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1. INTRODUCTION

In a previous paper [1] the author has produced a new alge-
braic structure, axiomatically defined, called algebraic space
of quantities, which resembles accurately the algebra struc-
ture of quantity calculus. In that paper there is a review of
past attemps of giving a mathematical framework to quan-
tity calculus and of the motivation to introduce yet another,
different, algebraic structure which is now summarized here.
Despite in the standard approach to quantity calculus (e.g. the
International Vocabulary of Metrology (VIM) [2]) the calcu-
lus focuses on quantities and dimensions as central concepts,
the mathematical approach to the algebraic structure underly-
ing quantity calculus is based on units as the main concept.
In the recent analysis of Kitano [3], for instance, or the first
papers on this model, [4], [5], [6], the model is set up starting
from a set of base units (u1, . . . ,un) and expresses any quan-
tity q in terms of them as

q = α u
r1
1 · · ·urn

n , (1)

where α,r1, . . . ,rn are real numbers. In this equation α is
the numerical value of q with respect to this system of units,
while u

r1
1 · · ·urn

n is the unit in which q is measured. The set
of all units, that is {u

r1
1 · · ·urn

n : ri ∈ R, i = 1, . . . ,n} has the
structure of a vector space over R, written in multiplicative
form. The set of quantities, thus, adopts the form of a family
of rays, each identified and spanned by a unit as in (1) by
letting α run through the reals. The rays coincide in a point,
the zero of the algebraic structure. The numbers (r1, . . . ,rn)
are referred to as the dimensions of the quantity q.

This algebraic structure has served its main purpose: giv-
ing a proof of Buckingham’s Pi Theorem. However, it has

two drawbacks which show it not to be an accurate descrip-
tion of the actual algebraic properties of quantity calculus.
First, it is based on the concept of unit, as all the structure is
built upon a starting set of base units. In fact, quantities are
introduced as objects of the form a number times a unit (just
as Maxwell did over 100 years ago [7]), thus identifying the
concepts of quantity and quantity value, which are well dif-
ferentiated by the VIM. This is quite unsatisfactory, for this
approach blurs the distinction between the system of quan-
tities (such as the ISQ) and the system of units (such as the
SI). This situation has been recognized by several authors in
previous years (see de Boer [8] for an excellent review and
discussion, [9] for a recent one) who have claimed, instead,
for an algebraic structure defined axiomatically and based on
the concept of quantity and of dimension rather than on the
concept of unit, which should be secondary.

The second drawback is the use of real exponents in (1).
They are not necessary. It is a remarkable fact that the laws of
Physics involve dimensionful quantities (in contrast with di-
mensionless quantities) only through three operations: prod-
uct of quantities, product by a scalar, and addition of quanti-
ties of the same kind. Therefore, only integer exponents are
found in physical equations. Some simple examples seem to
prove the previous statement wrong, for instance, the veloc-
ity v of a body of mass m for which the kinetic energy T is
known is given by

v =

√

2T

m
, (2)

so the dimensionful quantity T/m has an exponent 0.5. How-
ever, the dimension of T/m is already a squared one: [T/m] =
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(LT−1)2, so the use of the exponent 0.5 is only, say, acciden-
tal. The period t of a pendulum given its length l and the
acceleration of free fall, g, provides a similar example, for it
is given by

t = 2π

√

l

g
, (3)

but, again, the quantity l/g has a squared dimension, [l/g] =
T

2, so the exponent 0.5 does not provide a dimension with
fractional exponent. A more critical example is a system of
units in which volume is taken as a base quantity and, e.g. the
liter as the corresponding base unit. In that case we should
admit fractional exponents for the derived units for length,
(liter)1/3, or surface area, (liter)2/3. Nevertheless, experience
in measurement science has shown, so far, that a suitable
choice of base quantities is possible which avoids such frac-
tional exponents to define units, and this is the case this paper
wants to support from the mathematical point of view. With
this goal in mind, the allowance of real exponents is unnec-
essarily oversized. It works, of course, since real numbers
contain integer numbers, but it is not the algebraic structure
which best fits the quantity calculus.

The paper [1] addresses these two issues and gives a way
out by defining, in axiomatic form, a new algebraic structure
which resembles, more accurately, the calculus with quanti-
ties (i.e., only integer exponents allowed) and is completely
focused on quantities and dimensions. It starts with the def-
inition of the group of dimensions D as a finitely generated
free Abelian group. Its elements are denoted A,B . . . and are
referred to as dimensions. The identity of the group is denoted
1D .

In the quantity calculus real numbers play a prominent role
as the measurement of a quantity is nothing but its compari-
son with the unit of its kind, and the result is a real number.
This number and the unit make the quantity value. In the def-
inition of the algebraic structure, the role of real numbers is
taken by an abstract field F . Nevertheless, this abstract field
is going to get more specific along the sections of this paper,
first as an ordered field in section 3, then as the real numbers
in sections 4 and 5. With these elements, a summary of the
definition given in [1] is as follows. A space of quantities Q

with group of dimensions D over the field F is a set Q, whose
elements are called quantities, together with a surjective map
dim : Q → D and three operations. For each dimension A,
the set dim−1

A is called a fiber, and the first two operations
are defined within each fiber: addition of quantities and prod-
uct by scalars in the field F . With them, the fiber aquires the
structure of a one-dimensional vector space over F . In addi-
tion, the whole set Q has a product, the third operation, with
respect to which it is an Abelian monoid; the neutral element
is 1Q. As the three operations and the map dim are related
by, first, dim is a homomorphism with respect to the product
in Q, second, distribution of the product over the addition in
each fiber and, third, association of the product of quantities
and product by a scalar. The structure is referred to as an

algebraic fiber bundle and denoted by the symbol Q
dim
−→D .

