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According to the characteristics of stable single-phase flow, a phase difference measurement method based on the extended Kalman filter is 

proposed in this paper for use with Coriolis mass flowmeters. Firstly, the Mallat algorithm is applied to filter out interference signals. Then, 

the frequency and phase difference of the two reconstructed signals are detected through the extended Kalman filter. Compared with the 

sliding Goertzel algorithm or discrete time Fourier transform, the proposed method does not need to predict the signal frequency and avoids 

quadratic error. Simulations and experiments show that the proposed method has stronger anti-interference, higher measurement accuracy 

and lower relative error than the existing method based on the Hilbert transformation. 
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1.  INTRODUCTION 

Coriolis mass flowmeters (CMF) can directly measure fluid 
mass flowrates with high precision and have many 
applications in various industries. The mass flowrate is 
obtained by measuring the phase difference between two 
vibration signals of the same frequency that are detected by 
electromagnetic sensors [1], [2]. Therefore, accurate phase 
difference estimation is essential for CMF. 

At present, the main methods for CMF phase difference 
estimation include discrete Fourier transform (DFT) [3]-[6], 
sliding Goertzel algorithm (SGA) [7]-[9], discrete time 
Fourier transform (DTFT) with negative frequency 
contribution [10], and Hilbert transform (HT) [11]-[13]. The 
DFT can effectively suppress the interference of harmonics 
and random noise, and has good anti-interference ability. 
However, due to non-periodic sampling, spectral leakage can 
result in reduced accuracy of phase difference calculations. 
The SGA eliminates the spectrum leakage caused by non-
periodic sampling of DFT, but there is a slow convergence 
rate and a numerical overflow problem in practical 
applications. DTFT with negative frequency contribution has 
a higher accuracy than traditional DTFT algorithms, but the 
iterative process makes for a large computational load. Both 
SGA and DTFT algorithms need to know the frequency in 
advance to calculate the phase difference. The HT method is 
computationally efficient and can obtain the phase difference 
without information on signal frequency [14]. However, its 
anti-interference performance is poor and it needs a strict pre-
filter. Singular value decomposition (SVD) [14] and 

polyphase decimation filtering and band-pass filtering [13] 
have been applied to CMF to filter out noises.  

A phase difference measurement method based on the 
extended Kalman filter (EKF) for CMF is proposed in this 
paper. It eliminates the need to know the frequency when 
calculating the phase difference and provides more precise 
estimates than the existing methods. In Section 2, the process 
of the new method is presented, including noise reduction, 
state space description, and EKF. The performance of the 
proposed method is validated by simulations and experiments 
in Section 3. Conclusions are drawn in Section 4. 

 
2.  PRINCIPLE OF PHASE DIFFERENCE MEASUREMENT BY EKF 

A.  Noise reduction based on the Mallat algorithm 

The Mallat algorithm [15] is a fast algorithm used for 
wavelet analysis. It is a tower algorithm based on multi-
resolution scenarios, and was proposed by Mallat for use with 
discrete signals. The difficulty of calculating wavelet 
coefficients is greatly reduced with the Mallat algorithm. The 
essential process of the Mallat algorithm is to obtain two sets 
of parameters: 1) approximate coefficients from a low-pass 
filter, and 2) detailed coefficients from a high-pass filter. 
Then, in the same way, the low frequency part is taken as the 
input signal and decomposed again. This kind of signal 
decomposition can decompose a mixed signal composed of 
different frequencies into sub-signals of different frequency 
bands. It can be effectively used for signal feature extraction, 
signal and noise separation, signal analysis, and 
reconstruction. 
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According to the Mallat algorithm process, the appropriate 

wavelet function should be selected. The signal is 

decomposed layer by layer to obtain the wavelet coefficients 

of each layer. Then, according to a certain algorithm, the 

wavelet coefficients of each layer are processed to eliminate 

noise from the signal. After reconstruction, the final wavelet 

coefficient matrix of the target signal retains only the valid 

information. 

