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Nowadays detection of deterioration of electrical motors is an important topic of research. Vibration signals often carry diagnostic 
information of a motor. The authors proposed a setup for the analysis of vibration signals of three-phase induction motors. In this paper 
rotor fault diagnostic techniques of a three-phase induction motor (TPIM) were presented. The presented techniques used vibration signals 
and signal processing methods. The authors analyzed the recognition rate of vibration signal readings for 3 states of the TPIM: healthy 
TPIM, TPIM with 1 broken bar, and TPIM with 2 broken bars. In this paper the authors described a method of the feature extraction of 
vibration signals Method of Selection of Amplitudes of Frequencies – MSAF-12. Feature vectors were obtained using FFT, MSAF-12, and 
mean of vector sum. Three methods of classification were used: Nearest Neighbor (NN), Linear Discriminant Analysis (LDA), and Linear 
Support Vector Machine (LSVM). The obtained results of analyzed classifiers were in the range of 97.61 % – 100 %. 
 
Keywords: signal processing, vibration signal, induction motor, deterioration, diagnosis. 

 
 
 
 
1.  INTRODUCTION 

Induction motors are important parts of production lines 

and power plant generators. Each factory uses a lot of 
motors. Many thousands of motors break down every year. 

Degradation of motor is a process dependent on the 

operation time and construction of a motor. The damaged 
motor can stop the production line. It is reasonable to 

develop new techniques and diagnostic systems. To avoid an 

unexpected failure of the motor, operators use fault 
diagnosis systems and schedule needed repairs during 

maintenance shutdowns. It also allows operators to prevent 
production, money and time losses. 

Diagnostic systems can measure different diagnostic 

signals such as: vibration, acoustic, electric current, voltage, 

infrared radiation, and axial flux. Axial flux was used for 

fault diagnosis of induction motors [1]-[4]. The analysis of 

axial flux has two advantages. The first is the lack of 

significant influence of the supply frequency and torque on 

the frequency spectrum. It can also detect asymmetry of the 

rotor and stator. The second advantage is that the analysis of 

the axial flux is faster than electrical current analysis. 

However, disadvantage is lack of measurement of the 

operational quantities, such as voltage or current. Moreover, 

there is a need to use different measuring coils. Measuring 
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coils depend on the size of the motor [1]. The possibility of 

using the axial flux for fault diagnosis of induction motors 

was presented [2]. Windings of the stator were analyzed 

using the axial flux and neural network [3]. The axial 

magnetic stray flux and the stator currents were analyzed 

and compared in the following paper [4]. 

The analysis based on electric signal is used for detection 
of mechanical (air-gap eccentricity, bearings, misalignment) 
and electrical faults (broken bars, shorted coils) of the 
motor. Physical access to the motor is not required because 
any change is detected by a transducer [5]. The MCSA 
(Motor current signal analysis) is a well-known method 
based on current monitoring [6]. The advantage of the 
analysis of current signal is that the signal is easy to process. 
The disadvantage of this analysis is that it is limited only to 
electrical motors. Moreover, some mechanical faults cannot 
be diagnosed by this technique, for example broken teeth of 
a sprocket. A novel approach of MCSA for fault detection of 
broken bars was presented in the paper [6]. Misalignment 
detection using MCSA was presented in the paper [7]. 
Measurement of the supply current and selected methods of 
diagnosis of induction motor bearings was presented in the 
paper [8]. The paper [9] presents fault diagnosis of induction 
motors using MCSA and EMD (Empirical Mode 
Decomposition). 

Thermal analysis is also used for the detection of stator 

and rotor faults of induction motors (electrical faults). 