A key and distinctive feature of this structure is that each

fiber has its own zero element. The fiber dim−11D is called
the set of dimensionless quantities or, more appropriately,
quantities of dimension one. This fiber is, in addition to
the structure of vector space, an algebra over F and, in fact,
is naturally isomorphic with F by means of the map F →
dim−11D : α 7→ α1Q, so we identify both whenever needed.

Notice that the structure of the fibers as one dimensional
vector spaces cannot be the ultimate model of quantity calcu-
lus, for it does not fit properly to quantized quantities. If a
quantity is quantized, the corresponding fiber should not be
the whole vector space, but a discrete subset of it. However,
this issue will not be dealt with in this paper.

A system of units is a section of the fiber bundle, that is,
a map σ : D → Q such that dim ◦σ = idD . The system is
coherent if σ is a group homomorphism, and it is nonzero if
σ(A) is not a zero for any dimension A. In [1] the conditions
for its existence are established.

In this paper we only consider spaces of quantities free of
zero divisors. Two advantages from such a choice are: (i)
every nonzero quantity has an inverse and (ii) there exists a
nonzero coherent system of units. So we also assume without
further notice that such a system is always available and all
systems of units considered are nonzero and coherent.

When a coherent nonzero system of units σ is defined in a
space of quantities then we have the map ν : Q → F (where
we identify the fiber of dimensionless quantities with F) de-
fined by

ν(q) = qσ(dim(q))−1, (4)

which assigns to a quantity q its numerical value with respect
to the system of units σ ; it is a homomorphism. Notice that
the composition σ ◦ dim : Q → Q gives the unit in the fiber
of each quantity. Then, a quantity q is written in terms of a
system of units as

q = ν(q)σ ◦dim(q). (5)

With the units at hand paper [1] explores the way in which
quantities and the operations among them are expressed in
terms of the units. Ways to create new spaces from old ones
(subspace, tensor product, quotient space) are also explored
and, finally, the tool for comparison is defined, the homomor-
phism of spaces of quantities, and utilized to give a character-
ization theorem of these structures. Finally, it is demonstrated
that any such structure, given a system of units, is isomorphic

with the projection fiber bundle F ×D
dim
−→D .

As can be seen, paper [1] merely defines and develops the
algebraic tools. Now it is the time to apply them to give a
sound justification to the two main uses of quantity calculus
beyond the algebraic operations: dimensional analysis and
differential and integral calculus. However, before address-
ing these two questions, a bit more of structure is needed over
the algebraic base: an order structure. And also a tool that
appears once and again along the paper: changes of units.
Therefore, the layout is the following: changes of units are
treated in section 2, and the order structure in section 3. Sec-
tion 4 deals with dimensional analysis and states and proves
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the Pi-theorem in this context. Finally, in section 5, the basis
of differential calculus and of integral calculus with quantities
is established.

2. CHANGE OF UNITS

In this section we study the way to change from a sys-
tem of units to another, that is, a change of scale. Con-
sider two systems of units σ1 and σ2. The quantity q can
be expressed in terms of both of them according to (5)
as q = ν1(q)σ1(dim(q)) = ν2(q)σ2(dim(q)). The quantity
σ2(dim(q)) is not zero, so it has an inverse and we can solve
for ν2(q) as

ν2(q) = σ1(dim(q))σ2(dim(q))−1 ν1(q), (6)

which is the conversion formula between the numerical val-
ues with respect to both systems of units. The number
σ1(dim(q))σ2(dim(q))−1 is the conversion factor, or scale
factor, for the fiber of q. Notice that this equation seems dif-
ferent from the usual conversion factor formula, which would
read σ1 = (ν2/ν1)σ2; however, this form is not useful for
mathematical purposes because ν1 may be zero, and thus di-
vision is not allowed. On the other hand, σ2 is always nonzero
by definition, so the division is safe.

The association of the scale factor with each fiber (equiva-
lently, with each dimension in D) is a group homomorphism,
and the converse is also true:

Proposition 2.1. Given two systems of units σ1 and σ2,

the scale factor map χ : D → F∗ defined by χ(A) =
σ1(A)σ2(A)

−1 is a group homomorphism. Conversely, given

a group homomorphism χ : D → F∗ and a system of units σ ,

the map σ̃ : D → Q defined by σ̃(A) = χ(A)σ(A) is a system

of units.

PROOF. For the direct statement, let A and B be dimensions
in D . Then

χ(AB) = σ1(AB)σ2(AB)
−1 =

σ1(A)σ1(B)(σ2(A)σ2(B))
−1 =

σ1(A)σ2(A)
−1σ1(B)σ2(B)

−1 = χ(A)χ(B),

because both, σ1 and σ2 are group homomorphisms and all
the products are commutative.

For the converse we have to prove σ̃ is (i) a section of Q,
(ii) nonzero, and (iii) coherent.

i. Let A be a dimension. Then

dim◦ σ̃(A) = dim(χ(A)σ(A)) =

dim(χ(A))dim(σ(A)) = 1DA= A,

where we have identified the number χ(A) with a dimen-
sionless quantity. Since A is arbitrary, dim◦ σ̃ = idD .

ii. Since χ(D)⊂ F∗ and σ is nonzero, clearly σ̃ is nonzero
as well.

iii. Let A and B be dimensions. Then

σ̃(AB) = χ(AB)σ(AB) =

χ(A)χ(B)σ(A)σ(B) = σ̃(A)σ̃(B),

because both, χ and σ are group homomorphisms and
the commutativity of the products.

