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In eddy current testing, probe-coils with the E-type pot core are commonly used for detecting defects in test objects. In this paper, an 

analytical mathematical model of such a probe placed above a two-layered conductive material with a surface hole has been presented. The 

final formulas in the closed form that make it possible to calculate the coil impedance were worked out using the truncated region 

eigenfunction expansion (TREE) method and implemented in Matlab. Changes in resistance and reactance were determined for both 

material without a hole and for space containing no conductor. The results were compared with those obtained for the air-cored coil and 

the I-cored coil. The correctness of the calculations was confirmed through experimental measurements and with the finite element method 

(FEM) in the COMSOL Multiphysics package. 
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1.  INTRODUCTION 

One of the most frequently employed methods of detecting 

surface flaws in conductive materials is the eddy current 

technique. In this method, the probe in the form of a coil fed 

with alternating current is placed above the test object in 

which eddy current induction takes place. All the defects 

occurring in the conductor disturb the flow of eddy currents, 

which results in changes in the impedance of the coil. The 

correct interpretation of these changes allows effective 

detection of defects in materials. What serves this purpose is 

the employment of appropriate mathematical models that 

enable simulation of the measurement process and 

calculation of the changes in the coil impedance. 

The probe-coil placed above the test object with a flaw 

was analyzed by applying the pulsed eddy current technique 

(PEC) [1]-[3] with the employment of the grating eddy 

current displacement sensor (GECDS) [4], and considered 

as the inverse problem [5], [6]. The analytical mathematical 

models of a coil brought closer to conductive material with a 

hole were obtained for air-cored coils [7]-[9] and I-cored 

coils [10], [11] using the truncated region eigenfunction 

expansion (TREE) method. In eddy current testing, 

however, the most commonly used probes are pot core 

probes. The closing of the magnetic flux in the interior of 

such a core facilitates obtaining greater sensitivity of the 

probe and, consequently, its higher efficiency in detecting 

flaws. Unfortunately, the analytical models of pot core 

probes developed previously [12], [13] do not take into 

account the presence of defect in the test object, which 

makes it impossible to use them in the eddy current 

defectoscopy. What is the missing solution is the analytical 

model of the E-cored coil, proposed in the paper, placed 

above a two-layered conductive material with a surface hole 

(Fig.1.). It allows calculation of both the impedance of the 

coil and its changes caused by the presence of the hole. The 

presented solution was worked out using the TREE method, 

and implemented in Matlab. The results were verified with 

the employment of the finite element method (FEM) and 

through experiments. In all the cases, a very good agreement 

was observed. 

 

 
 

Fig.1.  E-cored coil located above a conductive material with a 

surface hole. 
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2.  SOLUTION 

The problem of the E-cored coil placed above the two-

layered conductive material of relative permeability μ6, μ7 

and electrical conductivity σ6, σ7 (Fig.2.) was solved using 

the TREE method. The domain of the solution was limited 

in the radial direction to the value of the parameter b. The 

vanishing of the magnetic vector potential Aφ (r, z) = 0 for 

the internal (r = 0) and external (r = b) boundary of the 

domain was ensured by satisfying the homogeneous 

Dirichlet condition. The system was divided into 8 regions 

and 5 sub-regions (I-V). The determination of the magnetic 

vector potential for each of the regions required calculating 

discrete eigenvalues. For the regions composed only of air 

(1, 5), discrete eigenvalues qi were obtained from the 

equation 
 

J1(qi b) = 0,                                   (1) 
 

where J1(x) is the Bessel function of the first kind. The 

expressions that allow calculating the eigenvalues mi of 

region 2 and eigenvalues pi of regions 3, 3-4, 4 have been 

presented in [10] and [13], respectively. The material 

coefficients s7i of region 7, which depend on the frequency 

excitation ω, the relative magnetic permeability μ7, the 

permeability of free space μ0 and the electrical conductivity 

σ7, were calculated using the value of qi in accordance with 

the expression: 
 

2
7i i 7 0 7 .s q jωµ µ σ= +                         (2) 

 

In the surface layer of the test material there is a hole with 

radius g and depth l2 - l1. Its presence results in the fact that 

the eigenvalues ui of region 6 are roots of the complex 

function that satisfies the electromagnetic interface 

conditions between the hole and the conductive material 

[10], [11], [14], [15]. 
 

i 1 i 0 i i 1 i 0 i
6

1
( ) ( ) ( ) ( ),u P v g J u g v J u g P v g

µ
=      (3) 