Electrical faults may cause losses. Losses increase the 
temperature of material. The generated heat can be 

measured by a thermal camera. Higher temperature causes 
shorter time of operation of the motor. The advantage of this 

analysis is non-invasive measurement. Thermal analysis 

gives us an image of the temperature distribution. It is also 
helpful to find anomaly of the motor. However, the 

technique based on thermal analysis can be used mostly for 

electrical faults [10]. In the paper, infrared thermography 
and MCSA are used for detection of three faults: bearing 

defects, unbalanced mass, and misalignment [10]. In the 
paper [11] the authors used thermal analysis for the 

detection of broken bars and faulty ring of squirrel-cage of a 

three-phase induction motor. 
The analysis based on vibration signal is used for detection 

of mechanical and electrical faults of the motor [12]-[22]. 
Vibration analysis can recognize broken bars, shorted coils, 
a defective bearing, bent, misalignment. Vibration fault 
diagnosis allows engineers to evaluate the condition of the 
motor. First data acquisition captures multiple sine waves of 
vibration signals using accelerometer. It can be captured 
depending on the setup of the accelerometer (axes X, Y, Z). 
It is important to set the accelerometer correctly. Generated 
vibration signals can help us to detect the type of fault. 
However, it is difficult to localize the exact location of fault. 
Techniques and methods of vibration analysis of machines 
were developed [12]-[22]. The authors described a fault 
diagnosis method based on frequency-modulated empirical 
mode decomposition in the following paper [12]. A failure 
diagnostics approach was presented. The approach uses the 
manifold learning and swarm intelligence. Vibration data of 
the diesel engines were used for the analysis [13]. Vibration 

signals of diesel engines were analyzed using the 
independent component analysis [14]. A review of the 
vibration-based condition monitoring of wind turbine was 
presented in the paper [15]. Next paper presents the method 
of fault diagnosis of in bevel gears. The author of the paper 
uses vibration signals and SVM (Support Vector Machine) 
for the analysis [16]. Vibration fault diagnosis of motorcycle 
(Honda Wave 100s model) was presented in the paper [17]. 
Vibration analysis of gearbox using iterative variational 
mode decomposition was presented in the following paper 
[18]. Condition monitoring of a gantry using vibration 
signals was presented in the paper [19]. A condition 
monitoring system using a vibration-electrical hybrid 
approach was described for induction motors [20]. Fault 
detection method of bearings of induction motors was 
developed in the paper [21]. A fault detection methodology 
using wavelet-based features of vibration signals was 
presented in the paper [22]. 

Acoustic analysis is also developed for fault diagnosis of 
induction motors. This type of analysis is often used for 

mechanical and electrical faults of rotating motors. 
Measurement can be done from a distance. The distance 

from an object affects the quality of the signal. Background 

noises cause distortion. Noisy samples with background 
noises cannot be used for proper recognition. Another 

problem is the selection of microphone. Capacity 

microphone is selected due to a larger frequency range. Fast 
Fourier transform (FFT)-based segmentation and acoustic 

fault identification algorithm were described in the paper 
[23]. Acoustic signals of gearbox acquired under various 

fault conditions were analyzed using continuous wavelet 

transform in the paper [24]. Acoustic signals of bearing 
defects using an improved one-against-all multiclass support 

vector machine (OAA-MCSVM) classifier were analyzed 

[25]. Acoustic signals of wind turbines were also analyzed 
[26]. The authors proposed an interesting iterative noise 

extraction and elimination method. 
In the article detection techniques of deterioration of the 

TPIM were described, Fig.1.a), Fig.1.b), Fig.1.c). The 

authors proposed a setup of analysis of vibration signals of 
three-phase induction motors (Fig.2.). In this paper the 

authors implemented and used the method of feature 

extraction – MSAF-12. It was used for the analysis of 
vibration signals. Feature vectors were obtained using 

MSAF-12, FFT, and mean of vector sum. Vibration signal 
readings were used to compute feature vectors. The authors 

analyzed recognition rate of vibration signal readings for 3 

states of the TPIM: healthy TPIM, TPIM with 1 broken bar, 
and TPIM with 2 broken bars. Three methods of 

classification were used: NN, LDA, and LSVM. The 

proposed techniques work well for analyzed three-phase 
induction motors. It can be used for detection of broken bars 

of electrical motors. 
Development of the MSAF-12 method was motivated by 

an analysis of unknown acoustic signals. The MSAF-12 
method is based on the fact that the acoustic signal can be 
recognized, if the proper frequency is extracted from the 
training set. Therefore, there is a need to have training 
vibration signals from a similar type of motor.  
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Fig.1.a)  Three analyzed motors (healthy TPIM, TPIM with 1 
broken bar, TPIM with 2 broken bars). 