The output signal ( )f t  of a CMF sensor can be expressed 

by the following equation: 
 

( ) ( ) ( )i sf t f t f t= +
                          (1) 

 

where ( )if t is the effective signal; and s ( )f t is signal noise, 

including harmonics and random noise. 

Finite layer decomposition of the signal is performed using 

the Mallat algorithm: 
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where J is the number of decomposition layers; ( )A

J JA f t=

represents the approximate coefficients; and  

( ), 1,2,D

J jD f t j J= = L  represents the detailed 

coefficients. 

In this paper, the Daubechies wavelet is used to decompose 

the CMF output signal in five layers: 
 

5 4 3 2 1( )f t A D D D D= + + + +                 (3) 

 

When the signal is reconstructed, the detailed coefficients 

in each sub-band are set to zero and the approximate 

coefficients are unchanged, which is equivalent to effectively 

separating the fundamental frequency signal and the noise 

contained in the CMF output signal. 

 

B.  Phase difference measurement based on EKF 

When CMF is used to stabilize single-phase flow 

measurements, the output signals are generally considered to 

be sinusoidal signals of constant amplitude and frequency. 

However, harmonic noise and random noise are also found in 

actual output signals. The discrete form of CMF signals 

detected by electromagnetic sensors after processing with the 

Mallat algorithm can be expressed as 
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where ( 1,2, )k k n= K  is a sampling instance; kz  is the 

instantaneous value of the output signal; ˆ
kz is the estimated 

value of the output signal; kA  is the signal amplitude; kθ  is 

the phase; the angular frequency is 2 /k k sf fω π= , sf  is 

the sampling frequency; and kv  is a small amount of 

interference signal after filtering, taking the white noise with 

zero mean. 

The amplitude, phase, and frequency of the signal are used 

to establish the state vector, as shown below: 
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where 1k
x is the amplitude condition; 2k

x  is the amount of 

phase state; and 3k
x  is the frequency condition. 

For stable single-phase flow measurements, the CMF’s 

output signal state transition equation is described as follows. 

In the absence of control inputs, a discrete-time nonlinear 

process of a CMF’s output signal for stable single-phase flow 

measurements can be expressed by the following state-space 

description: 
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1 2( ) sin( )
k kk k k kz h x v x x v= + = +               

(7) 

 

where 1kx +  is the process state; kz  is the measurable output; 

F  is the system transition matrix; ( )kh x  is the 

measurement function; kw  is the process noise, and kv is the 

measurement noise, represented as (0, )→k kw N Q  and 

(0, )→k kv N R . 

A non-linear relationship exists between the measurements; 

or, the process itself is non-linear in nature. For this reason, 

EKF is preferable for use for dynamic state estimation. The 

EKF can be applied to nonlinear systems by first-order 

truncation of a Taylor series expansion of the nonlinear 

functions. 

In a Taylor series expansion of the nonlinear function, the 

primary term coefficients are approximated so that each 

estimate can be performed under the linear model. The EKF 

technique is a two-stage recursive process of prediction and 

updating following an initialization step [16], [17]. The EKF 

procedure is summarized in the following algorithm. 

Step 1: Filter initialization  

The initial state estimate and its associated variance are 0x̂

and 0P , respectively. 
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Step 2: Prediction based on previous estimated states  

Use the measured and estimated states at the previous step 

to predict the state and covariance matrix using the following 

relationships. 
 