 

where Yn(x) is the Bessel function of the second kind of 

order n, vi = (ui
2 – j ω μ6 μ0 σ6)1/2, whereas the function Pn(x) 

has been defined as: 
 

n i 1 i n i 1 i n i
( ) ( ) ( ) ( ) ( ).P v g Y v b J v g J v b Y v g= +     (4) 

 

The discrete eigenvalues ui were calculated through 

solving (3) with the multilevel computation of the complex 

eigenvalues (MCCE) method [16]. In this approach, the 

solution domain is divided into 2 regions. In order to find 

complex roots, sets of initial points are used in the first of 

the regions, whereas the Cauchy argument principle is 

employed in the case of the other region. 

Having all eigenvalues qi, mi, pi, ui, and coefficients s7i 

makes it possible to determine the magnetic vector potential 

for each region. For this purpose, the most convenient is 

making use of an ideal filamentary coil, whose all turns are 

placed in a circle of radius r0, at a distance h0 from the lower 

edge of the core. In this case, the dimensions of the 

cylindrical coil shown in Fig.2. are reduced to the formula  

r2 - r1 → 0 and h2 - h1 → 0. For the filamentary coil 

specified in such a way, the magnetic vector potential of 

each region was written by using matrix notation. 

 

 
 

Fig.2.  Rectangular cross-sectional coil located above a  

two-layered conductive material with a surface hole. 
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where 

 

1 1 1 1 1 1 1( ), ( ), ( ), ( ), ( ), ( ), ( )J r J r J r J r L r R r P r
T T T T T T T

q m p u m p v

 

are row vectors, q, m, p, u, v, s7, ex are diagonal matrices, 

while Ci, Bi are column vectors of unknown coefficients. 

Using (5) - (11), it is possible to determine the magnetic 

vector potential of each region of the cylindrical coil 

(Fig.2.). 
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The expression for the impedance of the E-cored coil was 

worked out through integrating the magnetic vector potential 

of region 3-4 over the cross-section of the coil. In this way, 

the following has been obtained 
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The D, F, G, H, G’, H’ matrices have the same form as in 

the case of the E-cored coil, which was described in detail in 

[13], placed above the material without a hole. As to 

coefficients Ci, Bi, which are the solution of the system of 

the interface equations, they were normalized with respect to 

B7 and written down in the form of: Bi7 = Bi / B7, 

Ci7 = Ci / B7. 

 

3.  RESULTS AND DISCUSSION 

The mathematical model created with the employment of 

the TREE method has been implemented in Matlab. In the 

calculations, the following assumptions have been taken: the 

number of summation terms Ns = 115 and the domain radius 

b = 12 r2. The average time necessary to calculate 

components of the coil impedance on a computer with an 

Intel i5-460M 2.53 GHz processor and 6 GB of RAM was 

about 3 seconds. The employment of (13) allowed working 

out: 

- coil impedance Z = R + j X for conductive material with a 

hole, 

- coil impedance Zh = Rh + j Xh for material without a hole 

(g = 0) 

- coil impedance Z0 = R0 + j X0 without the presence of a 

conductor (σ6 = σ7 = 0). 

The correctness of the obtained results was verified by 

means of experimental measurements. For this purpose, a 

measurement system consisting of Agilent 4294A precision 

impedance analyzer and a two-layered plate of dimensions 

200 mm x 200 mm was created. The lower layer of the test 

object was a copper plate with a conductivity of 

σ7 = 7.7 MSm-1 and thickness of 25 mm. On the copper 

plate, a thin plate (l2 - l1 = 0.1 mm) made of aluminium alloy 

5050 (σ6 = 28.1 MSm-1) was placed, and in its center there 

was a hole with a radius of g = 2 mm. The measurements 

were made for 40 different frequency values in the range 

from 300 Hz to 20 kHz, and the parameters of the 

measurement system are presented in Table 1. 
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Table 1.  Parameters of the coil, core, and plate used in 

calculations. 

 

Inner column radius a1 1.5 mm 

Outer column radius a2 3.7 mm 

Inner core radius c1 7.7 mm 

Outer core radius c2 9.2 mm 

Inner core height d1 3.8 mm 

Outer core height d2 5.3 mm 

Inner coil radius r1 3.8 mm 

Outer coil radius r2 7.3 mm 

Offset h1 0.3 mm 

Parameter h2
 3.7 mm 

Lift off l1 0.1 mm 

Radius of the domain b 87.6 mm 

Relative permeability µf 3000 

Number of turns Ν 646 

Relative permeability µ6, µ7 1 

 

 
 

Fig.3.  Normalized change in the coil resistance ΔR shown  

as a function of frequency. 

