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The uncertainty of measurements associated with the following correction methods: advanced correction of additive linear drift, correction 

of additive and multiplicative effects, as well as joint correction of a linear drift and systematic additive and multiplicative effects is 

analyzed in the present article. For each correction method sensitivity coefficients and amplitude responses according to which noise and 

internal and external interferences influence the corrected measurement result have been determined. Besides uncertainty of reference 

quantities, the main factors which limit the efficiency of correction are: non-linearity of measurement function including non-linearity of 

ADC, no idealities of the switching systems and external and internal noises and periodic interferences. The efficiency of correction of 

systematic additive and multiplicative effects was studied for the multifunction 16 bit PCI DAQ of family NI 6250. 
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1.  INTRODUCTION 

It is generally accepted that in order to ensure the required 

accuracy of measurement result the systematic effects 

(which are presented in measurement) should be corrected. 

Namely, according to GUM [1] “It is assumed that the result 

of a measurement has been corrected for all recognized 

significant systematic effects and that every effort has been 

made to identify such effects”. On the other hand, it is clear 

that the correction of systematic effects cannot be carried 

out in an ideal way as also recognized in the GUM [1]: “The 

result of a measurement after correction for recognized 

systematic effects is still only an estimate of the value of the 

measurand because of the uncertainty arising from random 

effects and from imperfect correction of the result for 

systematic effects”. This statement mentions two main 

reasons for limiting the effectiveness of the correction: the 

impact of random effects and the uncertainty of corrections. 

In [3] from an analysis of the correction of systematic 

effects concludes that: “the true value of a correction should 

be considered as imprecisely evaluable as the true value of 

any ‘input quantity’, and of the measurand itself” and 

“distinction between ‘input quantities’ and ‘corrections’ is 

not justified and not useful”. Since each correction is carried 

out with uncertainty, the effect of the uncertainty of the 

correction must be considered in the same way as the other 

components of the measurement uncertainty [2], [3], [4]. 

One of the possible ways to comply with the GUM 

requirements,  i.e.  to  solve  the  issue  of  the  correction  of 

systematic effects, including the assessment of the 

uncertainty when the result of correction is determined, is to 

treat all systematic and other influenced quantities and 

appropriate corrections equally with the input quantities in 

the functional dependence of the measurand, as in the 

functional relationship for indirect measurement [2], [3], [4]. 

This approach (including all corrections in the measurement 

equation) has been implemented in the present article in 

relation to the analysis of the quality of automatic correction 

of systematic effects in industrial measurements. The 

operating conditions of such measurements are 

characterized by a large range of influence quantities 

changes, power supply instability, and intense noise and 

interference. Sometimes it may turn out that the correction 

of a systematic effect may cause uncertainty greater than 

uncertainty when correction is not used. Then the question 

arises: “Why and when corrections may not be applied” [3]. 

The answer to this question requires a detailed analysis of 

all aspects related to each systematic effect and to all other 

internal and external effects that influence the corrected 

result. The aim of this article is to investigate the frequently 

used correction methods from the point of view of detailed 

analysis of the influence on the corrected result of the 

factors related to the measuring instrument itself, such as: 

quantization effects in ADC, non-linearity of functions, 

parameters of switching systems, as well as uncertainty of 

used reference quantities and the influence of random noise 

and periodic interferences. 
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2.  BRIEF DESCRIPTION OF THE ANALYZED SYSTEMATIC 

INFLUENCES AND METHODS OF THEIR AUTOMATIC 

CORRECTION 

The problem of correction of systematic influences is 

essentially complicated in industrial measurements. Because 

such measurements significantly differ from the 

measurements in specialized metrology laboratories, 

corrections of the systematic effects should often be carried 

out without the direct participation of the operator, i.e. 

automatically and, therefore, without a detailed analysis of 

the specific impact values. In recent decades, the industrial 

measurements are more often based on the uses of a 

computer-based measuring card (so called DAQ - Data 

Acquisition module). The main parts of a measuring chain 

based on a typical (universal) DAQ are the input signal 

conditioners, for example analog multiplexer, input 

amplifier, filter, etc. and analog-to-digital converter (ADC) 

and usually a computation component. Measurement result 

is evaluated using the appropriate program in which the 

signal processing algorithm is realized. The influencing 

quantities, such as: temperature, humidity, magnetic, 

electrostatic, electromagnetic fields, etc., parasitic 

(capacitance, inductance, resistance, ground loops) 

connections around the apparatus, machines and electrical 

power systems, etc. cause the changes of the parameters of 

the measuring chain components. Under industrial 

measurement conditions, these effects are not stable over 

time and it is therefore practically impossible to estimate 

their exact values. Also, noises and interferences are not 

stable. In such cases the uncertainty of measurement with 

corrections is usually determined a priori, during the stage 

of development of the correction method, using maximum 

permissible values of influence quantities and expected 

noise and interference levels. The values of the sensitivity 

coefficients, which are dependent on the properties of the 

correction method, should also be determined in advance. 

Under operating conditions, an effective correction is only 

possible if all the significant sources are taken into account 

and uncertainty caused by them is determined adequately 

[5], [6]. 

The implementation of each correction requires the prior 

precise definition of the three main components of the 

measurement process [7]: 

- the measurand, 

- the measuring instrument (system), 

- the conditions under which the measurement is carried 

out. 

In subsequent studies it is assumed that the measurand 

should be constant during all measurements, which are made 

for correction.  

