 

minimization (l2 norm) of the difference between the target 

value iny  and its estimation xbaΦΨ ˆ)ˆ,ˆ(  leads to the 

nonlinear estimation problem. Vectors xba ˆ,ˆ,ˆ  contain all s 
unknown parameters of the sparse signal f(i). 

There are many optimization algorithms to estimate all s 

parameters included in xba ˆ,ˆ,ˆ . The changes of signal 

parameters )ˆ,ˆ( baΨ  after each iteration step represent the 

drawback of the classical optimization method like gradient 
descent or quasi-Newton methods which is the possibility of 
the convergence into the local minima.  

The estimation ambiguity caused by the local minima 
increases with increasing number s of parameters to be 
estimated. 

The metaheuristic optimization based on the differential 
evolution (DE) strategy restricts this drawback. It optimizes 
iteratively a candidate solution with regard to a given 
objective function (7). However, DE optimization does not 
guarantee that optimal solution is suitable in the case when 
the objective function is not differentiable corrupted by 
noise and even not continuous [18], [19]. DE optimizes a 
population of candidate solutions and creates new candidate 
solutions by combining existing ones according to its simple 
formulae. The DE optimization may be accelerated by 
suitably set parameter boundaries [x,a,b] by known signal 
limits. 
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Fig.1.  Compressed sensing and recovery. 

 
 
Theoretical and practical aspects of implemented DE are 

well prepared for large scale of practical problems without 
the need for high computing capacity and processing time 
and suppress the main disadvantage of nonlinear 
optimization procedure. 

The reduction of the data stream from the input to the 
output of the transmitting block is defined as the 
compression ratio (CR). Taking into account that just M 
samples are required for the signal reconstruction in one 
frame, CR is equal to 

 

M

I
CR =

                               (9) 
 
Accuracy of the recovery paradigm was assessed by the 

standard deviation between input and recovered signal 
expressed in dB. 
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Criterion for determining compression accuracy (10) 

corresponds to the uncertainty type A of DSP unit related to 
the input signal noise expressed in [dB]. ADC at the input of 
transmitting block was considered 12-bit linear ADC with 
peak-peak value Upp = 3V. The signal noise 

2
2

12 RMSRMS u
Q

f += covers ideal quantization noise of 

ideally linear ADC 12QuQ =  and thermal noise uRMS 

from the analog processing unit at the input. Advancements 
in ADC make it possible to assume that the dominant 
uncertainty  source is  superimposed noise at the  AIC input. 

It is mainly caused by noise from the signal source with 
superimposed noise from the analog preprocessing unit. 
Verified compression accuracy includes all potential error 
sources of its implementation on any DSP unit. A complete 
estimation of systematic errors requires knowledge of 
systematic errors of the signal source in the particular case 
together with the nonlinearity of the actual preprocessing 
block with integral nonlinearity of ADC at the AIC input. 
Practical implementations of AIC studied further consider 
contribution of the signal source nonlinearity under the level 
of the uncertainty type A.  

The first implementation is utilized for the monitoring of 
moving persons in a defined area. Scope of Ambient 
Assisted Living is to recognize an emergency situation of 
the monitored person caused by falling for various reasons. 
The network of passive infrared (pyroelectric) PIR motion 
sensors generates signals carrying information for distant 
server about changes of thermal field caused by movement 
of the monitored person. The output signal from the PIR 
sensor is in the form of a flicker with positive and negative 
part caused by the movement of the monitored persons. Its 
peak value depends on the distance from any sensor and 
time interval in zero crossing determines speed of the 
persons. Time duration of the signal tail is arbitrary and 
depends on the time intervals of the consecutive movements. 
Output signal is aperiodic, where the synchronization signal 
is generated by threshold comparator [22]. 

Second application suitable for signal compression and 
successive recording for further evaluation is 
electrocardiographic (ECG) signal. Even here short delay 
caused by processing in AIC is harmless and 
synchronization instant can be taken from the signal of 
another ECG lead [2], [20], [21]. 

Short time delay of the information transmission is not 
deficient. This is balanced by the data compression with 
adequate accuracy.  