Let us go a step further by considering the set G of all scale
factor maps χ : D → F∗. Let χ ,ξ be two such maps; we can
define a product in G componentwise, that is, for a dimen-
sion A, (χξ )(A) = χ(A)ξ (A). With this product the set G

is an Abelian group, the identity element is the map A 7→ 1,
i.e. with all scale factors 1, and the inverse element of χ is
χ−1(A) = χ(A)−1. We refer to this group later in section 3.

3. ORDER STRUCTURE IN A SPACE OF QUANTITIES

We all agree that 3 kg is a greater mass than 2 kg, and that
3 kg and 5 m/s are not comparable. These examples show that
the addition of an order relation to the algebraic structure of
a space of quantities must be studied in order to complete the
mathematical model of quantity calculus. And it also warns
us that the order needs not be complete, but a partial order.

The order we are about to define is borrowed from an order
in the base field F so, in this section, F is assumed to be an
ordered field, such as Q or R, and the order relation in the
field is denoted by <.

The first step is to define what we understand by an order
relation compatible with the algebraic structure of a space of
quantities.

Definition 3.1. An ordered space of quantities Q
dim
−→D over

the ordered field F is a space of quantities with an order re-

lation ≺ in Q such that:

i. In each fiber there is a quantity greater than the zero of

the fiber.

ii. Let a1, a2, a3 be quantities in the same fiber. If a1 ≺ a2

then a1 +a3 ≺ a2 +a3.

iii. Let a and b be quantities and γ a scalar number in F. If

a ≺ b and γ > 0, then γa ≺ γb and, if a ≺ b and γ < 0,

then γb ≺ γa.

iv. Let a, b and c be quantities, dim(c) = C. If a ≺ b and

0C ≺ c then ac ≺ bc.

Remarks: The first item of the definition is needed because,
as noticed above, the order relation needs not be a total order,
so we want at least to be able to make a comparison inside
each fiber. A quantity that is greater than the zero of its fiber
is called positive. The remaining three items are the compat-
ibility conditions with each of the three operations in Q. The
second part of item (iii) is not needed in a fiber, for it can
be deduced from (ii), but that is not the case when it applies
to the comparison of quantities of different dimensions, since
addition among them is not defined.

A number of immediate consequences follows from the
previous definition.
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Proposition 3.2. Let Q
dim
−→D be an ordered space of quanti-

ties over the field F. Then

i. The fiber of dimensionless quantities is naturally order

isomorphic with F.

ii. Each fiber is order isomorphic with F.

iii. Zeros of different fibers are not comparable.

iv. The rule of signs applies to the product of quantities

v. If a quantity is positive, its inverse is also positive (in its

corresponding fiber).

PROOF. i. Remember that the natural map between the
field F and the fiber of dimensionless quantities F →
dim−1(1D ) : α 7→ α1Q is an isomorphism of algebras,
so we only need to prove it preserves the order. By (i)
in definition 3.1, there is α ∈ F such that 01D

≺ α1Q,
so α 6= 0. Assume α < 0 in F , then −α−1 > 0 and so,
by (iii) in the same definition, 01D

≺−α−1α1Q =−1Q,
therefore 1Q ≺ 01D

. Multiply the later by the positive
quantity −1Q and get −1Q ≺ 01D

, a contradiction with
the antisymmetry of the order relation. If, on the con-
trary, α > 0 then so is α−1 and, by the same argument,
we get 01D

≺ 1Q.

ii. Let A be a dimension in D and a a positive quantity in
the fiber of dimension A. The map F → dim−1(A) : α 7→
αa is an order isomorphism (in fact, it is also a linear
isomorphism) for, if α1 < α2 in F , then 0 < α2 − α1

so we can multiply in 0A ≺ a and get 0A ≺ (α2 −α1)a.
Now, by (ii) in the definition 3.1, we conclude α1a ≺
α2a, so the linear isomorphism preserves the order.

Notice this item is different from the first one because
the isomorphism is not canonical; it depends on the arbi-
trarily chosen quantity a. Now we can denote as positive
all quantities greater than zero in a fiber, and as negative
their negatives, which are less than zero. And we can
also define the absolute value of a quantity q as |q| = q

if q is positive or zero, or |q|=−q in case it is negative.

iii. Let A and B be different dimensions. We already know
0A 6= 0B because dim(0A) = A 6= B= dim(0B). Assume
0A ≺ 0B. Then, after multiplication by −1, by (iii) in
the definition, we get 0B ≺ 0A, a contradiction with the
antisymmetry of the order relation..

iv. Let a and b be positive quantities of dimensions A and
B respectively. Then, by (iv) in the definition, 0AB ≺ ab.
Now, if both quantities were negative, then by (iii) in
the same definition, −a and −b are positive, so 0AB ≺
(−a)(−b) = ab. Similarly, in the cases of different signs
we get ab ≺ 0AB.

v. Let a be a positive quantity with dim(a) = A. Since it
is not zero, it is invertible and a−1 is not zero as well
so, by the second item of this proposition, it is greater
or less than 0

A−1 . In the later case, multiplication by the
positive quantity a yields 1Q ≺ 01D

, a contradiction.

In the following considerations there is no need to distin-
guish the symbols ≺ (order in Q) from < (order in F) for we
have seen they share the same properties, so we only use the
more familiar < for both. Nevertheless, the context always
makes it clear which is the case.

In the definition of an ordered space of quantities there is
nothing to prevent a comparison of quantities of different di-
mensions. We now turn to study this issue to see that, al-
though the algebraic and order structures can hold such a
comparison, the consequences are far from what it is desir-
able for a quantity calculus. As we can see in the following
paragraphs, all the discussion can be reduced to the fact that
zeros of different fibers are not comparable (third item of the
previous proposition).