Generally the main effects in the measuring chain, which 

may cause additional components of measurement 

uncertainty, can be divided into two categories: 

(i) those, which will be corrected: 

- systematic (approximately constant in time): additive 

0∆ , so-called “offset error” independent on quantity x to be 

measured (measurand) and multiplicative x⋅mδ , so-called 

“gain error”, which is proportional to the value of 

measurand x; 

- time drifts ( )tdr  [8], [9], which values are changed in 

time with slow (comparatively to the time of measurement) 

speed sdr, due to this time drifts often can be approximated 

by linear function of time: ( ) ( )0dr ttstdr −⋅= , where t0 is a 

start of the measurement: 

 

( ) ( )0drm0 ttsxt −++∆=∆ δ ;                         (1) 

 

(ii) those, which are not corrected, however, significantly 

affecting the effectiveness of the correction, main examples 

are:  

- random noises ( )tη  and periodical interferences ( )tς  of 

frequency f; 

- non-ideality of the actual function ( )xFr  of the 

measuring chain, mainly related to non-linearity. 

Therefore, in some simplification, the measuring chain 

(system) can be described by an equation in which the 

output Y (observed quantity) depends on the measurand x, 

the abovementioned components (1), the values of which 

depend on the influence quantities, and the noise and 

periodic interferences: 

 

( ) ( )( ) ( )( )[ ]tAtAttsxxFY ςηδ η ς0drm0r ++−++∆+= ,     (2) 

 

where ( )⋅ηA  and ( )⋅ςA  are the operators that convert noise 

and interferences into changes in measured values. 

In practice, correction of the abovementioned systematic 

effects generally is based on additional measurements 

(besides the measurement of measurand) and in general can 

be achieved in two ways: (i) by measurement of influenced 

quantities which, taking into account the sensitivity, are 

used to correct the measurement result and (ii) by using 

additional measurements (made by the same instrument, the 

systematic effects of which should be corrected) of certain 

functions of the measurand and/or reference quantities Xref 

and subsequent calculation of the corrected result [10], [11]. 

In this article we will not analyze the first method and will 

focus on the second method as the basis for automatic 

correction.  

Most often depending on the level of the components of 

systematic influences, in the methods, based on additional 

measurements, are corrected: (i) only additive effects (Δ0), 

(ii) only multiplicative effects (δm), (iii) combined additive 

effects and time drifts ( )0dr0 tts −+∆ , or (iv) additive and 

multiplicative effects xm0 δ+∆ . 

Advanced correction of additive effect and time drifts. 

Correction of the systematic additive effects and time drifts 

may be implemented without reference quantities, using 

some form of chopping or modulation of input signal [8], 
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[9]. In [9] the advanced method of such correction is 

proposed. In this method four measurements are carried out  

in equidistance time interval T in the time moments: t1 - 

measurement of +x, t2 = t1 + T - measurement of inverse -x, 

t3 = t1 + 2T – measurement of inverse -x, t4 = t1 + 3T – 

measurement of +x. The mathematical models of sequenced 

indications of measuring instrument and model of corrected 

result of this method correction are shown in the first line of 

Table 1.  

The systematic multiplicative effects can be corrected, for 

example, by applying the DEM (dynamic element matching) 

technology to voltage amplifiers and dividers [9], [12]. 

However, for amplifiers and dividers, etc., used in 

measuring modules, this technology cannot be applied and, 

therefore, it is not analyzed in this paper. 

Joint correction of additive and multiplicative effects. The 

standard method of combined correction of additive and 

multiplicative effects is based on three measurements [8], 

[9]: zero input value (x = 0), measurand x, and reference 

quantity Xref. In this method there are six possible sequences 

of measurement in total. But taking into account the time 

inverse symmetry only three different sequences are 

possible (Table 2,a). As will be shown below, the sequence 

of measurements has a significant impact on the quality of 

the corrected result. The cause of this is the influence of 

periodic interferences during the subsequent measurements. 

The mathematical models of sequenced indications for the 

first sequence in Table 2,a and model of corrected result, 

which is independent of the sequence of measurements, are 

shown in the second line of Table 1. 

 
Table 1.  The mathematical models of sequenced measurements and corrected results. 

 

 Corrected 

influences 
Sequences and mathematical models of 

measurements 

Corrected result 

1 Additive + 

+time drift 
1) + x: TsxN 0dr0x1 ⋅+∆+=  

2) – x: TsxN 1dr0x2 ⋅+∆+−=  

3) - x: TsxN 2dr0x3 ⋅+∆+−=  

4) + x: TsxN 3dr0x4 ⋅+∆+=  

 

x
NNNN

x ≡
+−−

=
4

x4x3x2x1
cor,3            (3) 

2 Additive + 

+ multiplicative 
1) 0: 00 m00 δ+∆+=N  

2) x: xxN m0x δ+∆+=   

3) Xref: refm0refref XXN δ+∆+=  

 

xX
NN

NN
x ≡

−
−

= ref

0ref

0x
cor,4                  (4) 

3 Additive + 

+multiplicative + 

+ time drift, I 

1) + x: ( ) TsxN mx 01 dr01 ⋅+∆++⋅= δ  

2) - Xref: ( ) TsXN 11 dr0mrefref1 ⋅+∆++⋅−= δ  

3) – x: ( ) TsxN 21 dr0mx2 ⋅+∆++⋅−= δ   

4) + Xref: ( ) TsXN 31 dr0mrefref2 ⋅+∆++⋅= δ  

 

xX
NNN

NNN
x ≡⋅

−+
−+

= ref

ref1x2x1

x2ref2ref1
cor,5

2

2
          (5) 