 

 
 

Fig.1.b)  Rotor of  TPIM with 1 broken bar. 

 

 
 

Fig.1.c)  Rotor of  TPIM with 2 broken bars. 

 

 
 

Fig.2.  Experimental setup of analysis of vibration signals of three-
phase induction motors. 

The original contribution of the work includes: 
- review of the literature related to vibration-based analysis 
of the motor, 
- proper preparation of a database containing vibration 
signals of the motor, 
- proposition of vibration-based diagnostic techniques, 
- performing the analysis of captured vibration signals, 
- drawing conclusions from the conducted analysis. 

 
2.  VIBRATION BASED ROTOR DIAGNOSTIC TECHNIQUES 

The proposed vibration-based rotor diagnostic techniques 
consisted of signal processing methods (Fig.3.). Vibration 
data have been measured by a measuring device with an 
accelerometer. The authors used a low-cost device called 
Voltcraft DL-131G (vibration and acceleration USB data 
logger, 20 samples/second, 3-axis recording measuring 
range ±18G, G≈9.8 m/s2) and computer software (Voltsoft 
Client and MATLAB). Other vibration, acceleration data 
loggers and computer software can be used for the proposed 
techniques. Next measured vibration data can be split (5-
second sample – 5*20=100 measured values). The obtained 
samples (split vibration data) are used in the signal 
processing (windowing – size of a window = 100, FFT – 50 
frequency components). There is also the possibility of 
using mean of vector sum. Next, the obtained frequency 
spectra are processed using the feature extraction method 
MSAF-12. The MSAF-12 method computed feature vectors 
(Fig.3.). The classification step consisted of patterns 
creation and testing (identification) process. In the testing 
process unknown test set was classified using training set 
and selected classifier. The method of feature extraction 
MSAF-12 was not used for the testing process, because all 
frequency components were computed by the MSAF-12 in 
the pattern creation. The computed feature vectors 
(frequency components) were processed by classification 
methods: NN, LDA, and LSVM. 

 

 
 

Fig.3.  Proposed vibration-based rotor fault diagnostic techniques. 
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A.  MSAF-12 

The MSAF-12 extracts characteristic features of the 
vibration signal. It uses differences between frequency 
spectra of the vibration signal. The vibration signal is 
dependent on: faults, deterioration, rotor speed, material of 
motor, construction and size of the motor. The MSAF-12 
has 5 steps: 
1. Compute frequency spectrum for all samples of vibration 

signals. Vector vhim=[vhim1, vhim2, ..., vhim50] 
represents the computed frequency spectrum of the 
vibration signal of the healthy TPIM. Vector 
vpim=[vpim1, vpim2, ..., vpim50] defines the frequency 
spectrum of the vibration signal of the TPIM with 1 
broken bar. Vector vtim=[vtim1, vtim2, ..., vtim50] defines 
the frequency spectrum of the vibration signal of the 
TPIM with 2 broken bars. 

2. Compute differences between computed frequency 
spectra: |vhim - vpim|, |vhim - vtim|, |vpim - vtim|. 

3. Select 12 maximum frequency components for each 
computed difference: max1|vhim - vpim|, ..., max12|vhim 

- vpim|, max1|vhim - vtim|, ..., max12|vhim - vtim|, 

max1|vpim - vtim|, ..., max12|vpim - vtim|. 
4. Find common frequencies (1-12) and find frequency 

components for each type of the vibration signal. 
5. Form a feature vector. 
 

Feature extraction method MSAF-12 is presented in Fig.4. 
 

 
 

Fig.4.  Feature extraction method MSAF-12. 

 
The computed differences of frequency spectra of 

vibration signals |vhim - vpim|, |vhim - vtim|, |vpim - vtim| 
are presented in Fig.5. – Fig.7. 