 

 
 
 
 Sampl.  I                                 M  

      CS sampling  

s 

information 
parameters:

bax ,,  
or 
x  

Observed 
process 

Ψxf =  

f ADC 

PRBS 

Digital 
LP 

filter 

y  

[ ]


















=
















I

IxM

M
f

f

y

y

M

M
M

1

)(

1

Φ  

n 

Find sparse 
solution 

PRBS 

Signal 
reconstruction 

ε
χ
≤− xbaΦΨy

xba
ˆ)ˆ,ˆ(min

,,
in  

or 

( ) inyAAAx TT 1
ˆ

−
=  

Optimization

( )[ ]
















=





















L

LxI

I

x

x

f

f

ˆ

ˆ
ˆ,ˆ

ˆ

ˆ
1

)(

1

M
M

M
baΨ

 

bax ˆ,ˆ,ˆ or

x̂   

f̂  + × 



 
 
 

MEASUREMENT SCIENCE REVIEW, 19, (2019), No. 1, 35-42 

39 

4.  EXPERIMENTAL RESULTS 

Functionality of the AIC utilizing both types of signal 
models, (2) resp. (3), was assessed experimentally for two 
applications mentioned above. Time delay for the signal 
recovery at the end of time frame T is not a disadvantage. 
Accuracy of the recovery paradigm was assessed according 
to the criterion (10) in relation to the compression ratio CR 
(9).  

First process where the CS allows compressing basic 
information is represented by data acquired from the PIR 
sensor. Fig.2. shows standard output from the PIR sensor 
BS036B after its preprocessing by the input amplifier [22]. 
The noise floor caused by EMI and thermal effects 
influences the input signal at the AIC.  

The impulse shape carries the information that has to be 
transmitted and detected by AIC. In general, such signal 
could be modeled by the weighted sum of Heaviside 
functions: 
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The initial pulse signal is created by L Heaviside 
components and other (I-L) samples are negligible and do 
not carry any information. The trail of the input signal is 
lower than noise level in this case. 

Results from recovery using pseudoinverse algorithm (8) 
for two length W of averaging LP filter are shown in Fig.3. 

 

 
 
Fig.2.  Signal at the input of AIC from PIR sensor with 
superimposed noise with uRMS=10 mV a) and uRMS=60 mV b). 
Resolution of input ADC 12 bits, Upp=3 V. Length of recorded 
signal is 128 samples where 96 are sparse. 

 
Output signals in Fig.3. show that besides the high 

compression ratio the AIC also acts as a filter removing 
additive noise at the input AIC. Increasing length W of the 
LP filter deteriorates time information (Fig.3.b)) and 
determines CR directly.  

 
 
Fig.3.  Reconstructed signal from AIC from PIR sensor Fig.2. 
superimposed noise uRMS=60 mV with LP length W=8 samples a) 
and W=16 samples b). 
 

The compression ratio of the signal in Fig.3.a) is CR = 8 
and δdB = 4.56 dB. In the case of signal from Fig.3.b) is 
CR = 16, but the signal recovery is worse δdB = 29 dB. 

Second case suitable for implementation of CS with 
parametric signal model (2) was the compression of ECG 
signal. The optimal selection of basis functions adapted to 
the observed process allows more effective compression of 
the observed process. The nonlinear signal model with 
internal parameters a,b of the appropriate basis functions 
with their peak values x achieves better CR. The nonlinear 
optimization of (7) for p = 2 by the DE optimization allows 
to suppress a false solution represented by local minima. 

As signal to be compressed, the electrocardiographic 
signal was chosen [23], [24]. Basis functions in the form of 
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been used for its modeling. The optimization behaviors were 
assessed by simulation for the observed signal in Fig.4. 
realized by three known wavelets in the form of Mexican 
hat. The recovery procedure was assessed for various 
numbers of basis functions starting with the first one. 
Expected intervals of the initial population were chosen 
identically for parameters al and bl in the interval between 
zero and expected maximal value. Initial amplitudes xl of 
single components were chosen in the interval (-UPP,+UPP). 
Recovered signals for various numbers of basis functions 
L = 2,3,4 in matrix ΨΨΨΨ when input signal is represented by 
parameters in Table 1. are shown in Fig.5.a) to Fig.5.c). 