 

 
 

Fig.4.  Normalized change in the coil reactance ΔX shown  

as a function of frequency. 

 

The numerical verification of the calculation results was 

carried out using the finite element method. For this 

purpose, the COMSOL Multiphysics package was employed 

to create a model whose mesh contained 50468 triangular 

elements, 1098 edge elements, and 25 vertex elements. 

Calculations of the changes of resistance ∆R = R - R0 and of 

reactance ∆X = X - X0 were also carried out for the I-cored 

coil and the air-cored coil. The impedance components of 

the I-cored coil were determined by substituting c1 = c2 = a2 

in (13), whereas for the air-cored coil μf = 1 was assumed. 

The achieved results were normalized with reference to X0 

and presented in Fig.3. and Fig.4. In comparison to 

experimental measurements, the maximum error of the 

changes in the components of impedance ∆Ζ obtained using 

the TREE method was 2.67 % in the case of the real part 

and 2.86 % in the case of the imaginary part. However, the 

differences in the results of the calculations made with the 

TREE and FEM methods did not exceed 1 % for the E-cored 

coil, 1.82 % for the I-cored coil and 0.5 % for the air-cored 

coil. 

The normalized changes of resistance ΔR shown in Fig.3. 

allow estimating the difference in the sensitivity of the 

measurement for three different types of coils. The largest 

changes in resistance were obtained at the frequency of 

approximately 500 Hz. Obtaining much higher sensitivity of 

the measurement with the employment of the pot core in 

comparison with the I-core and the air-core probe is 

especially evident in the case of lower frequencies. The 

significance of this effect is much less considerable in the 

case of higher frequencies, when the depth of the 

penetration of eddy currents into the test material is 

shallower. 

The changes in resistance ∆Rh = R - Rh and reactance 

∆Xh = X - Xh resulting from the occurrence of the hole in the 

test workpiece are presented in Fig.5. The calculations were 

performed for bronze of the conductivity 5 MSm-1, 

containing a surface hole with the radius g = 4.5 mm and 

depth l2 - l1 = 6 mm. The maximum differences in the results 

achieved using the TREE and FEM methods were 2.77 % 

for R and 0.64 % for X. In the case of the material without a 

hole, it was 1.35 % for Rh and 0.46 % for Xh, respectively. 

 

 
 

Fig.5.  Normalized changes in the coil resistance ΔRh and reactance 

ΔXh as a function of frequency. 

 

The method of eddy-current testing is applicable chiefly 

for the examination of non-ferromagnetic materials, but the 

solution presented herein makes it also possible to calculate 

components of coil impedance for ferromagnetic materials 
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as well. With the assumption of the relative permeability 

µ6 = µ7 = 2 calculations were made for the frequency 

f = 20 kHz by means of the TREE and FEM methods. The 

deviations between components of the coil impedance were 

less than 0.8 % for a material without a hole and 1.9 % for a 

material with a hole. The hole in the ferromagnetic material 

under tests has led to the change of resistance by 8.5 % and 

change of reactance by 1.5 %. 
 

4.  CONCLUSIONS 

The mathematical model developed in this paper makes it 

possible to calculate the impedance of the E-cored coil 

placed above a two-layered conductive material with a 

surface hole of the radius g and depth l2 - l1. The presented 

final formulas may be implemented in any programming 

language or mathematical software, such as Matlab or 

Mathematica. The error control of the calculations is carried 

out through changing the values of the radius of domain b 

and the number of summed terms Ns. The obtained results 

of the changes in resistance and reactance were verified by 

experimental measurements and the finite element method. 

In all of the cases, the calculation error did not exceed 3 %. 

The proposed solution uses the pot core, which is the most 

commonly used in eddy current testing. By assuming the 

appropriate values of the input parameters, it is also possible 

to easily work out the final formulas for the air-cored coil or 

the I-cored coil. The carried out calculations enabled 

comparing the sensitivity of the coils in the cases of 

applying particular types of cores. The obtained changes of 

the components of impedance after the coil was brought 

closer to the conductive material with a hole were much 

bigger for the E-core than for the I-core and the air-core. It 

is due to the fact that the pot core increases the 

concentration of the magnetic flux in the test material, 

which ensures higher efficiency of detecting defects. 
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