4 Additive + 

+multiplicative + 

+ time drift, II 

1) + x: ( ) 0m1 1 ∆++⋅= δxN x + Ts 0dr ⋅  

2) - x: ( ) TsxN 11 dr0mx2 ⋅+∆++⋅−= δ  

3) - Xref: ( ) TsXN 21 dr0mrefref1 ⋅+∆++⋅−= δ  

4) + Xref: ( ) TsXN 31 dr0mrefref2 ⋅+∆++⋅= δ  

 

xX
NNNN

NNNN
x

x

≡⋅
++−
++−

= ref

x21ref1ref2

ref2ref1x2x1
cor,6

53

53
 (6) 

 
Joint correction of additive and multiplicative effects and 

linear time drift. For a joint correction of linear drift and 

systematic additive and multiplicative effects, a method 

based on a combination of the methods described by (3) and 

(4) can be used. However, using methods (3) and (4) 

directly, eight measurements are needed to obtain the 

corrected result. Because in each measurement indication 

the additive Δ0, multiplicative xmδ , and linear time drift 

( )0dr tts −⋅  are described by three parameters, therefore, 

combination of these effects can be corrected by a minimum 

of  four measurements, which are carried out with  the same  

time  delay T. On the basis of the advanced method (3) for 

the correction of linear time drift in the two central 

measurements, the inverse values of the measured and 

reference quantity should be calculated. Taking into account 

the time inverse symmetry of the sequence of 

measurements, only two different sequences are possible 

(Table 2,b). 

 
Table 2.  The sequence of measurements for the correction of 

additive and multiplicative effects (a), and in a joint correction of 

additive and multiplicative effects and linear time drift (b). 

 

a Measured quantity b Measured quantity 

1 0 x Xref 1 x -Xref -x Xref 

2 0 Xref x 2 x -x -Xref Xref 

3 x 0 Xref  
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3.  ANALYSIS OF THE IMPACT OF THE MAIN FACTORS WHICH 

LIMIT THE EFFECTIVENESS OF CORRECTION 

The effectiveness of correction of systematic additive and 

multiplicative and linear time drift is limited by many 

reasons. The main sources, which decrease effectiveness of 

automatic corrections, are:  

• uncertainty of the reference quantities, which are used 

in correction; 

• effect of quantization of measurement results in ADC; 

• non-linearity of function of the measuring chain;  

• switching effects;  

• random noises and periodic interferences and other 

variations of repeated observations, etc. 

It is clear that if in correction a reference quantity Xref is 

used, then even in the absence of the abovementioned other 

factors, the uncertainty of the corrected result is limited by 

the uncertainty ( )refB Xu  of the reference quantity. 

Assuming rectangular distribution of possible values within 

± δref·|Xref| (where δref is a relative maximal permissible error 

(MPE) of Xref), the component of a combined standard 

uncertainty is given by expression: 

 

( ) ( )
3

refrefref

refBreflimB

XC
XuCxu

δ⋅
=⋅= ,             (7) 

 

where Cref is a sensitivity coefficient for a reference 

quantity. The value ( )limB xu  determines the theoretical 

effectiveness of the correction.  

Quantization, resolution of ADC. The resolution of used 

ADC or the number of significant digits of used digital 

meter is very important in the quality of the corrected result. 

The component of combined standard uncertainty of a 

corrected result caused by quantization effect in ADC is 

given by a known formula: 

 

( )
n

X
CCxu

23232

LSD R
qqqB

⋅
⋅=⋅= ,                (8) 

 

where Cq is a sensitivity coefficient for quantization in 

ADC; XR is range; n is number of bits ADC, 

qX n == 2LSD R  is a quantum - a value of the least 

significant bit (or digit) of indication. 

Non-linearity. Two components of non-linearity, 

differential and integral, are traditionally considered 

separately. The effect of differential non-linearity of ADC is 

associated with a change in the values of adjacent quantums, 

slightly different from LSB. In the data sheet of ADC or 

measuring DAQ card we can find the limit of differential 

non-linearity in units of the least significant bit: 

Δnl,dif = ±αnl,dif·q  (or bit), where usually αnl,dif < 1. Therefore, 

the effect of differential non-linearity onto uncertainty of the 

corrected result is similar to the effect of quantization, i.e. it 

can be estimated by an expression similar to (8): 

( ) ( )qBdifnl,difnl,B xuxu α= .                          (9) 

 

Integral non-linearity (Fig. 1) in data sheet usually is 

declared as normalized to the range XR maximal deviation 

Δnl,lim from the straight line: %,Rlimnl,intnl, XΔ±=γ . Thus, 

assuming rectangular probability of possible values of Δnl,int 

the component of combined standard uncertainty associated 

with integral non-linearity can be calculated as: 

 

( )
3

Rintnl,

nlintnl,B

X
Cxu

⋅
⋅=
γ

,                       (10) 

 

where Cnl is a sensitivity coefficient for integral non-

linearity. 

If non-linearity of the function of measuring chain is 

monotonic and in a first approximation can be described by 

a parabolic function ( ) 2

nlintnl, xx ⋅=∆ ε  (Fig. 1), then using 

the value of reference quantity  

( ) RRref 828.0122 XXX ⋅≈−⋅=  after correction of gain 

systematic component, the maximal impact of non-linearity 

onto the corrected result will be minimal: 

 

( ) Rintnl,

2

Rnlmaxo,nl, 686.0223 XXΔ ⋅⋅≈−⋅⋅= γε .       (11) 

 

I.e., using a value of reference quantity Rre 828.0 XX f ⋅≈ , 

instead of, for example Rref XX = , the maximal integral 

non-linearity will decrease by approximately 30 %. 