Let us assume there are quantities a and b, with dim(a) =
A 6= B= dim(b) such that a < b. We can assume 0B < b, oth-
erwise choose a quantity b′ greater than 0B and, by transitivity
of the order, a < b < b′, so a < b′ as desired.

Now, regarding a, consider the two possibilities either 0A <
a or a < 0A. In the first case, again by the transitivity of the
order relation, we get

0A < b. (7)

Define the sets B± = {x ∈ dim−1(B) : 0A ≶ x}. It is easy to
see that any b′ such that 0B < b′ is in B+, because b′ = βb

for some number β > 0 so, after multiplication in (7), we
get 0A < βb = b′. Also, multiplication of (7) by −1 gives
−b < 0A and then, by a similar argument, if b′ < 0B then b′ is
in B−. In other words, for any b′ such that 0B < b′ we have
−b′ < 0A < b′.

But this does not necessarily mean that there are quantities
of dimension B as close to 0A as desired, for it may be the case
that a′ < b′ for any quantity a′ with dimension A and any pos-
itive quantity b′. In this later case, the whole fiber dim−1(A)
lies above negative elements of dim−1(B) and below posi-
tive elements of dim−1(B). However, while 0A is comparable
with all elements of the fiber of B (except its zero), 0B is com-
parable with no element at all of the fiber of A.

To explore another scenario, assume in addition that there
is a′ in dim−1(A) which is greater than b, so we have a <
b < a′. By transitivity we get 0B < b < a′ so the same argu-
ment can be utilized here and define the sets A ± of elements
in dim−1(B) greater or less, respectively, than 0B. Moreover,
since we also have 0A < b < a′, let a′′ be any positive quantity
in dim−1(A), then a′′ = αa′ for some number α > 0 so, after
multiplication by α , 0A < αb < αa′ = a′′, i.e. we can find
an element in the fiber of B between 0A and any positive ele-
ment in the fiber of A. The same applies to negative elements.
Therefore, in this case we can say that there are elements in
dim−1(B) as close to 0A as we desire. Even more, the closer
an element in the fiber dim−1(B) is to 0B, the closer it is to
0A. However, 0A and 0B remain uncomparable.

A similar discussion can be made in the case a< 0A, 0B < b

and a < b, leading to similar conclusions.
Since the scenarios depicted by such ordinations of quan-

tities of different dimensions are not in accordance with the
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actual use of quantity calculus in Physics, in the remaining we
only consider order structures in which quantities of different
dimensions are not comparable. Notice that, by item (ii) of
the proposition 3.2, in this case the order is characterized by
defining an element in each fiber as positive, i.e. giving an
orientation to each fiber. But this choice is bound with alge-
braic restrictions. For instance, either if we choose a quantity
a, with dimension A, to be positive or we choose −a to be
positive, in both cases a2 is a positive quantity in the fiber of
A

2. Thus, we are free to choose an orientation only for the
fibers of a basis in the group of dimensions. This fact gives
full meaning to the following definition.

Definition 3.3. An ordered space of quantities Q
dim
−→D is

oriented by a system of units σ if, for any dimension A, 0A <
σ(A), that is, if all units are positive in their respective fibers.

All the previous definitions can be summarized by saying
that the bundle’s fibers are 1-dimensional positively oriented
linearly ordered vector spaces.

If a space of quantities is oriented by a system of units then
the order relation is translated to the numerical values of the
quantities with respect to the system of units, which is the
usual practice, as seen in the following proposition.

Proposition 3.4. Let Q
dim
−→ D be oriented by the system

of units σ and let a1 and a2 be quantities with dim(a1) =
dim(a2) = A. Then a1 < a2 if and only if ν(a1)< ν(a2).

PROOF. For the only if part, let a1 < a2 and remember
that these quantities are written in terms of the system of
units as ai = ν(ai)σ(A), i = 1,2, so we have ν(a1)σ(A) <
ν(a2)σ(A). Since 0A < σ(A) by hypothesis then, by propo-
sition 3.2, σ(A)−1 is positive, so we can multiply and get
ν(a1)< ν(a2).

Conversely, if ν(a1)< ν(a2), just multiply by the positive
quantity σ(A) to get a1 < a2.

In fact, this is the common way to define an order in a space
of quantities, by setting units and regarding them as positive.
It is easy to check that an order defined as in the previous
proposition satisfies the conditions of definition 3.1 of an or-
dered space of quantities. In the following we write “an order
defined by σ” or “an order with respect to σ” as equivalents
to “an ordered space oriented by σ”.

We have seen that a system of units fixes an order structure
in a space of quantities. Since systems of units are arbitrarily
chosen (from the algebraic viewpoint), we want to explore
to what extent this arbitrariness extends to the allowed order
structures in a space of quantities. To that end we make use of
the group structure of G , the group of scale factor maps, that
is, changes of units. First remember that the ordered field F

can be split as the disjoint union F = F+ ∪{0}∪F−, where
F+ is the so called positive cone of F , that is, the elements
α > 0, and F− = −F+. If we look at the group structure of
F∗ = F+∪F−, we easily discover that F+ is a subgroup and
the quotient F∗/F+ ∼=C2, the cyclic group of order 2, which
is the group theoretical formulation of the rule of signs.

Let σ and σ̃ be two systems of units. Then there is a
scale factor map χ : D → F∗ which relates them in the form

σ̃(A) = χ(A)σ(A) for A∈D . The orders defined by σ and σ̃
in each fiber, denoted < and <̃, respectively, are easily related
by the following proposition.

Proposition 3.5. In the fiber dim−1(A) the orders < and <̃
are the same if χ(A)> 0 or reversed if χ(A)< 0.