The MSAF-12 selects common frequency – 0.2 Hz. The 
obtained frequency component forms the feature vector. The 
MSAF-12 finds frequency components depending on 
differences between frequency coefficients of states of the 
TPIM. If we have a new motor (unknown acoustic signal for 
training samples, for example a train motor), then we need 

to analyze a new training set (new training set contains 
acoustic signals of induction motors and train motor). 
Selected frequency components depend on many 
parameters, for example construction of motor, material, 
rotor speed, place of measurement, etc. It can be used for 
other rotating motors. 

 

 
 

Fig.5.  The computed difference (|vhim - vpim|). 

 
 

 
 

Fig.6.  The computed difference (|vhim - vtim|). 

 
 

 
 

Fig.7.  The computed difference (|vpim - vtim|). 

 
The next step is the classification of feature vectors. The 

authors used the NN classifier [27], [28], [29], LDA [30], 
[31], and SVM [25], [32], [33]. However, other classifiers 
could be also used, for example neural network [34], [35]. 
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B.  Mean of vector sum 

Another feature extraction method is mean of vector sum. 
Vibration and acceleration data logger measure: X value, Y 
value, Z value, and a value of vector sum. The value of 
vector sum is defined as (1): 

 

3 333 |Z||Y||X| _ ++=sumvector                 (1) 

 
where X, Y, Z – length of measured vectors. 

Five-second sample has 100 values of vector sum. It is 
computed and presented in Table 1. for 18 samples of 
vibration signals. Mean of vector sum is expressed as (2): 

 

nsumvectorsumvectorofMean
n

i

i /)|_|(___ ∑
1=

=      (2) 

 
where n=100, for the presented analysis. 

It can be noticed that the value of Mean of vector sum for 
the healthy TPIM was in the range 1.1878–1.2188 [m/s2]. 
The value of Mean of vector sum for the TPIM with 1 
broken bar was in the range 1.3839–1.4186 [m/s2]. The 
value of Mean of vector sum for the TPIM with 2 broken 
bars was in the range 1.4505–1.5165 [m/s2]. 
 

Table 1.  Mean of vector sum of 18 samples  
of vibration signals. 

 

Mean of vector sum [m/s2] 

healthy TPIM TPIM with 1 
broken bar 

TPIM with 2 
broken bars 

1.2188 1.4186 1.5165 

1.2152 1.4022 1.4505 

1.1917 1.3872 1.4872 

1.1878 1.4050 1.4829 

1.1970 1.4086 1.4685 

1.1914 1.3839 1.4925 

 
C.  NN classifier 

The NN (Nearest Neighbor) classifier is discussed by 
scientists all over the world [27] – [29], [36]. The classifier 
is useful for pattern recognition: diagnostic signals, 
temperature, images, measured data, text. It is a supervised 
classifier. It takes labels into consideration. The method uses 
training set and test set. Test vector is compared with 
training vectors using selected distance function. All 
distances are computed and usually one computed distance 
is the nearest distance. Next test vector is recognized using 
label of class and the computed nearest distance. The 
Nearest Neighbor method classifies test vectors using: 
Chebyshev, Manhattan, Euclidean, Minkowski, or the 
cosine distance. In the analysis the Manhattan distance (3) is 
applied for the classification of feature vectors. It is 
expressed as: 

 

∑
1

|)-(|),(
j

i

ii vpimvhimD
=

=vpimvhim                 (3) 

where test feature vector is defined as vhim=[vhim1] and 
training feature vector is expressed as vpim =[vpim1], j − 
number of features, i=1,..., j. The Manhattan distance was 
computed for all test and training feature vectors. 

The authors computed total efficiency of vibration signal 
recognition (see formula 5) using the Manhattan distance. 
However, similar results (Table 2.) can be achieved by the 
Euclidean, Minkowski, or cosine distance. Description of 
the NN can be found in the following literature [27]-[29], 
[36]. 

 
D.  LDA classifier 

The Linear Discriminant Analysis (LDA) was developed 
in 1936 by Fisher. The LDA reduces a dimensionality of 
data. It is used for pattern classification applications. The 
original LDA was developed for a 2-class problem. Next it 
was described for multi-class problem by Rao in 1948. The 
goal of classifier is to project  dataset n-dimensional vectors 
onto a smaller subspace k (where k≤n−1). It is a supervised 
classifier. It takes labels into consideration. The LDA is 
performed in 5 steps: 

1. Compute d-dimensional mean vectors (mvi). 
2. Compute between-class matrix (MB) and within-class 

scatter matrix (MW). MB is the distance between mvi of 
different classes. It is computed to separate different 
classes. MW is the distance between mvi and sample of 
each class. 