, 1 1
ˆ ˆ( )k k kx f x− −=                           

(8) 
 

, 1 1 1

T

k k k kP FP F Q− − −= +                    
(9) 

 

where 
, 1

ˆ
k kx −  is the a priori state estimate; 

, 1k kP −  is the a 

priori covariance matrix; 1kP −  is the a posteriori covariance 

matrix; and the system transition matrix is the constant matrix 
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Step 3: Update step  

The measured output equation can be linearized as 
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( )k k k k kv v h x H x= + −%                      (12) 

 

The new state updated through EKF can be written as  

Kalman Gain:  

 
1

, 1 , 1 , 1( )T T

k k k k k k k k k kG P H H P H R −
− − −= +        (13) 

 

State matrix: 
 

, 1 , 1
ˆ ˆ ˆ( ( ))k k k k k k kx x G z h x− −= + −               (14) 

 

Covariance matrix: 

 

, 1( )k k k k kP I G H P −= −                      (15) 

 

From the above steps, the state estimation value ˆ
kx can be 

obtained, thereby obtaining the real-time amplitude, phase, 

and frequency of the two output signals and, finally, 

calculating the phase difference θ∆ . 

 
3.  SIMULATION AND EXPERIMENTAL RESULTS 

Simulations and actual experiments were conducted to 

verify the proposed method.  

A.  Simulation of noise reduction 

In order to validate the performance of the Mallat algorithm 

applied in the CMF, Mallat algorithm simulations were 

conducted first. In these simulations, the signal frequency 

was set to 104.32 Hz and the sampling frequency to 10 kHz. 

The signal also contained noise, including double harmonics, 

higher harmonics, and white noise with an amplitude of 

0.1 V. The signal-to-noise ratio (SNR) of the simulated signal 

was 19.6 dB. 

The Db40 wavelet function was selected, and the CMF 

signal was decomposed into five layers. The de-noised signal 

was reconstructed according to the low frequency coefficients 

of the different frequency bands. Fig.1. and Fig.2 .represent 

the time domain waveform and the frequency spectrum of the 

filtered signal, respectively. It can be seen from Fig.1. that the 

method achieves stability after approximately 0.05 seconds. 

The filtered signal retains the characteristics of the original 

signal, and the SNR equals 32.7 dB. As shown in Fig.2., the 

Mallat algorithm provides good filtering effects for both 

harmonics and random noise. 

 

 
 

Fig.1.  Time domain waveforms of the original signal (blue) and 
the signal filtered by the Mallat algorithm (red). 

 

 
 

Fig.2.  Spectrograms of original signal (blue) and signal filtered by 
the Mallat algorithm(red). 

 

B.  Simulation of phase difference measurement 

In order to validate the effectiveness of the proposed 

algorithm, computer simulations were conducted. The 

properties of the proposed phase difference measurement 

method were analyzed by the Hilbert transform and the 

discrete time Fourier transform with negative frequency 

contribution (DTFT in [10] for short) for comparison. Hilbert 

transform has the advantage of being able to measure the 

phase difference independent of signal frequency. The phase 

difference measurement results are presented in Fig.3., which 

shows that the proposed method can track the phase 

difference of the signal well in the vicinity of 0.05 s (the black 



 

 

 

MEASUREMENT SCIENCE REVIEW, 19, (2019), No. 2, 48-52 
 

51 

dotted line indicates the error limit of ±0.2 %). Fig.4. shows 

the relative errors in phase difference between sampled points 

2000 to 3000. As shown in Fig.4., the proposed method has 

better ability to suppress random noise and harmonics 

compared with the Hilbert transform and DTFT in [10].  
 

 
 

Fig.3.  Comparison of phase difference measurement performance. 

 

The mean square error (MSE) was calculated for 

comparison by (16), and the results are shown in Table 1. 

 

21
ˆ[ ( ) ( )]

N

i m

MSE i i
N m

ω ω
=

= −
−
∑             (16) 

where  ( )iω  and ˆ ( )iω  are  the  actual  phase  difference and 

estimated phase difference, respectively. m and N are the 

beginning and end of the computing simulated signal, 

respectively, and equal 3000 and 10000. 