PROOF. Let a1,a2 be quantities in the fiber dim−1(A) such
that a1 < a2 with respect to a system of units σ , that is a1 =
α1σ(A) and a2 = α2σ(A) with α1,α2 ∈ F and α1 < α2 in
F . With respect to another system of units σ̃ we have a1 =
α1χ(A)−1σ̃(A) and a2 = α2χ(A)−1σ̃(A). Now, if χ(A)> 0
so is χ−1(A) and, thus, α1χ(A)−1 < α2χ(A)−1, so a1<̃a2,
while if χ(A)< 0 the opposite is the case and a2<̃a1.

Let us denote a scale factor map χ : D → F∗ positive if
χ(D) ⊂ F+, and let us denote by G+ the subset of all such
maps in G . A positive map, thus, is a change of scale which
does not change the orientation of any fiber, so it does not
alter the order structure. The set G+ is a subgroup of G and
the quotient group encloses the freedom in the ordering pos-
sibilities for the space of quantities as stated in the following
proposition.

Proposition 3.6. Let Q
dim
−→D be a space of quantities of rank

n over the ordered field F, let G be the group of scale factors

maps and G+ the subset of positive maps. Then

i. G ∼= F∗×·· ·×F∗ (n copies),

ii. G+ is a subgroup of G ,

iii. G+ ∼= F+×·· ·×F+ (n copies),

iv. G/G+ ∼=C2 ×·· ·×C2 (n copies).

PROOF. An element χ in the group G is determined by
n nonzero numbers (α1, . . . ,αn) in F for, given a basis
{A1, . . . ,An} of the dimension group D , the rule χ(Ai) = αi,
i= 1, . . . ,n, defines χ completely and viceversa, which proves
item (i).

The identity of the group G is clearly a positive map and,
if χ and ξ are positive maps, so is its product for (χξ )(A) =
χ(A)ξ (A)> 0 for any A ∈ D , so G+ is a subgroup.

The same argument of the first item applies to prove that
G+ is isomorphic with the direct product of n copies of the
positive elements of F∗.

Finally, G /G+ ∼= (F∗)n/(F+)n ∼=C2 ×·· ·×C2 or in other
words, G /G+ is an elementary Abelian 2-group.

The order of the quotient group is, thus, |G /G+| = 2n,
which is the freedom in choosing orientations of the fibers
(we have the freedom to choose the orientation of n fibers,
those of a basis in D : n choices of two orientations gives 2n

total choices).
Notice that this freedom cannot, and must not, be reduced,

for it is necessary in the actual application of quantity cal-
culus. Perhaps the clearest example of an arbitrary choice
of orientation is that of electric charge (equivalently, electric
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current, as in the SI). It is completely arbitrary that the charge
of the proton has been chosen to be positive and the charge of
the electron to be negative, and the physics involved do not
change if we switch the signs of the charges.

4. DIMENSIONAL ANALYSIS

In this section we assume the base field F to be R, the set
of real numbers.

Dimensional analysis is traditionally rooted in two re-
sults known as Bridgman’s theorem [10] and Buckingham’s
Pi-theorem [11]. However, the result of Bridgman is un-
necessary in the present context, let us explain why. In
his book, Bridgman distinguishes between primary and sec-
ondary quantities. The former are those which can be directly
measured, such as length or time. The later are those com-
puted from primary quantities, for instance velocity. The re-
sult of Bridgman states that, if q1, . . . ,qn are primary quanti-
ties, any secondary quantity obtained from them has the form
αq

r1
1 · · ·qrn

n , where α,r1, . . . ,rn are real numbers (as in (1)).
This is another reason for the general acceptance of the so
far established model of quantity calculus discussed in the
introduction. Notwithstanding, in the context of a space of
quantities as understood in this paper this is not necessary be-
cause it is included in the axioms of the algebraic structure.
Moreover, in that definition the only operations considered
between quantities are product, product by a scalar, and ad-
dition of quantities of the same kind. Therefore, an expres-
sion like that of Bridgman is not permitted unless the expo-
nents of the quantities are integer numbers. It is a matter of
fact that equations of Physics involve only expressions of the
form αq

m1
1 · · ·qmn

n , where α ∈ R but m1, . . . ,mn ∈ Z. Indeed,
the description of a theory of quantity calculus with integer
exponents instead of real ones is one of the leitmotifs of the
present paper and its predecessor [1].

Therefore, we are left only with the task of stating and
proving the Pi-theorem in the context of the present alge-
bra structure of quantity calculus. The first step towards
such a theorem is the concept of dimensionally homoge-
neous equation, which seems to have been conceived firstly
by Fourier [12] and succesfully employed by Reynolds [13]
or Rayleigh [14]. The naive idea is that all the terms in a valid
equation of Physics must have the same dimensions. Another
approach says that such an equation, which describes a law
of nature, must be invariant under changes in the system of
units, which is arbitrary. We take the later path to define the
concept of dimensional homogeneity, that is, we consider ho-
mogeneity as a kind of symmetry for it states an invariance
property under suitable transformations.