3. Compute eigenvectors (ev1, ev2, ..., evd) and 
eigenvalues (λv1, λv2, ..., λvd). 

4. Select linear discriminants for the new feature 
subspace. Form an eigenvector matrix EM. 

5. Use the eigenvector matrix EM to transform the 
vectors onto the new lower dimensional space. 
Maximize MB and minimize MW. 

Description of the LDA classifier can be found in the 
following literature [30], [31]. 

 
E.  LSVM classifier 

The Linear Support Vector Machine (LSVM) is a linear 
model for classification of data. It is described in the 
literature [25], [32], [33]. The classifier is useful for 
recognizing: images, measured data, and text. The LSVM is 
used for linearly separable data. The method classifies 
vectors by finding the best hyperplane. The hyperplane 
separates training feature vectors between two classes. The 
LSVM computes the maximum distance between the two 
analyzed classes. It was necessary for proper classification 
of feature vectors [25], [32], [33].  

Feature vectors are labeled as -1 or 1. The label of feature 
vector depends on the computed hyperplane. Moreover, 
there are also two additional hyperplanes. These 
hyperplanes are parallel to the separating hyperplane. Some 
of the vectors are the closest to the separating hyperplane. 
The closest training feature vectors are cut through by 
additional hyperplanes. These training feature vectors are 
called "support vectors". 

Description of the LSVM can be found in the following 
literature [25], [32], [33]. 
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3.  ANALYSIS OF VIBRATION SIGNALS 

The analysis of vibration signals was conducted on one 
motor at a time (3 motors in total). The authors studied 1 
healthy motor, one motor with 1 broken bar, and 1 motor 
with 2 broken bars. The analyzed motors operated under 
open loop control. The parameters of the analyzed machines 
are shown below: Nm = 1425 rpm, INM = 8.4/4.8 A (Δ/Y), 
Pm = 2200 W, η = 82 %, where Nm – rotor speed, INM – 
nominal stator current, Pm – motor power, η – energy 
conversion efficiency. 

The authors analyzed vibration signals of 3 states of the 
TPIM. In the analysis the authors measured signals from 1 
electric motor simultaneously (healthy TPIM (Fig.8.), TPIM 
with 1 broken bar (Fig.9.a), Fig.9.b)), TPIM with 2 broken 
bars (Fig.10.). 

 

 
 

Fig.8.  Healthy TPIM. 

 

 
 

Fig.9.a)  Scheme of squirrel cage of the TPIM with one broken bar. 

 

 
 

Fig.9.b)  Squirrel cage of the TPIM with one broken bar. 

 
 

Fig.10.a)  Scheme of squirrel cage of the TPIM  
with two broken bars. 

 

 
 

Fig.10.b)  Squirrel cage of the TPIM with two broken bars. 

 
Training set consisted of 18 training samples of vibration 

signals (each sample has 5 seconds of vibration signal – 100 
measured values). Test set consisted of 504 test samples of 
vibration signals. Training and test samples of vibration 
signals were computed by proposed diagnostic techniques 
(Fig.3.). To evaluate the results, the authors used efficiency 
of vibration signal recognition. It is defined as (4): 
 

 100%   ⋅=

ASV

TSV
VSR

N

N
E                       (4) 

 
where: NTSV – number of vibration test samples recognized 
properly, NASV – number of vibration test samples in the 
training set, EVSR – efficiency of vibration signal recognition. 

To evaluate 3 states of the motor, the authors used total 
efficiency of vibration signal recognition. It is expressed as 
(5): 

 

 
3

++
  =

321 VSRVSRVSR

VSR

EEE
TE                 (5) 

 
where: EVSR1 – EVSR of the healthy TPIM, EVSR2 – EVSR of the 
TPIM with 1 broken bar, EVSR3 – EVSR of the TPIM with 2 
broken bars, TEVSR – total efficiency of vibration signal 
recognition. 