 

 
 

Fig. 1.  Optimal correction of gain error when integral non-linearity 

is parabolic. 

 
Switches. In all the above described correction methods, 

connection and disconnection or/and inverting of the 

quantity to be measured and/or the reference quantity shall 

be realized. For this purpose the switching systems are used. 

Real switches are not ideal, there are many parameters of 

switches which affect the input and reference signals. The 

main representatives are: contact potential, offset current, 

contact resistance, leakage currents, ground loops, 

interferences, etc. [13]. Precision measurements usually use 

differential connection of signal sources, so in each channel 

a pair of the same switches is used. However, the parameters 

 

0 

x 

0.828 0.5 XR  

Δnl,max 

Δnl.o 

Y 

XR XR 
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of both switches are never the same, they are characterized 

by a certain dispersion of appropriate values of their 

parameters [13]. In many cases, when low-voltage must be 

connected / disconnected, the most negative affect provides 

the contact thermoelectric offset voltage of switch elements 

[13]. Even if a matching contact pair is used, the total 

cancellation of contact potential cannot be achieved because 

temperature differences in both switches will cause slightly 

different contact potentials [13]. The uncompensated 

difference Δesw in the contact potentials of such switch pairs 

can reach ± several microvolts. When input quantity is 

voltage assuming rectangular distribution on a contact 

potential, the component of a combined standard uncertainty 

can be calculated by the formula: 

 

( )
3

sw
swswB

e
Cxu

∆
⋅= ,                            (12) 

 

where Csw is a sensitivity coefficient for a contact potential. 

Since each correction needs several measurements, i.e. 

switching of measured and reference quantities, the setting 

times of the switches should be taken into account. 

In each specific case, depending on the quantity to be 

measured, the used method of correction and the type of 

used switching system, the negative impact of the switching 

should be analyzed individually. 

Because the effects of quantization and differential and 

integral non-linearity are related to the same result obtained 

in ADC, the relevant sensitivity coefficients is the same:  

 

ADCnldnlq CCCC === .                         (13) 

 

Noises and periodic interferences. Present in all 

measurements, noises and interferences can be classified 

into two categories:  

1) external, which come with input signal (normal and 

common mode) and  

2) internal, caused by internal sources in the components 

of measuring chain, such as thermal (Johnson) and another 

kind of noises, and also power supply, digital clock and 

other digital elements inside of the measuring instrument.  

A difference between the effects of internal and external 

interferences and noises must be taken into account. 

Random noises (external ( )textη  and internal ( )tintη ) usually 

are described by spectral densities ( )fNext , ( )fN int , or 

standard deviation (VRMS), or peak-to-peak value (Vp-p). 

The most common sources of periodical interferences 

(external ( )textς  and internal ( )tintς ) are power supply 

systems (typically of 50 or 60 Hz with higher harmonics), 

operation of radio, telecommunications and other such 

systems, electrical machinery and transport, electronic 

apparatus, digital electronic devices, etc. Such interferences 

are usually described by the maximal values of amplitude 

Xm,ext (of external) and Xm,int (internal). Often for the 

components of measuring chain are declared the NMRR 

(normal mode rejection ratio) and CMRR (common mode 

rejection ratio), which values also determine the impact of 

these interferences onto corrected result [8]. These noises 

and interferences cause the variance 2

η ςσ +  in repeated 

observations and in assumption that these sources are 

independent it can be calculated as a sum of components:  

 

( )
2

intς,

2

intς,

2

extς,

2

extς,

2

intη,

2

intη,

2

extη,

2

extη,

2

ςη

2

c

σσσσ

σςη

⋅+⋅+⋅+⋅=

== ++

CCCC

xu
,  (14) 

 

where 2

intς,

2

extς,

2

intη,

2

extη, ,,, σσσσ  are the variations of the 

external and internal random noises and periodic 

interferences, respectively; intς,extς,intη,extη, ,,, CCCC  are the 

sensitivity coefficients for these influences. 

Thus, the variances caused by the external and internal 

noises are given by the well-known formulae: 

 

( ) ( ) ( )∫
∞

⋅⋅=
0

ext

2

ext

2

sp

2

extη, 2 dffNfAfAσ ,          (15a) 

 

( ) ( ) ( )∫
∞

⋅⋅=
0

int

2

int

2

sp

2

inη, 2 dffNfAfAtσ ,            (15b) 

 

where ( )fAsp  is an amplitude response (AR) of the signal 

processing algorithm (included conversion in ADC) realized 

in measuring chain, ( )fAext  and ( )fAint  are the appropriate 

amplitude responses (in relation to the external and internal 

effects), which depend on the used correction algorithm.  

Similarly, assuming arcsine probability density 

distribution of interferences of amplitudes Xm,ext and Xm,int 

and frequency f, the standard deviations are given by the 

formulae: 

 

( ) ( )fAfA
X

extsp

extm,

extς,
2

=σ , ( ) ( )fAfA
X

intsp

intm,

intς,
2

=σ . (16) 

 

4.  ANALYSIS OF THE AMPLITUDE RESPONSES  

As mentioned above it is necessary to determinate the 

( )fAext  and ( )fAint  separately. For this purpose we will use 

the complex exponential function itj
eX

⋅ω
m , where ω = 2πf, f 

is a frequency and Xm is an amplitude of influenced 

component, ti are the appropriated times of the consequent 

measurements. For all correction methods time interval 

between adjacent measurements is constant and equal T, 

zero of time axis is located in the midpoint between the first 

and last measurements. Therefore, for the methods (3), (5) 

and (6): t1 = -3T/2, t2 = -T/2; t3 = T/2, t4 = 3T/2. In method 

(4): t1 = -T (meas. 0), t2 = 0 (meas. x) and t3 = T (meas. Xref). 