The mathematical tool for dealing with symmetries is the
group theory. In sections 2 and 3 a change of units has been
characterized by a group homomorphism χ : D → F∗, called
a scale factor map, and the set of all those maps are gathered
together in the group G . In a fiber dim−1(A), the new unit
is obtained from the previous by multiplication by the fac-
tor χ(A), while the numerical values of quantities get multi-
plied by χ(A)−1; the quantities themselves are not modified.
The same numerical values are obtained if we multiply all

the quantities in the same fiber by the factor χ(A)−1 and re-
fer them to the same original unit, so we take advantage of
the later to define an action of the group G on the space of
quantities Q. For a quantity q, denote by χ [q] the action of
χ ∈ G on q, defined as χ [q] = χ(dim(q))−1q. It is an action
for the identity in G given by 1G [q] = q and, given two maps
χ ,ξ ∈ G we have

χ [ξ [q]] = χ
(

dim
(

ξ (dim(q))−1q
))−1 ξ (dim(q))−1q =

χ(dim(q))−1 ξ (dim(q))−1q = (χξ )[q],

because dim(ξ (dim(q))−1q) = dim(q). Now assume the
quantities a1, . . .al ,b, with dimensions dim(ai) = Ai, i =
1, . . . , l, dim(b) = B, are related by a formula such as
f (a1, . . . ,al) = b. We define the concept of homogeneity in
terms of the map f and the action of G just introduced..

Definition 4.1. Let A1, . . . ,Al ,B be dimensions in D . A map

f : dim−1(A)×·· ·×dim−1(Al)→ dim−1(B) is dimensionally

homogeneous if it commutes with the action of the group G in

the space of quantities. That is, for any χ ∈G and any ai ∈Ai,

i = 1, . . . , l,

f (χ [a1], . . . ,χ [al ]) = χ [ f (a1, . . . ,al)].

Lemma 4.2. Let f : dim−1(A) × ·· · × dim−1(Al) →
dim−1(B) be a homogeneous nonzero map and let

{A1, . . . ,Ak}, after reordering if necessary, be a maxi-

mal independent subset of {A1, . . . ,Al}. Then the set

{A1, . . . ,Ak,B} is not independent in D , that is, there are in-

teger numbers n,n1, . . . ,nk such that

B
n = A

n1
1 · · ·A

nk
k .

PROOF. Assume the contrary, i.e. {A1, . . . ,Ak,B} is an in-
dependent set in D . Let a1, . . . ,al ,b be quantities of the ap-
propriate dimensions: dim(ai) = Ai, i = 1, . . . , l, dim(b) = B,
such that b = f (a1, . . . ,al) 6= 0. By the assumption we can
choose arbitrary scalars in F∗, α1, . . . ,αk,β and find a group
homomorphism χ : D → F∗ such that χ(Ai) = αi, i = 1, . . . ,k
and χ(B) = β . Take, for instance, α1 = · · ·= αk = 1, β = 2.
Then the action of χ on the quantities involved is χ [ai] = ai,
i = 1, . . . , l (for the cases i > k, there is a relationship be-
tween Ai and A1, . . . ,Ak, so we can choose χ(Ai) = 1 as well),
χ [b] = 1

2 b. Now, since the map f is homogeneous we find

b = f (a1, . . . ,al) = f (χ [a1], . . . ,χ [al ])

= χ [ f (a1, . . . ,al)] =
1
2

b,

a contradiction.

We also need a lemma on the extraction of nth roots of
suitable quantities.

Lemma 4.3. Let Q
dim
−→D be an ordered space of quantities

over R oriented by a system of units σ , let A ∈D be a dimen-

sion and q a quantity with dim(q) = A
n, n an integer number.
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i. If n is an odd integer there exists a quantity a, with

dim(a) = A, such that an = q.

ii. If n is an even integer and q is positive there exists a

quantity a, with dim(a) = A, such that an = q.

PROOF. The hypothesis on q allows us to write q = βσ(An),
where β ∈ R and, in case (ii), β > 0. In both cases, there

exists in R the nth root of this number, say β 1
n , and we just

define a = β
1
n σ(A).

The point in the previous lemma is to understand to what
extent the condition on q being positive in case (ii) is not an
empty one, since the orientation of fibers is dependent on
the system of units, which is arbitrary. However, the orien-
tation of the fiber with dimension A

n is not arbitrary when
n is even. Consider two systems of units, σ and σ̃ which
give different orientations to the fiber with dimension A, say
σ̃(A) =−σ(A). Then σ̃(An) = σ̃(A)n = (−σ(A))n = σ(An)
so the fiber dim−1(An) has only one possible orientation.

We are now ready to state and prove the Pi-theorem.

Theorem 4.4 (Pi-theorem with integer exponents). Let Q
dim
−→

D be an ordered space of quantities over the field R oriented

by a system of units. Let A1, . . . ,Al ,B ∈ D be dimensions

and {A1, . . . ,Ak}, after reordering if necessary, be a maximal

independent subset of {A1, . . . ,Al}.

If f : dim−1(A1)× ·· · × dim−1(Al) → dim−1(B) is a ho-

mogeneous map and a1, . . . ,al are positive quantities in their

respective fibers, dim(ai) = Ai, i = 1, . . . , l, then there are in-

teger numbers n,n1, . . . ,nk and a function g : Rl−k → R such

that

f (a1, . . . ,al) =
(

a
n1
1 · · ·a

nk
k

)
1
n g(πk+1, . . . ,πl),

for suitable real numbers πk+1, . . . ,πl .

The real numbers πk+1, . . . ,πl are the l − k independent di-
mensionless quantities that can be constructed with the orig-
inal quantities a1, . . . ,al (the so called pi-groups which give
the name to the theorem).

