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The maximum likelihood algorithm is introduced for measuring the unknown moment of abrupt change and bandwidth jump of a fast-
fluctuating Gaussian random process. This algorithm can be technically implemented much simpler than the ones obtained by means of
common approaches. The technique for calculating the characteristics of the synthesized measurer is presented and the closed analytical
expressions for the conditional biases and variances of the resulting estimates are found using the additive local Markov approximation of
the decision statistics. By statistical simulation methods, it is confirmed that the presented measurer is operable, while the theoretical
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1. INTRODUCTION characteristics of the synthesized measurer are found both

The problem of the statistical analysis of the abrupt change ~ theoretically and experimentally.

(i.e., instantaneous jumping) of the parameter values of a

random process at some moment in time is studied in a

number of papers [1]-[5]. In certain publications, the Let “us define analytical}y the band. fast'—ﬂuctuating

statement of this problem is accompanied by the assumption ~ Jaussian raFldom process with the bandwidth jump at the

that the observable data realization has a normal mMomentintime A, asfollows

distribution. As a rule, the additional restrictions are also

imposed referring to the. processed samples being &(t):[l— O(I—ko)]vl (t)+6(t— ko)vz(t), G(t):{l’ t>0, )

uncorrelated (and therefore independent) [1], [2] or to the 0, <0,

specified model classes of the information signal [2]-[5],

etc. where v;(¢), i=1,2 — statistically independent stationary
In this paper, we propose a technically simple method for ~ Gaussian random processes with the mathematical

measuring the unknown moment of abrupt change and expectations @ and the spectral densities [6], [7]

bandwidth jump of a Gaussian random process when only

two conditions for the analyzed process are satisfied: that its dlL |c0| <Qy;/2,

fluctuations are fast and that its spectral density is i( ):_

approximately uniform within the specified bandwidth. The 2 [0, |m| >Q;/2.

2. THE PROBLEM STATEMENT
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Here Q,, is the bandwidth, and d is the intensity (spectral
density magnitude) of the process vi(t) determining its
dispersion D; =dQ, /4n, while Qg # Q, . This type of
spectral density shape approximation can be used if the
conditions AQ; << (27T/‘El-)<< Q,; are satisfied [6]. In the
latter formula AC); is the bandwidth within which the real
spectral density G,(o) decreases from its maximum value to
almost zero, 1, =1y, T, =T A, and T is the observation
interval of the random process é(t) (D).

We presuppose that the process (1) is observed against
Gaussian white noise n(t) with one-sided spectral density

N, so that the additive mix

x(e)=&(e)+ nle),

arrives at the input of the receiver.
The parameters A, and Q, are unknown and possess the

tefo0.7] 2)

values from the prior intervals [A,A,], [Y,,Y,]. And we
consider that Y; <Qg, <Y,, while the condition of the
“fast” fluctuations of the process &(t) is stated as

Y,/4n>>1, 3)

Hmin = mm

= min(kO,T —7\.0).

With the observed realization (2) and the available prior
information, it is necessary to estimate the moment of abrupt
change A, and the bandwidth Q, of the process &(t) after

the abrupt change.

where T,.;,

3. THE SYNTHESIS OF THE ESTIMATION ALGORITHM

In order to synthesize the algorithm for estimating the
moment and the magnitude of the abrupt change of the
process &(t) (1) bandwidth we apply the maximum

likelihood method. According to this method, it is necessary
to form the decision statistics — the logarithm of the
functional of the likelihood ratio (FLR) — as a function of
the current values of all the unknown parameters. If the
inequality (3) holds, then according to [6]-[8] we have

d |}, T2
hQ)=—r 2t o) 0
T W) [!y “ Ol)dﬁly o] W
L 2 fxt a*T (T—x)Q+mmln(l+_d)
N0+a’0 Ny+d 4 Ny

Here y(t,@): I_Zx(t')h(t —t',@)dt' is the output signal of
the filter with the transfer function H(»,®) satisfying the
condition |H(w,0) =1, if |o| <©/2, and |H(w,0)" =0, if
|(o| >©/2, while A, Q are the current values of the unknown

parameters A, , €, , respectively.
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the measured values A,, €y, are determined as the