The external and internal influences cause the change of 

indications of measuring instrument and as a result the 

change of corrected result ( )jfxcor . Then the corresponding 

( )fAext  and ( )fAint  are given by the formulae: 
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( )
( )

m

extcor,

ext
X

xjfx
fA

−
= ,  ( )

( )
m

intcor,

int
X

xjfx
fA

−
= .    (17) 

 

In method (3) during four measurements the external 

influences cause the following changes of indications: 
fTj

mx eXxN π3

1 ⋅+= , fTj

x eXxN π⋅−−= m2 , 

fTj

x eXxN π−⋅−−= m3  and fTj

x eXxN π3

m4

−⋅+= . Similarly, 

the internal influences cause the following changes of 

indications: fTj

x eXxN π3

m1 ⋅+= , fTj

x eXxN π⋅+−= m2 , 

fTj

x eXxN π−⋅+−= m3  and fTj

x eXxN π3

m4

−⋅+= . For these 

indications corrected results are:  

 

( )
4

33

mext,3cor,

fTjfTjfTjfTj eeee
Xxfx

ππππ −− +++
+= ,    (18a) 

 

( )
4

33

mint,3cor,

fTjfTjfTjfTj eeee
Xxfx

ππππ −− +−−
+= .    (18b) 

 
Using (18) in (17), the appropriate AR are presented in the 

first row of Table 3 and are shown in Fig. 2,a, and Fig. 2,b. 

From Fig. 2,a, Fig. 2,b we can see that if the basis 

frequency of periodical internal and external interference is 

f, then for the measurement interval T = 1/2f exactly, these 

interferences will be rejected. If the interference frequency f 

deviates from the nominal value fnom, the influence of such 

interference depends on the corresponding value ( )fAext,3  

and ( )fA 3int,  (Table 3). 

 

 
 
Fig. 2. The amplitude responses related to the external (a) and 

internal (b) components – method (3) and amplitude responses for 

the internal components (c) – method (4), 1, 2, 3 – sequences in 

Table 2,a, x/Xref ≈ 0.8. 

In method (4), because external noises and periodic 

interferences affected only the measurement of measurand, 

therefore AR ( ) 1ext,4 =fA . The internal influences cause the 

following changes of indications: fTjeXN π2

m0 ⋅= , 

fTj

x eXxN π0

m ⋅+= , fTjeXXN π2

mrefref

−⋅+= . Using these 

values in (4) the corrected result is given by formula: 

 

( ) ( )
( )fTjfTj

fTj

ee
X

X

eXx
jfx

ππ

π

22

ref

m

2

m
int,4cor,

1

1

−+

−+
=

−
.              (19) 

 

From (19) we can see that internal influences non-linearly 

affect the value ( )jfx int,4cor,  and, therefore, the characteristic 

( )fA 4int,  is also non-linear. However, internal interferences 

always meet the condition Xm<<Xref, therefore, the good 

approximation of ( )fA 4int,  is presented in the second row of 

Table 3 and shown in Fig. 2,c.  

In correction methods (5) and (6) the external noise and 

periodic interference influenced the quantity to be measured, 

so they are included only in the values of Nx1 and Nx2 in both 

correction methods. Therefore, for the method (5) – first line 

in Table 2,b the indications are: fTj

x eXxN π3

m1 ⋅+= , 

fTj

x eXxN π−⋅−−= m2 . For the method (6) (second line in 

Table 2,b the indications are: fTj

x eXxN π3

m1 ⋅+= , 

fTj

x eXxN π⋅−−= m2 . Using these values in (5) and (6) the 

corrected results are given by formulae: 

 

( )

2
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m
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eXx
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π
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−

−
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X

X
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X

x

jfx
ππ

ππ

−+

+⋅+
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3
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m

3m

cor.ext,6

8
1

53
8 .           (20b) 

 

In these cases, because the Xm<<Xref, linearization in (20) 

may also be applied. Therefore, after substituting (20) into 

(17), we can calculate the corresponding responses Aext,5(f), 

Aext,6(f), which are given in the third and fourth rows of 

Table 3 and in Fig. 3,a, Fig. 3,c. 

In correction methods (5) and (6) the internal noise and 

periodic interference influenced all measurements. 

Accordingly, for the first line of Table 2,b (method (5)) the 

values of corresponding indications are: 
fTj

x eXxN π3

m1 ⋅+= , fTj

x eXxN π−⋅+−= m2 ; 

fTjeXXN π⋅+−= mref1ref , fTjeXXN π3

mref2ref

−⋅+= . For 

the second line of Table 2,b (method (6)) the values of the 

indications are: fTj

x eXxN π3

m1 ⋅+= , fTj

x eXxN π⋅+−= m2 ; 

Aext.3(f) 

a 

fT 

0 0.5 1
0

0.5 

1

Aint.3(f) 

fT 

b 

0 0.5 1
0

0.5 

1

fT 

Aint.4(f) 

2 

1 

3 

c 

0 0.5 1
0

1

2
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fTj

ref eXXN π−⋅+−= m1ref , fTjeXXN π3

mref2ref

−⋅+= . After 

substituting these values into formulas (5), (6) we have: 
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X
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53
8
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33
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m

33m
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After linearization (Xm<<Xref) and substituting (21) into 

(17) we can calculate the corresponding responses Aint,5(f), 

Aint,6(f), which are given in the third and fourth rows of 

Table 3 and in Fig. 3,b, Fig. 3,d.  