 
Table 1.  Parameters of modeled input function. 

 
l al bl xl 

1 120 60 2 
2 30 120 0.3 
3 60 15 0.2 
4 0.1 0.01 -0.05 

 
Fig.5. shows that besides improving quality of recovery 

the noise suppression is inherent behavior of the compressed 
sensing. Improvement of the signal recovery for various 
compression ratios CR is shown in Fig.6. 
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Fig.4.  Modeled ECG signal f(i) with superimposed Gaussian noise 
ueff=10 mV. 

 

 
 

Fig.5.  Recovered signal ( )if̂  using L=2 to L=4 wavelets in ΨΨΨΨ. 

 

 
 

Fig.6.  Standard deviation vs. compression ratio 
for L basis functions. 

 

 
 

Fig.7.  Recovered signal f(i) from Fig.4. modeled by delayed 
Heaviside functions for different compression ratios. Compression 
of I=512 samples with averaging window of W=16 samples a) and 
W=8 samples b).  

 
 

Fig.8.  Accuracy of signal recovery using model (11)  
vs. compression ratio. 

 
Comparison of the recovery efficiency using 

pseudoinverse procedure (8) was studied for the same ECG 
signal, Fig.4. The universal signal model by delayed 
Heaviside function (10) has been chosen. Recovered signals 
for various values of the compression ratio are shown in 
Fig.7.  

In case of ECG signal, the sparsity s is higher when 
Heaviside model (3) is being used in comparison with the 
parametric model (2) with wavelets. As a result, the 
compression ratio for Heaviside model is lower. On the 
other hand, the exactness of the pseudoinverse procedure is 
the advantage of model (3). 

Circuit implementation of the proposed AIC is feasible by 
the simple hardware block. The only analog processing 
block is ADC. Sensitivity and voltage range can be fixed by 
possible amplifier with gain control. Digital data from the 
ADC output are subsequently processed by digital blocks 
only. The PRBS is generated by algorithms for the 
determined polynomial length and initial value by the 
appropriate structure [18]. Averaging of data in the window 
of the length W = I/M is the simplest LP filtering method. 
All numerical procedures for signal compression are easy to 
implement on the FPGA block or by the subroutines already 
available in the DSP unit. 

Recovery of compressed data requires a mathematically 
more complex procedure. These are represented by the 
pseudoinverse calculus or an appropriate numerical 
optimization. Its selection from a wide range of optimization 
algorithms is conditioned by the guarantee of globally 
optimal solution for any class of problems which can be a 
problem for the nonlinear gradient method. 

 
5.  CONCLUSIONS  

Compressed sensing is a method of signal processing 
reducing data stream in comparison with the requirement of 
the Nyquist theorem. Selection of the optimal set of basis 
functions allows highlighting the sparsity of the measured 
signals. Modulation by measurement matrix ΦΦΦΦ for signal 
decorrelation and successive low–pass filtering represents 
the basic architecture of the AIC. The hardware 
implementation with minimal amount of analog processing 
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blocks is the main advantage of the proposed AIC structure. 
Parameters of presented hardware structure are quite 
identical with possible implementation on the FPGA chip or 
other DSP unit. 

Suitable set of basis functions depending on the input 
signal shape that has to be taken into account is the selection 
of the signal model ΨΨΨΨ. Contrary to classical transformation 
compression the set of basis functions could not be 
orthogonal. Moreover, it may also consist of mutually 
different analytically described functions with defined 
position and shape in the synchronized time frame. 

The signals with long time zero intervals and short pulse 
course are described optimally by linear model (3) together 
with unknown amplitudes x̂. The analytical calculation of 
vector x̂ is its main advantage, at the expense of lower 
compression ratio.  

In contrast, the input signal recovery described by 
parametric signal model (2) leads to the numerical 

estimation of vectors xba ˆ,ˆ,ˆ .  When the observed process is 

unknown the optimal signal model could be adapted to the 
observed signal. 

Performed simulations showed the significant trade-off 
between the computational complexity and achieved 
compression ratio for both signal models. Compressed 
sensing showed as well the positive impact of the proposed 
AIC on the noise suppression. 
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