The maximum likelihood estimates (MLEs) A

m> m

position of the greatest maximum of the decision statistics

(4):

nn Q)= LA, Q). (5)

arg max
re[Ag,A; .Qe[Y), Y, ]

m>

In practice, the maximum likelihood measurer (5) can be
implemented as an N-channel device, each channel of which
is matched to the bandwidth Q, =Y, +(i—1/2)AQ, i=1,N ,
AQ=(Y,~Y,)/N . The block diagram of such a device is

shown in Fig. 1. Here the designations are: 1 is the switch
that is open for time [O T ] 2% is a filter with transfer

function H (o, Qm) 27 is a filter with transfer function
(m,Qi), 3 is the squarer; 4 is the subtractor; 5 is an

integrator over the time interval [O,T ]; 6 is the delay line for
time 7; 7 is an integrator; 8 is the ramp generator; 9 is the
multiplier; 10 is the resolver that determines both the
estimate of the bandwidth after the abrupt change by the
channel number with the maximum response magnitude and
the estimate of the moment of abrupt change by the position
of the greatest maximum of the signal in this channel within
the interval [A,,A,]. It is obvious that the greater the

number of channels N, the more accurate the measurer
presented in Fig.1. implements the algorithm (5).

_

Fig.1. The maximum likelihood measurer of the moment and the
magnitude of the abrupt change in the bandwidth of a Gaussian
random process.

4. THE CHARACTERISTICS OF THE ESTIMATION ALGORITHM

Let us find the characteristics of the measurer (5). For this
purpose, we move from MLEs A, , Q, (5) to normalized

MLEs 1, =1-1,,/T , v,, =Q,,/Q¢; —1 defined as

(@, ) arg max (l , v) . (6)
1R 1=y el -1,%, -1
Here
M(1v)=M,(Lv)-M,(0)-S5(1v), (7
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1

Ml(l,v): N Jyz(T7,QOI(v+1))d7,
1-1/
1
MZ(Z):MT : j V17,90, )d7 8)
1-1/

Sy(L.v)=w(1+¢)n(1+q)/q,
and

t=t/T, v=0Q/Q,-1, q¢=d/N,, ©)

[:1_7L/T,7\1,2 :AI,Z/T’?I,Z :YI,Z/QOI > Yy :T901/47T~

If the condition (3) is satisfied, then the functionals
M,(,v), M,(l) (8), and therefore the functional M(I,v) (7)

are Gaussian ones approximately [6]. Thus, they can be
completely described in the statistical sense by means of the
moment or correlation functions of the first two orders.
According to this, we present them as the sum of regular and
fluctuation components [9], [10]:

M (1v)=8,,v)+ Ny (1,v), M,(1)=S,(0)+ N, ().

Here S (l,v)z(Ml (l,v)> , Sz(l):<M2(l)> are regular,
M 1) = M, (1)~ (31,0 . Ny (0)= 3,0~ (M) are
fluctuation components, and the averaging () is performed

in terms of all possible realizations x(f) with fixed values

for Ay, Q, . By directly averaging (8), we find

S,(t,v)=1(v+1)+gmax(0,/ -1, ) [ 1+ min(0,v) ]+
+qmin(lo,l) [1 + min(voz,v)],
S,(1)=1+gmax(0,/-1,)+
+gmin(ly,7)[1+min(0,vy, )],

<N1 (llsvl )Nl (12=V2)> = {min(ll »lz)(l + min("l»"z ))"'
+q(2+q)[max(O,min(ll,lz)—lo)(l+min(0,vl,v2))+
+minly, 4,1y )(1+min(vey, vi, v, ) [ }/my
<N2(11 )Nz(lz» ={min(l},,)+ g2+ ¢)x
x [ max(0, min(l;, 2, )~ 1, ) +
(1+min(0, vy, ))min(ly. £,,25) ] /1y

(10)

Where 10:1_7\.0/T,V02:Q()2/QOI_1
Using (10), we write the component
S(t,v)= (M (t, v)> and the correlation function of the

regular

fluctuation component N(I,v)=M(l,v)- (M (i ,v)> of the
decision statistics M (l,v) (7) as follows:

S(,v)=[1-0+q)in(1+¢)/q |iv— qmin(0,1, —1)x
x min(0,v)+ g min(l,,/ )[min(voz,v)— min(O,voz)],

<N(Zl W )N(lz %) )> = (VM) {min(llslz)[min("ls"z ) -
—min(0,v;) - min(0,v, ) ]+ ¢(2 + ¢)min(ly. 2,1, )x (1)
X [min(v02 Vs )+ min(O, Voz ) —min(0,vy,, v, )—

—min(0,vgy,v, ) ] +¢(2 + ¢)max(0,min(7,, 1, ) - 1, )%

X [min(O, Vi,V )—min(0,v, )— min(O, ) )] } .