From third and fourth lines of Table 3 and Fig. 3 we can 

see that in the correction method (6) the effect of the internal 

and external noises and interferences is approximately twice 

less in comparison with the correction method (5). 

If the spectral density of random noises is constant (N0), 

then the effect of such noises on the corrected result depends  

on the mean value (in the 1/T band) of the square of the 

corresponding AR:  

( ) 2
/1

0

2

ext ext

T

CdffAT =∫ , ( ) 2

int

/1

0

2

int CdffAT
T

=∫ ,         (22) 

 

 
 
Fig. 3. The amplitude responses related to the external and internal 

influences in correction methods (5) and (6), x/Xref ≈ 0.8. 

 

 
Table 3.  Amplitude responses for the external and internal noises and interferences. 
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The values of the mean squares Aext(f) and Aint(f) according 

to (22), which correspond to the analyzed correction 

methods, are presented in Table 3. In the last three 

correction methods these values depend on the ratio refXx . 

For simplification purposes in these dependencies the 

approximation x = xcor has been applied. This approximation 

is also used in the next analysis of the combined standard 

uncertainty of the corrected results.  

In all analyzed methods the influences of the internal and 

external noises and periodic interferences may be reduced 

by filtering and (or) averaging, so 1)(sp <<fA . For 

example, after digital averaging of n independent values of 

the random noise, the variance is reduced by n times: 
 

n2

η

2

avη, σσ = .                                 (23) 

 

However, here we must indicate that increasing the 

number (n) of averaged random observations by increasing 

the sample frequency (fs) of ADC may cause autocorrelation 

of observations and this may essentially decrease the 

efficiency of averaging [15], [16], [17].  

If the uniform averaging of input indications is used and 

averaging interval sfnT =av  (fs is a sample frequency) is 

matched to a period Th of certain harmonic interferences of 

frequency fh: Tav = Th = 1/fh, then rejection of this harmonic 

can be described by known expression: 
 

( )
( )sh

1

sh

maxavm,

m
av

sin

sin
NMRR

ffn

ff

X

X

n
π

π
=

∆
= .           (24) 

 

where 
maxavm,X∆  is a maximal value of the harmonic effect 

of amplitude Xm after averaging. 

It is well-known, when the frequency fh is unstable and 

slightly deviated from nominal value fh,nom: 

1nomh,nomh,h <<−= ffffδ , then this harmonic 

component will be reduced as minimum of fδ1  times: 

 

fδ1NMRR av ≥ ,                           (25) 

 

and practically is independent of the number n of averaging 

indications. 

So, the dependence of the effects of random noise 

averaging and periodic components on the number n of 

averaged indications is different. 

 

4.  ANALYSIS OF THE COMBINED STANDARD UNCERTAINTY OF 

THE CORRECTION METHODS 

Advanced correction of additive effect and time drift. The 

sensitivity coefficients for each indication in (3) are as 

follows:  

 

41
x4x3x2x1 NNNN ==== CCCC .                (26) 

 

In 1st and 4th measurements Nx1 ≈ Nx4 (measurements of 

+ x), therefore, the effects of gain errors and integral non-

linearity in these measurements are approximately the same, 

i.e. δG1 ≈ δG4 and γnl,int.1 ≈ γnl,int.4. Analogically, in 2nd and 3rd 

measurements Nx2 ≈ Nx3 (measurements of - x) and we may 

assume that δG2 ≈ δG3 and γnl,int,2 ≈ γnl,int.3. The same effect in 

both pairs of measurements is present in the switches, i.e.: 

Δesw1 ≈ Δesw4 and Δesw2 ≈ Δesw3.  

Assuming that special processing of the registered 

observations is not used, i.e. Asp,3(f) = 1, using (8), (9), (10), 

(12), (13), (26) and also the values ( )fAext 3,  and ( )fA 3int, , 

and coefficients 2

3C  in the first row in Table 3, the 

combined standard uncertainty caused by the correction 

method (3) can be presented by formula:  
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 (27) 

 

where δG is the maximal permissible value of gain error of 

the measuring chain. 

Standard correction of additive and multiplicative effects. 

In method (4) the impact of linear time drift is not corrected. 

When determining the sensitivity coefficients, we assume 

simplifications: ref00 , NNxNN x <<≈<< , refref XN ≈ , and 

as previously corxx ≈ . Therefore, the sensitivity coefficients 

in (4) are: 

 

1≈
xNC , 

ref

cor

ref X

x
CN −≈ , 1

ref

cor

0
−≈

X

x
CN .           (28) 

 

The sum of squares of these coefficients is: 

 

2
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In this method from the point of view of the correction of 

additive and multiplier effects, the sequence of three 

measurements does not matter. However, from the point of 

view of the influence of drift and internal periodical 

interferences, the sequences of measurements are important. 

The minimal impact of a time drift is obtained in the first 

measurement sequences (1) in Table 2,a. If in second and 

third measurements the values of drift are Ts 1dr ⋅  and 

Ts 2dr ⋅ , then the component of standard uncertainty is given 

as: 

 

( )
ref

cordr

dr,1 21
3 X

xTs
xu −≈ .                      (30) 
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In the second and third sequences of measurements 

(Table 2,a) the uncertainty components caused by linear 

time drift are given by formulas, respectively: 

 

( )
ref

cordr

2,dr 2
3 X

xTs
xu −≈ , ( )

ref

cordr

3,dr 1
3 X

xTs
xu +≈ .   (31) 

 

We can see that when 0 < x < Xref in (30), the influence of 

time drift on the uncertainty of the corrected result is always 

less in comparison with (31).  