It can be seen from Table 1. that compared with the Hilbert 

transform and DTFT in [10], the relative error measured by 

the proposed method is one order of magnitude more accurate 

and the MSE is two orders of magnitude more accurate, 

which demonstrates that the proposed method has higher 

precision. 

 

 
 

Fig.4.  Relative errors in phase difference between  

sampled points 2000 to 3000. 

 

 

Table 1.  Measurement errors under different phase differences. 

 

Initial phase 

difference 

(rad) 

Phase difference relative error (%) Phase difference MSE  

DTFT in 

[10] 

Hilbert 

transform 

Proposed 

method 

DTFT 

(× 10-10) 

Hilbert 

transform 

(× 10-10) 

Proposed 

method 

(× 10-12) 

0.0070 0.2718 0.0377 0.0024 11.859 0.4869 0.0426 

0.0100 0.2365 0.0384 0.0019 11.543 1.0045 0.0407 

0.0300 0.0745 0.0381 0.0014 11.269 9.4741 0.2044 

0.0500 0.0416 0.0376 0.0051 10.3994 2.6775 1.1921 

0.0700 0.0280 0.0385 0.0029 9.0594 5.4869 1.5863 

 
 

Table 2.  Estimated time delays and relative errors under different flow rates. 

 

Mass 

flow rate 

(t/h) 

Theoretical 

time delay 

(μs) 

Mean time delay (μs) Relative error of time delay (%) 

DTFT 

in [10] 

Hilbert 

method 

Proposed 

method 

DTFT in 

[10] 

Hilbert 

method 

Proposed 

method 

2.4 3.8182 3.7889 3.8239 3.8172 -0.767 0.149 -0.026 

10.0 16.1043 15.9803 16.1280 16.1153 -0.770 0.147 0.068 

20.0 30.2032 29.9703 30.2478 30.2139 -0.771 0.148 0.035 

24.0 36.1008 35.8220 36.1551 36.1161 -0.772 0.150 0.042 
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C.  Experimental results 

Experimental data under different flow rates were gathered 
through a BHDN40-020-1 CMF with a BHSH1001-2 
transmitter and sensor frequency of 96 Hz. For different 
flowrates, the theoretical time delays and those estimated by 
the Hilbert transform, DTFT in [10] and proposed method 
were calculated (Table 2.). As shown in Table 2., the relative 
errors in the time delays estimated by the proposed method 
were smaller than those of the other two methods, which 
demonstrates the superior performance of the former. The 
reason why the relative error of the experimental data of the 
two algorithms is greater than the simulation error is that the 
experimental data contains a small amount of harmonic noise, 
and the proposed algorithm has a certain error in the random 
noise estimation. 
 
4.  CONCLUSIONS 

This paper studies the possible applications of EKF in the 
signal processing of Coriolis mass flowmeters. The SGA and 
DTFT algorithms are dependent on frequency when used to 
calculate the phase difference. The Hilbert transformation 
method does not need to calculate frequency first to calculate 
phase differences, but the calculation accuracy is affected by 
noise. To solve the aforementioned problems, a novel method 
based on EKF was proposed for obtaining phase differences 
in CMF signals. First, the Mallat algorithm was used to 
reduce the noise contained in CMF output signals. Second, a 
state-space model of CMF output signal was established for 
stable single-phase flow, which effectively represents the 
filtered output signal. Third, quadratic error can be avoided 
because the frequency and the phase difference are calculated 
by EKF simultaneously and independently. Simulations and 
experiments were used to demonstrate the effectiveness and 
superior performance of the proposed method. While the 
concept has been preliminarily validated, the experiments 
were limited to stable single-phase flow scenarios. Therefore, 
it is necessary to conduct further research in applied 
environments. For future goals, further performance 
enhancements will be obtained by using an improved EKF. 
 

ACKNOWLEDGMENT 

This study was supported by the Innovative Research Team 
in Beihang University, National Natural Science Foundation 
of China, under grant number 61421063; National Natural 
Science Foundation of China under grant number 61873021. 
 