We take into account that the regular component S(7,v)
reaches the absolute maximum at the point (lo,voz), while
the realizations of the fluctuation component N(/,v) are

continuous with probability 1. Then the output signal-to-
noise ratio (SNR) for the algorithm (5), (6) is determined as

(71, [9]

2 _ SZ(IO’VO) =ul |:l_
z <N2(lo,v0)> Hy 0|V02|

1+c 2
g ln(l+q)} . (12)
q

where ¢, =0, if vy, >0, and ¢, =q, if vy, <0.

From (12) it follows that the SNR z2>>1, if the
inequality (3) is satisfied and the value of ¢ is not too small.
In this case, the coordinates (lm,vm) (6) of the position of

the absolute maximum of the functional M (l,v) (7) are
situated in a near &-neighborhood of the point (103"02)-
While increasing z? (z2 —w), the size of this
neighborhood 8=max(|l—lo|,|v—v02|)—>0 [6], [9], and for

the regular component and the correlation function of the
fluctuation component (11), the asymptotic representations
are valid:

S(Lv)= Sy + 8,1 =1p)+ S, (v =vp, )+ 0(8),

(NlwN(v, )y =0 + R (L =1, 1, = 1)+ (13)
+ Rz(Vl Vo2, V2 _V02)+ 0(8),
where
o _; Ja)li=in(+q)/q), v, >0,
© -+ )i+ g)/g.  vep <0,
o2 lolvool | (1+ ), vy >0,
My l, Vo2 <0,
(14)
5,(x)= x[1-(1+¢)In(1+¢)/g]+gmin(0,x), vy, >0,
W)= Vo x[l—(l+q)ln(l+q)/q]+qmax(0,x), vpp <0,

$,(») =1y [p(1 = (1+ ¢)n(1 + g)/g) + gmin(0, )],
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_M{mh{xl,x2)+q(2+q)rni1{0,xl,x2), Vo >0,

R =
=5 i, fe-amaoamis ). v <0,

(15)

Z q(2 + q)min(0,,, )+ min(yy,,), vy >0,
Ry(y1.72)=-"44(2+¢)[min(0,y,,y,)— min(0,y,) -

H —min(O,yz)]—max(yl,yz), Vo <0.

We introduce the
random  processes

statistically independent Gaussian
rl(l), 7y (v) with mathematical

expectations (rl (l)) =5 (l - lo) , <r2 (v)) =5, (v - Voz) and
correlation functions

<[’”1 (11 )‘(”1 (11 ))][’”1 (lz)_<’”1 (lz)>]> = 02/2 +R (11 =1y, 1, _lo) )
<[r2("1)—<r2("1)>1r2("2)_<rz("2)>]> = c’2/2+R2("1 Vo2:V2 —Voz) ‘
If z—>o (12) and 6 —>0, then the asymptotically

random field [M (l,v)—SO] converges in
distribution to the sum 7(l)+ 7 (v).

Gaussian
Therefore, while

increasing SNR z (12) the normalized estimates [, , v

m?> m

converge in distribution to the corresponding estimates

argmax 7, (v) ,

N = argmax_n(7),
VE[V02 —8,\202 +8]

N2 =
l€[ly—8,1y+38]

and MLE A, and Q, (5) converge in distribution to the

random variables

T(l _nml) and QOl(an + 1) . (16)

From (13)-(15) it follows that within the intervals
[ty 8.1 +8], [vgs —8,vp, +8] conditions of the Doob’s
theorem [11] are satisfied for the processes # (l), 7 (v), so

they are continuous Gaussian Markov processes with drift

coefficients a, , a,, and diffusion coefficients b, b,,:
4 —|v Sy, 1<y, g =] So1s V<V,
nt = 02| n2 =to
=S, 121, =85, V2V,
2 2
b < oy, 1<y, b < G, V<V,
L P n2 7 2 S
O12, L2145 G2, V=V -

Here

Sa15 Vo2 >0, S22 V2 >0,
Sllz{ Sip =

S22 Vo2 <0, Sa15 Vo2 <0,

Sy =(+q)i-In(+q)/q]. Sy =(1+g)n(l+q)/g-1,

2 _|V02| (1+g), vy >0, _|v02| 1, Vo >0,
o =" o], =—— 5
B Vo2 <0, w ((1+q), v, <0,

o3 =lo(1+Q)2/Hla o2 =lo/u -

In [12], the analytical expressions have been found for the
statistical characteristics of the magnitude and the position
of the greatest maximum of Markov random process with
piecewise constant drift and diffusion coefficients.
Referring to the results of the studies [12], for the
probability densities wm-(n) of the random variables 1, ,

i=1,2 we obtain

229, (-2 (g — ) 228,228, 1/R, ), <1gr -

w;(n)= (17)
A, [y k228,388 ). =y
where
z_zzSz/z 2—212S2/2 iy 18
Zj; =2VpSii/ O1; 5 23 =258 /0%, M1 =1y, (18)