The computed results are shown in Table 2. - Table 6. In 
Table 2., the authors present the computed results of 
recognition of vibration signals. The MSAF-12 and the NN 
classifier were used. 
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Table 2.  The computed results of recognition of vibration signals. 

The MSAF-12 and the NN classifier were used. 

 

Type of the vibration signal EVSR [%] 

healthy TPIM 100 

TPIM with 1 broken bar 100 

TPIM with 2 broken bars 100 

TEVSR 100 

 

 

In Table 3., the authors show the computed results of 

recognition of vibration signals. The MSAF-12 and the LDA 

classifier were used. 

 
Table 3.  The computed results of recognition of vibration signals. 

The MSAF-12 and the LDA classifier were used. 

 

Type of the vibration signal EVSR [%] 

healthy TPIM 100 

TPIM with 1 broken bar 100 

TPIM with 2 broken bars 100 

TEVSR 100 

 

 

In Table 4., the authors present the computed results of 

recognition of vibration signals. The MSAF-12 and the 

LSVM classifier were used. 

 
Table 4.  The computed results of recognition of vibration signals. 

The MSAF-12 and the LSVM classifier were used. 

 

Type of the vibration signal EVSR [%] 

healthy TPIM 100 

TPIM with 1 broken bar 100 

TPIM with 2 broken bars 100 

TEVSR 100 

 

 

In Table 5., the authors show the computed results of 

recognition of vibration signals. The FFT and the NN 

classifier were used. 

 
Table 5.  The computed results of recognition of vibration signals. 

The FFT and the NN classifier were used. 

 

Type of the vibration signal EVSR [%] 

healthy TPIM 100 

TPIM with 1 broken bar 100 

TPIM with 2 broken bars 92.85 

TEVSR 97.61 

 

 

In Table 6., the authors present the computed results of 

recognition of vibration signals. The mean of vector sum 

and the NN classifier were used. 

Table 6.  The computed results of recognition of vibration signals. 
The mean of vector sum and the NN classifier were used. 

 

Type of the vibration signal EVSR [%] 

healthy TPIM 100 

TPIM with 1 broken bar 100 

TPIM with 2 broken bars 100 

TEVSR 100 

 
The obtained results of analyzed classifiers were in the 

range of 97.61 % – 100 % (TEVSR was in the range of 
97.61 % – 100 %). The MSAF-12 and mean of vector sum 
had TEVSR=100 %. The MSAF-12 selected specific 
frequency components based on differences of frequency 
spectra. Mean of vector sum analyzed 1 value – mean of 100 
measured values. Mean of vector sum can only be used for 
limited faults. If amplitudes of vibration signals are similar 
it will not work properly. The MSAF-12 is based on the FFT 
spectrum and it can work properly in this case. 

 
4.  CONCLUSIONS 

This paper describes diagnostic techniques of rotor of the 
TPIM. The proposed techniques were based on vibration 
signals. The authors analyzed vibration signals for 3 states 
of the TPIM. The authors studied 1 healthy motor, one 
motor with 1 broken bar, and 1 motor with 2 broken bars (3 
motors in total). The authors developed and used the MSAF-
12 method. Feature vectors were obtained using MSAF-12, 
FFT, and mean of vector sum.  

Next, 3 methods of classification were used: NN, LDA, 
and LSVM. The computed results of the mentioned 
classifiers were comparable with results obtained by other 
diagnostic methods (TEVSR was equal to 100 % for the 
MSAF-12). The described diagnostic techniques are 
inexpensive. Vibration and acceleration data loggers cost 
about $100. The cost of computer is in the range of $250-
300. As presented in the results section, presented 
techniques work well for detection of deterioration. The 
article showed that vibration signal has diagnostic 
information. The proposed techniques can be also used to 
detect faults of rotating electrical motors – bearings faults, 
broken sprocket teeth, broken gears.  

This study calls for future research of proposed vibration-
based techniques. Future techniques will be extended by 
analysis of acoustic, electrical, and thermal signals. Other 
faults, operating parameters of TPIM will be analyzed and 
used for industry. 
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