PROOF. By the hypothesis for each A j not in the subset
{A1, . . . ,Ak} there are integer numbers m j,m j1, . . . ,m jk such
that

A
m j

j = A
m j1
1 · · ·A

m jk

k , k ≤ j ≤ l. (8)

By lemma 4.2 there are integer numbers n,n1, . . . ,nk such that

B
n = A

n1
1 · · ·A

nk
k . (9)

For each j = k+1, . . . , l define

π j = a j

(

a
−m j1
1 · · ·a

−m jk

k

)
1

m j , (10)

which is well defined because, by (8), the quantity
a
−m j1
1 · · ·a

−m jk

k has dimension A
−m j

j and so the m jth root does
exist. The dimension of π j can be thus computed as

dim(π j) = dim(a j)dim

(

(

a
−m j1
1 · · ·a

−m jk

k

)
1

m j

)

= A jA
−1
j = 1D ,

so it is dimensionless.
Now, in order to take advantage of the homogeneity of f

we define a suitable scale factor map χ : D → R∗. Since
{A1, . . . ,Ak} is independent in D we can certainly choose
arbitrarily k nonzero real numbers as image of χ(Ai), i =
1, . . . ,k. Let us take χ(Ai) = ν(ai), i = 1, . . . ,k, where ν
is the map defined in (4). Then the action of χ is χ [ai] =
ν(ai)

−1ai = σ(Ai), the unit in the fiber, for i = 1, . . . ,k. How-
ever, for j = k+1, . . . , l the result is different, for

χ(A j)
m j = χ(Am j

j ) =

χ(Am j1
1 · · ·A

m jk

k ) = χ(A1)
m j1 · · ·χ(Ak)

m jk =

ν(a1)
m j1 · · ·ν(ak)

m jk = ν(am j1
1 · · ·a

m jk

k )

since both, χ and ν , are homomorphisms.
From (10) we have a

m j

j = πm j

j a
m j1
1 · · ·a

m jk

k . Therefore

χ(A j)
m j = ν(π−m j

j a
m j
j ) = π−m j

j ν(am j
j ) which is a positive

real number, so we conclude

χ(A j) = π−1
j ν(a j), j = k+1, . . . , l (11)

and the action is

χ [a j] = π jν(a j)
−1a j = π jσ(A j), j = k+1, . . . , l. (12)

With a parallel argument we arrive at

χ(B) = (ν(a1)
n1 · · ·ν(ak)

nk)
1
n , (13)

so the action on b is

χ [b] = (ν(a1)
n1 · · ·ν(ak)

nk)
−1
n b (14)

which is equal, by the homogeneity of f , to

f (χ [a1], . . . ,χ [ak],χ [ak+1], . . . ,χ [al ])

= f (σ(A1), . . . ,σ(Ak),πk+1σ(Ak+1), . . . ,πlσ(Al)). (15)

Define the real function g : Rl−k → R by

g(πk+1, . . . ,πl)

=σ(B)−1 f (σ(A1), . . . ,σ(Ak),πk+1σ(Ak+1), . . . ,πlσ(Al)).
(16)

The right hand side of (16) lies in the fiber of dimensionless
quantities which, once again, is identified with the base field
R. Now, by (14) and (15) and bringing together (9) and (16)
we find

f (a1, . . . ,al) = b =

(ν(a1)
n1 · · ·ν(ak)

nk)
1
n ×

f (σ(A1), . . . ,σ(Ak),πk+1σ(Ak+1), . . . ,πlσ(Al)) =

(ν(a1)
n1 · · ·ν(ak)

nk)
1
n σ(B)g(πk+1, . . . ,πl) =
(

a
n1
1 · · ·a

nk
k

)
1
n g(πk+1, . . . ,πl).
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5. DIFFERENTIAL AND INTEGRAL CALCULUS

Differential and integral calculus are, possibly, the most
important mathematical tools in Physics. Therefore, their use
with quantities has to be justified in the context of a space of
quantities. The first step, however, is to provide the space of
quantities with a topology so that the concept of limit can be
properly handled. Since all these concepts make sense in a
complete field and we want also to preserve the order struc-
ture, we need a complete ordered field as base field, that is,
the field of real numbers so, in this section, it is also assumed
F = R.

Since the definition of a space of quantities Q
dim
−→D is

purely algebraic, the only hint to impose a topology on it is
that the operations in Q be continuous maps, as well as the
projection map, dim, on the group of dimensions D .

We also want to take advantage of the order structure de-
fined in section 3. Remember that the standard topology of
R can be thought of as induced by its order, so the same can
be applied to each fiber. With this topology the operations of
addition and product by scalar numbers are both continuous
as they are in R.

On the other hand, the fibers which make the space of quan-
tities are bound by the algebraic properties which are sum-
marized in the group structure of the group of dimensions
D . This is, by definition, a finitely generated free Abelian
group. There are several topologies that can be assumed in
the group D which make it into a topological group, but we
choose to endow it with the discrete topology because, first,
it is the choice coherent with our previous choice of discard-
ing an order relation among quantities of different dimensions
and, second, it enables us to state and prove proposition 5.1
which is quite a natural result to be expected.

Finally, in [1] it is shown that a space of quantities Q
dim
−→

D over the field R is algebraically isomorphic with D ×R

with suitable operations defined therein. This is to say, Q

can be seen as a trivial fiber bundle with base D and fiber R.
Therefore, it is only natural to assume as topology for Q the
product topology in D ×R. Accordingly to the previous two
paragraphs, a base for this topology is that of open intervals
in each fiber. The map dim : Q → D is trivially continuous.
Thus, the space of quantities can be described in this respect
as a bundle whose fibers are 1-dimensional positively oriented
linearly ordered order-topological vector spaces.

Now we consider quantities as variables in order to define
maps and deal with them towards the definition of derivative.
A variable quantity often depends on a real parameter, so we
consider first this case and study the conditions for such a map
to be continuous. The first proposition shows that a continu-
ous map in Q must lie on a single fiber.

Proposition 5.1. Let f : R → Q be continuous. Then f (R)
lies in a single fiber of Q.