Assuming Asp(f) = 1 and taking into account (28) - (30) 

and values in the second row in Table 3, the combined 

standard uncertainty caused by the correction method (4) 

can be presented by formula:  

 

( )
( )( )( )

( ) ( ) ( )

.
2

21

12

3

1

2

4int,

2

m,int

2

extm,

,int0int

2

4ext0,ext

2

refcor

2

refcor

2

dr

2

4

2

sw

2

R

2

nl,int

2

difnl,

)1(2

4

2

c

AXX
NBCNB

xXxTs

CeXa
xu

n

+
+++

+












⋅+−

+⋅∆+++
=

+−

δ

γ

 (32) 

 

In this case, after suppressing noises and interferences in 

addition to non-linearity and switches, the limitation of 

correction efficiency is associated with the uncertainty of 

reference quantity and drift effects. 

Joint correction of additive and multiplicative effects and 

linear time drift. In correction methods (5) and (6) the 

impact of systematic additive and multiplicative influences 

and also linear time drift are theoretically corrected 

completely. To calculate the uncertainty, we have previously 

determined the values of the sensitivity coefficients. For 

both correction methods (5) and (6), sensitivity coefficients 

can be determined assuming approximations: x2x1 NN −≈ , 

ref2ref1ref XNN ≈−≈ , and corxx ≈ . Then for the correction 

method (5) sensitivity coefficients are: 
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For the correction method (6) sensitivity coefficients are 

given by formulae [14]: 
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The sums of squares of these coefficients are: 
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For both correction methods (5) and (6), sensitivity 

coefficient refcorref Xxc ≈ . Therefore, assuming Asp(f) = 1 

and using the value  
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of uncertainty caused by the quantization effect, non-

linearity and switches system and taking into account (33) -

 (36), the combined standard uncertainties caused by the 

correction methods (5) and (6) are given by formulae:  
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After comparison of (37) and (38) we can see that 

differences between them are in the values of coefficients 
2

5C  and 2

6C , and also between 2

5int,

2

5,ext , AA  and 2

6int,

2

6ext, , AA . 

Assuming for example x ≈ 0.8Xref in (35) we have 

06.42

5 ≈C , 02.12

6 ≈C , and 202.106.465 ≈=CC . 

Therefore, correction method (6) provides twice less affect 

of quantization and non-linearity and also internal noises 

and periodic interferences in comparison with method (5). 

Similarly, at the same level of external noises, for example, 

at constant spectral density N0, the ratios of variances of 

corrected result in both methods are: 
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We can see that with the same level of external and 

internal noises in method (6) the variance of the corrected 

result is expected about 2 times smaller than in method (5). 

 

5.  RESULTS. NUMERIC EXAMPLE 

The next analysis is applied to the correction systematic 

effects in multifunction 16 bit Data Acquisition of family NI 

6250/6251/6254/6259 [18]. In [18] on the VR = 10 V range, 

the absolute accuracy is given as follows: Residual Gain 
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Error (ppm of Reading) = 60; Gain Tempco (ppm/oC) = 13; 

Reference Tempco (ppm/oC) = 1; residual Offset Error (ppm 

of Range) = 10; Offset Tempco (ppm of Range/oC) = 21; 

INL Error – non-linearity (ppm of Range) = 60. Absolute 

uncertainty at full scale on the analog input channel after 

two years from the device’s external calibrations is 

determined using following assumptions: temperature 

change    from     last     external     calibration    Δθe = 10oC; 

temperature change from last internal calibration Δθi = 1oC 

[18]. Using these parameters when Vx = 10 V the MPE is: 

GainError·VR+ (OffsetError +INL Error)· VR = 1840 μV. 

Type B standard uncertainty (assuming uniform 

distribution): 3/1840 ≈1062 μV (Table 4). 

Random Noise σn (μVrms) for a number of readings 

n = 1; 25; 100 is [18]: n280  μVrms (Table 4). 

 

 
Table .  Simplified budget of the combined standard uncertainty for NI 6250/6251/6254/6259 (Vx ≈ VR ≈ Vref = 10.0 V). 

 

Standard 

uncertainty 

component 

u(xi) 

Source of uncertainty Type Distri-

bution 

Value of standard 

uncertainty of 

source: u(xi) 

Sensitivity 

coefficients 

i

i
x

f
c

∂
∂

=  

Value of 

standard 

uncertainty:  

( ) ( )iixi xucVu =  

When correction is not used, after data in [18] 

u(Δ
OS

) Offset +Gain errors  B uniform 

3

108310101 ⋅+⋅
≈1

062 μV 

1 ≈1062 μV 

u(η) Nosie: 280 μVrms 

n = 1, 

n = 25, 

n = 100 

 

 

A 

normal (37) 

n = 1: 280 μV 

n = 25: 56 μV 

n = 100: 28 μV 

1 

 

 

280 μV 

56 μV 

28 μV 

u(ζ) Normal and common 

interference of 50 Hz, 

Vnm= 1 mVrms, NMRR= 100 

(|δf| = 0.01, n= 25, 100), 

Vcm = 10 Vrms, CMMR= 105. 