_ 2 2 _ 2 2
N2 =Vo2» R —511012/512011 , Ry = S21022/522021 >

e )

o] 622 }{ y%z}exﬂ-yga)@[_vj%yz ]d@

The expression (17) is not suitable for practical
calculations due to the difficulty of determining the value of

Wg(yaylay2ﬁy3):

8. In this regard, we note that according to (18) z} — 0,

z%l- — o0, if u; =00 and ¢ >0. Thus, if the condition (3)
holds and the value of ¢ is not too small, then we can
consider z{; >>1, z3; >>1 and, similarly to [12], instead of
(17), use a simpler approximation of the form of

~ 22(A (g, —n) IR, <
w;n

; )—{ (19)
292 (-0 ) R), 1210

where

‘P(x, y)= CD( |x|/2)— 1+ (2y + l)exp[|x|y(y + l) ]x

x[1—®((2y+1W)].

The accuracy of the formula (19) increases with p.;, (3)
and zy;, z,; (18).

Using (16), (19) it is easy to write asymptotic expressions
for the conditional biases b( m|?»0)= (?»m - ?»0> ,

b(Qm |QO2 ) = <Qm - Qoz> and variances
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V(}\‘ln|>“0):<(>\‘m _9“0)2> > V(Qm|QOZ):<(Qm _QOZ)Z> of
the estimates (5):

(7‘ |7“ ) _T nm1 1101)

( m|QO) TImZ T]oz):
V(km|7» ) <nm1 No1 2> (20)
(Q |Qoz) < N2 —ﬂ02)2>s
where
1-A,
(nm1 _1101) I( 7101)W1( )dn,
1-A

2

1-A,
<(nm1—n01 > _[T] nm Wl )dn,
—Ay

. (21)
<nm2 - Tloz) = Nf(n - Tloz)Wz(ﬂ)dn )
<(T1m2 noz) >—\j(}n noz) Wz(n)dﬂ

The exact values of the integrals (21) with fixed z;;, z,;

can only be found using numerical computing. However, if
the conditions z,; >>1, 1z, >>1 are satisfied, then,

following [12], we can propose the simpler asymptotic
approximations for the biases and the variances of the
estimates (5) instead of (20), (21). Indeed, in this case, the
function w, (n) is significantly different from zero in a small
neighborhood of the point 1, so that, without significant

accuracy losses, the limits of integration in (21) can be
extended to infinity. Then, after performing the
corresponding mathematical operations we get

ZER(R, +2)-23,(2R; +1)
leZZz(R +1)

<11m1 1101> s (22)

<( )2> Z[ZﬁR (ERZ.2 +6R; + 5)+ z;‘l. (5R1'2 +6R; + 2)]
e AR 1) |

The accuracy of the formulas (22) increases with p;, (3)

and z;;, z, (18). For small values of z,;, z,;, the
calculations carried out by means of (22) can lead to large
errors as the formulas (22), in contrast to (21), do not take
into account the finite length of the prior intervals of the

possible values of the unknown parameters A,,, Q,, .

5. RESULTS OF THE STATISTICAL SIMULATION

In order to establish the borders of applicability for the
found approximate formulas for the characteristics of the
synthesized maximum likelihood estimation algorithm, we
demonstrate the statistical computer simulation of the
measurer (5). During simulation within the interval

7e[1-K,] ), the
Vi =y(Tt~k,Qm(vp+l)L/T/N0 (8) are formed at discrete

points in time 7 :1—/~\2+kA7, kzO,int{[N\Z/AIN} for

v, :\?1—1+pAv,

samples

every significant value of

p=0,int} (Y, - ¥, J/Av of the normalized bandwidth v (9),
as it is described in [10]. In terms of the formed samples

Vi » following [10], within the intervals[l—T\z,l—zN\l],

[V,-1.9,-1]  the M, = M(i,.v,),
M,, :Ml(ln,O), S3up :S3(ln,vp) are calculated from the
random fields M, (l,v), M, (l) (8) and deterministic
S,(Lv)  (®). [, =1-A,+nAl,