PROOF. Let us prove the equivalent statement: if f (R) is
not contained in a single fiber, then f is not continuous.
Let x,y be real numbers such that dim( f (x)) 6= dim( f (y))
and assume x < y. Define the subset of R of the numbers
less than y and with image by f in the same fiber that x,

S = {z ∈ R : dim( f (z)) = dim( f (x)) and z < y}, which is a
nonempty set (x ∈ S) and with upper bound y. Denote y0 the
least upper bound of S, which is an accumulation point of S,
and consider the following two possible choices.

First, if y0 ∈ S, then y0 < y and dim( f (y0)) = dim( f (x)) =
A. We now show that the inverse image of the set {A}, which
is open in D , by the map dim ◦ f is not open in Q, for y0 is
in that inverse image but it is not an interior point. In fact,
any open ball in the fiber centered on y0 and radius less than
|y− y0| contains points not in S and not in (dim ◦ f )−1(A).
Therefore, dim ◦ f is not a continuous map, and so is f be-
cause dim is continuous.

Second, if y0 /∈ S, apply the same argument to the com-
plementary set of {A} in D , which is again an open set. Its
inverse image by dim ◦ f contains y0 which, again, is not an
interior point.

Therefore, a necessary condition for a map f : R→ Q to be
continuous is that f (R) is contained in a single fiber in Q.

It is also usual to consider a variable quantity as a parame-
ter for another, e.g. time as parameter for the length travelled
by a moving particle. Since any single fiber is homeomorphic
with R, the previous proposition applies to this case as well.
It is stated in the following corollary.

Corollary 5.2. Let A be a dimension in D and dim−1(A) its

fiber in Q. If a map f : dim−1(A)→ Q is continuous, then its

image is contained in a single fiber of Q.

In the following, we only consider maps of the form f :
R→ dim−1(B) or f : dim−1(A)→ dim−1(B), which include
all continuous maps, so in fact we are considering maps of
the form R → R and, thus, differential and integral calculus
can be readily established. But before we give a definition of
derivative and of integral with quantities it proves useful to
point how limits of functions can be dealt with in the fashion
of metric spaces. Once we have adopted a topology in Q the
concept of limit of a map in Q is established. Nevertheless,
the following lemma states that the definition of limit in Q

can be reduced to that in R due to that topology.

Lemma 5.3. Let A,B be dimensions in D , a,b quantities with

dim(a) = A, dim(b) = B, and f : dim−1(A) → dim−1(B) a

map. The limit of f at a is b if for any positive quantity ε with

dim(ε) = B, there is a positive quantity δ with dim(δ ) = A,

such that, given a′ ∈ dim−1(A), if |a′− a| < δ then | f (a′)−
b|< ε .

PROOF. A basis for the topology in Q is obtained from the
product of a basis in D (single elements) and a basis in R

(open intervals or balls); we get, thus, open intervals in each
fiber. Now apply the standard definition of limit in a given
topology, but take into account that any open set containing a

can be substituted by an open ball in the fiber dim−1(A) cen-
tered in a, and the same applies for b. An open ball centered
on a is described a |a′−a| < δ , while the open ball centered
on b can be described as |b′−b|< ε , so the lemma follows.

For the sake of completeness the definitions of the deriva-
tive and of the integral follow.
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Definition 5.4. Let Q
dim
−→D be a space of quantities over the

field R, let A,B be dimensions in D and let f : dim−1(A)→
dim−1(B) be a map. The map f is differentiable at a ∈
dim−1(A) if the following limit exists

lim
h→0A

f (a+h)− f (a)

h
,

where dim(h) = A. In such case, the value of the limit is

denoted f ′(a) and referred to as the derivative of f at a.

The definition shows, in addition, that the dimension of the
derivative is that of the image of the map times the inverse of
the independent variable quantity:

dim( f ′(a)) = dim( f (a))dim(a)−1 = BA
−1.

Starting from this definition the rest of the differential cal-
culus in R can be traslated step by step to Q straighforward,
so we will not go further into it here.

Now we turn to the definition of the integral of a map.
Since the goal is to traslate the concepts defined in R to a
space of quantities, the simpler case of Riemannian definition
of integral suffices to our purposes.

Let [a′, a′′] be an interval in the fiber dim−1(A) and let P =
{a0,a1, . . . ,an}, where a′ = a0 < a1 < · · · < an = a′′, be a
partition of that interval. Let f : dim−1(A)→ dim−1(B) be a
map bounded in [a′, a′′]. For each i = 1, . . . ,n define

mi = inf{ f (a) : ai−1 ≤ a ≤ ai},

Mi = sup{ f (a) : ai−1 ≤ a ≤ ai}.
(17)

The lower and upper sums of f for the partition P are, respec-
tively,

L( f ,P) =
n

∑
i=1

mi(ai −ai−1),

U( f ,P) =
n

∑
i=1

Mi(ai −ai−1).

(18)

Then the properties regarding lower and upper sums with dif-
ferent partitions can be readily proven (see, e.g. [15]) and the
following definition stated

Definition 5.5. Let Q
dim
−→D be a space of quantities over the

field R, let A,B be dimensions in D and let f : dim−1(A)→
dim−1(B) be a bounded map in the interval [a′, a′′] ⊂
dim−1(A). The map f is integrable in that interval if

sup{L( f ,P) : P a partition of [a′, a′′]}=

inf{U( f ,P) : P a partition of [a′, a′′]}.

In such a case, this number is denoted
´ a′′

a′
f (a)da and re-

ferred to as the integral of f in the interval [a′, a′′].

The definition and (18) show that the dimension of the in-
tegral is

dim

(

ˆ a′′

a′
f (a)da

)

= dim
(

∑mi(ai −ai−1)
)

=

dim( f (a))dim(a) = BA.
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