 

 

A 

arcsine (39) 

n = 1: 280 μV 

n = 25: 11 μV 

n = 100: 11 μV 

1  

1100 μV 

11 μV 

11 μV 

uc(Vx) Combined uncertainty of 

uncorrected result 

A+B n = 1: 1555 μV 

n = 25: 1064μV 

n = 100: 1063 μV 

When correction is used 

u(V
ref

) Uncertainty of reference 

voltage Vref = 10 V:  

50 ppm of Vref  

B uniform 

3

1050 V⋅
≈ 

≈289 μV 

1 ≈289 μV 

u(q) Quantization  B uniform 

122

10
16

≈ 

≈44 μV 

1 ≈44 μV 

u(V)nl.int Integral nonlinearity B uniform 31060 ⋅ ≈ 

≈346 μV 

1 ≈346 μV 

u(η) Nosie: 280 μVrms 

n = 1, 

n = 25, 

n = 100 

 

A 

normal  

n = 1: 280 μV 

n = 25: 56 μV 

n = 100: 28 μV 

1 

 

 

280 μV 

56 μV 

28 μV 

u(ζ) Normal and common 

interference of 50 Hz, 

Vm= 1 mVrms, NMRR= 100 

(|δf| = 0.01, n = 25, 100), 

Vcm = 10 Vrms, CMMR= 105. 

 

A 

arcsine  

n = 1: 1100 μV 

n = 25: 11 μV 

n = 100: 11 μV 

1  

1100 μV 

11 μV 

11 μV 

uc(Vx)cor Combined standard uncertainty A+B n = 1: 1222 μV 

n = 25: 457 μV 

n = 100: 454 μV 
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Normal mode interference 50 Hz without averaging is 

1000 μVrms. Using averaging of n = 25 or 100 readings at 

time averaging Tav = 20 ms, and assuming maximal 

frequency deviation |δf| = 1 % from 50 Hz, the value 

NMRR = 1/ |δf|= 100. After averaging Vnm = 1 mVrms/100 = 

10 μVrms.  

Common mode voltage Vcm = 10 Vrms, CMRR = 100 dB 

(50 Hz), without averaging 51010 = 100 μVrms and after 

averaging (CMRR+NMRR): ( )25 101010 ⋅ = 1 μVrms. The 

sum is 11 μVrms (Table 4). 

The expected values of the components of combined 

standard uncertainty of measurement when correction is not 

used are presented in the first part of Table 4. The analogical 

components of combined standard uncertainty of the 

measurement with correction by method (4) are presented in 

the second part of Table 4. 

The effectiveness of the correction of systematic 

components when number of averaged readings n = 1, 

n = 25, and n = 100, averaged readings (Tav = 20 ms) are: 
 

μV1222

μV1555
1,cor ==nE ≈ 1.27; ≈==

μV457

μV1064
25,cor nE 2.33, 

≈==
μV454

μV1063
100,cor nE 2.34 times.  

 

We can see that suppression of noises and periodical 

interferences during correction is very important. In order to 

obtain effectiveness of the correction, the external, internal 

noises and periodic interferences should be suppressed by 

averaging of 25 readings as minimum (or by filtering). 

When n = 100 readings are averaged then the efficiency of 

correction practically is the same as for the n = 25 averaged 

readings, because at n = 100 the 50 Hz interference is 

suppressed in the same way as at n = 25. 

However, the non-linearity of ADC and uncertainty of the 

value of reference voltage essentially limited the efficiency 

of correction. Uncertainty components caused by non-

linearity and uncertainty of reference quantity are: 

( )
nlcor,c xVu ≈ 346 μV, ( )

refcor,c xVu ≈ 289 μV. If the non-

linearity and uncertainty of reference voltage is two times 

less (30 ppm and 25 ppm), then effectiveness of the 

correction at n = 100 averaged readings would be: 
 

≈==
μV232

μV1063
100,cor nE 4.59 times. 

 

In practice of industrial measurement of nonelectrical 

quantities besides the Data Acquisition module, the 

appropriate signal conditioning modules are used, therefore 

the non-linearity and noises of such modules should be 

taken into account in the analysis of the efficiency of 

correction. Because in such measurements the level of input 

signal is in mV range, then the influence of switches contact 

voltage of a few microvolts must be taken into account in 

the uncertainty analysis. 

6.  DISCUSSION / CONCLUSIONS 

The potential effectiveness of the correction is always 

limited by uncertainty of reference quantity. The main 

factors that limit the effectiveness of automatic correction of 

systematic effects and time drifts are: nonlinearity and 

quantization of ADC, non-idealities of switches systems, 

and external and internal noises and periodical interferences. 

The impact of noises and periodic interferences on the 

combined standard uncertainty depends on the amplitude 

responses that are different for external and internal noises 

and periodical interferences, and are dependent on the 

algorithm of correction.  

Due to different values of sensitivity coefficients and also 

due to different affects of internal and external noises and 

periodical interferences, the uncertainty of measurement 

with correction depends on sequences of measurement 

carried out to obtain the corrected result. 

Since the influence of noise and interference can be 

reduced by means of filtration and averaging, the main 

factors (beside uncertainty of reference quantity) limiting 

the effectiveness of systematic interaction correction are the 

non-linearity of the function and the non-ideal parameters of 

the switches. 

The results of a numeric example of uncertainty analyses 

of correction by joint correction of additive and 

multiplicative systematic effects applied to the multifunction 

16 bit Data Acquisition of family NI 6250/6251/6254/6259 

confirmed the results of previous researches. The 

effectiveness of the correction of the offset and gain errors is 

only about 2.3 times, because integral non-linearity is quite 

large and uncertainty of reference voltage is not sufficient. 
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