)Al} The discretization step for the

samples

function Here

n=0 1nt{(
variable 7 is selected to be equal to A7 =0.05/p,,;, , and

for the variables / and v — to A/ =Av=0.001. As a result,
the relative mean square error of the stepwise approximation
of the functional M (l,v) (7) derived from the generated

samples M,, =M,,, - M,,
when calculated according to the technique [13].
The normalized MLEs [, , v,, (6) are determined by the

numbers » of the

- 83, does not exceed 10 %,

max> Pmax Of the maximum sample M,

functional (7) as [, =1— 1~\2 +np AL, v, = ?1
Based on a series of the estimates obtained by processing of
N realizations of the random field M (l,v) , where N = 10° s

the values of the sample biases and variances of the
estimates [/, , v, are calculated for the specified set of the

Thus, with probability of 0.9
confidence interval boundaries deviate from experimental
values no more than for 10...15 %.

In Fig.2., the theoretical dependences are drawn from the
V(hlioo)/T? of the
estimate of the moment of abrupt change in the bandwidth
A,, (5) as the function of the normalized value g (9) of the

=1+ praAv.

m>

parameters [y, Vo, ¢, M-

m

normalized conditional variance V; =

spectral density of the random process é(t) (1). Solid lines
are calculated applying more accurate formulas (19)-(21),
while dashed lines — asymptotic formulas (20), (22). The
curves 1 are plotted for vy, =0.5, p; =500; 2 — vy, =0.5,
p; =1200; 3 — vy, =0.75, py =1200. The corresponding
experimental values of the conditional variance of the
moment of abrupt change in the bandwidth are designated
by squares, crosses, and rhombuses. Here the true value of
the parameter /, (10) is taken to be 0.5.

254



MEASUREMENT SCIENCE REVIEW, 19, (2019), No. 6, 250-256

2
g B deote | | 1|
02 m% AD' D¢f{ 7
A \K‘ié
107} Xi\“
'\“@:BE
1074 \7\:;
107

0.1 0.2 0.3 05 07 1 2 q

Fig.2. Normalized variance of the estimate of the moment of
abrupt change in the bandwidth.
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Fig.3. Normalized variance of the estimate of the bandwidth after
the abrupt change.

In Fig.3., by solid and dashed lines the similar theoretical
dependences are shown of the normalized conditional

variance V, :V(Qm|(202)/ le of the estimate of the
bandwidth after the abrupt change €, (5) upon the
parameter g, calculated according to (19)-(21) and (22). The
curves 1 are obtained for /,=0.25, p,=500; 2 —
lh,=025, pn,=1000; 3 — [,=05, p; =1000. The
corresponding experimental values of the conditional
variance of the abrupt change in the bandwidth are

designated by squares, crosses, and rhombuses. In this case,
the true value of the parameter v, (10) is taken to be —0.5.

From the conducted analysis and Fig.2., Fig.3. it follows
that the theoretical dependences obtained for the variances
V(?»m|7»0), V(Qm|(202) (20), (21) already agree quite
successfully with the experimental data, at least, under
w, =100, g=0.1, A, 20.1, A, <09,

|§202 —QOI|/QO1 20.1. And if output SNR is big enough,

that is z >3 (12), then the simpler approximations (22) can
be used for calculating the variance of the estimate of the
moment and the magnitude of the abrupt change of the
random process bandwidth.

As it is noted in [10], for very big values of ¢ the deviatio)n
[20).

V(Qm|(202) may be observed from the corresponding

of the experimental values of the variances V(Xm

theoretical dependences obtained while using (20), (21) or
(20), (22). It is the result of the formulas for the
characteristics (11) of the functional M (l,v) (7) having been

found on the assumption that the sizes of order of the
correlation time of the process &(t) are negligible.

Therefore, when the variances of MLEs A, /T, Q, /Qq,

decrease to the size of order % (3), the calculation errors
in (20)-(22) become considerable.

6. CONCLUSION

In order to identify the abrupt change point in the fast-
fluctuating Gaussian process, the maximum likelihood
method can be effectively applied. This approach allows us
to obtain the algorithms for measuring the unknown moment
of abrupt change and frequency parameter jumps of the
random process, while neglecting the values of the order of
its correlation time. These algorithms are technically the
simplest ones in comparison with the common analogues.
We apply the additive local Markov approximation method
to write down the closed analytical expressions for the
efficiency characteristics of the maximum likelihood
measurer.

We used the statistical simulation to establish that the
obtained theoretical results successfully agree with the
corresponding experimental data in a wide range of the
observable data realization parameter values. Additional
researches show that the measurers synthesized by means of
the introduced approach can also be used in the analysis of
the non-Gaussian random processes with unknown
piecewise constant parameters and bring no great losses in
performance.
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