REFERENCES  

[1] Shanmugavalli, M., Umapathy, M., Uma, G. (2010). 
Smart Coriolis mass flowmeter. Measurement, 43 (4), 
549-555. 

[2] Enz, S. (2010). Effect of asymmetric actuator and 
detector position on Coriolis flowmeter and measured 
phase shift. Flow Measurement & Instrumentation, 21 
(4), 497-503. 

[3] Romano, P. (1990). Coriolis mass flow rate meter 
having a substantially increased noise immunity. 
United States Patent US4934196. 

[4] Xu, K., Ni, W. (2001). A new signal processing method 

for Coriolis mass flowmeter. Acta Metrologica Sinica, 

22 (4), 245-257. 

[5] Jacobsen, E., Lyons, R. (2003). The sliding DFT. IEEE 

Signal Processing Magazine, 20 (2), 74-80. 

[6] Yang, J., Ke, G., Jia, L. (2006). DFT in the research of 

phase difference measurement in Coriolis mass flow 

meter. Chinese Journal of Sensors & Actuators, 19 (6), 

2654-2657. 

[7] Zhu, Z.H., Xu, K.J., Yang, S.L., Li, Y., Zhu, Y.Q. 

(2010). Implementation and test of signal processing 

method of Coriolis mass flow sensor for time-varying 

signal model. Acta Metrologica Sinica, 31 (4), 325-329. 

[8] Xu, K.-J, Ni, W. (2005). A lattice notch filter based 

signal processing method for Coriolis mass flowmeter. 

Acta Metrologica Sinica, 26 (1), 49-52. 

[9] Xu, K.-J, Xu,W.-F. (2007). A signal processing method 

based on AFF and SGA for Coriolis mass flowmeters. 

Acta Metrologica Sinica, 28 (1), 48-51. 

[10] Tu, Y.-Q., Zhang, H. (2008). Method for CMF signal 

processing based on the recursive DTFT algorithm with 

negative frequency contribution. IEEE Transactions on 

Instrumentation & Measurement, 57 (11), 2647-2654. 

[11] Vucijak, N.M., Saranovac, L.V. (2010). A simple 

algorithm for the estimation of phase difference 

between two sinusoidal voltages. IEEE Transactions on 

Instrumentation & Measurement, 59 (12), 3152-3158. 

[12] Yang, H., Tu, Y., Zhang, H., Peng, Y. (2012). Phase 

difference measuring method based on SVD and Hilbert 

transform for Coriolis mass flowmeter. Chinese Journal 

of Scientific Instrument, 33 (9), 2101-2107. 

[13] Liu, W.L., Zhao, L., Wang, K.Y., Feng, Z.H., Long, Q. 

(2013). Signal processing for Coriolis mass flowmeter 

based on Hilbert transform. Acta Metrologica Sinica, 34 

(5), 446-451. 

[14] Tu, Y., Yang, H., Zhang, H., Liu, X. (2014) . CMF 

signal processing method based on feedback corrected 

ANF and Hilbert transformation. Measurement Science 

Review, 14 (1), 41-47. 

[15] Mallat, S.G. (1989). Multi-frequency channel 

decomposition of images and wavelet models．IEEE 

Transactions on Acoustics, Speech and Signal 

Processing, 37 (12), 2071-2110． 

[16] Dash, P.K., Jena, R.K., Panda, G., Routray, A. (2000). 

An extended complex Kalman filter for frequency 

measurement of distorted signals. IEEE Transactions 

on Instrumentation & Measurement, 49 (4), 746-753. 

[17] Routray, A., Pradhan, A.K., Rao, K.P. (2002). A novel 

Kalman filter for frequency estimation of distorted 

signals in power systems. IEEE Transactions on 

Instrumentation & Measurement, 51 (3), 469-479. 

 

 

 

Received August 16, 2018 

Accepted February 07, 2019

 


