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The maximum likelihood algorithm is introduced for measuring the unknown moment of abrupt change and bandwidth jump of a fast-

fluctuating Gaussian random process. This algorithm can be technically implemented much simpler than the ones obtained by means of 

common approaches. The technique for calculating the characteristics of the synthesized measurer is presented and the closed analytical 

expressions for the conditional biases and variances of the resulting estimates are found using the additive local Markov approximation of 

the decision statistics. By statistical simulation methods, it is confirmed that the presented measurer is operable, while the theoretical 

formulas describing its performance well approximate the corresponding experimental data in a wide range of the parameter values of the 

analyzed random process. 
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1.  INTRODUCTION 

The problem of the statistical analysis of the abrupt change 

(i.e., instantaneous jumping) of the parameter values of a 

random process at some moment in time is studied in a 

number of papers [1]-[5]. In certain publications, the 

statement of this problem is accompanied by the assumption 

that the observable data realization has a normal 

distribution. As a rule, the additional restrictions are also 

imposed referring to the processed samples being 

uncorrelated (and therefore independent) [1], [2] or to the 

specified model classes of the information signal [2]-[5], 

etc. 

In this paper, we propose a technically simple method for 

measuring the unknown moment of abrupt change and 

bandwidth jump of a Gaussian random process when only 

two conditions for the analyzed process are satisfied: that its 

fluctuations are fast and that its spectral density is 

approximately uniform within the specified bandwidth. The 

characteristics of the synthesized measurer are found both 

theoretically and experimentally. 
 

2.  THE PROBLEM STATEMENT 

Let us define analytically the band fast-fluctuating 
Gaussian random process with the bandwidth jump at the 

moment in time 0λ  as follows 
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where ( )tiν , 2,1=i  – statistically independent stationary 

Gaussian random processes with the mathematical 
expectations a and the spectral densities [6], [7] 
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Here i0Ω  is the bandwidth, and d is the intensity (spectral 

density magnitude) of the process ( )tiν  determining its 

dispersion πΩ= 40ii dD , while 0201 Ω≠Ω . This type of 

spectral density shape approximation can be used if the 

conditions ( ) iii 02 Ω<<τπ<<∆Ω  are satisfied [6]. In the 

latter formula i∆Ω  is the bandwidth within which the real 

spectral density ( )ωiG  decreases from its maximum value to 

almost zero, 01 λ=τ , 02 λ−=τ T  and T is the observation 

interval of the random process ( )tξ  (1). 

We presuppose that the process (1) is observed against 

Gaussian white noise ( )tn  with one-sided spectral density 

0N , so that the additive mix 

 

 ( ) ( ) ( )tnttx +ξ= ,      [ ]Tt ,0∈  (2) 

 

arrives at the input of the receiver. 

The parameters 0λ  and 02Ω  are unknown and possess the 

values from the prior intervals [ ]21,ΛΛ , [ ]21,ΥΥ . And we 

consider that 2011 Υ<Ω<Υ , while the condition of the 

“fast” fluctuations of the process ( )tξ  is stated as 

 

 141minmin >>πΥ=µ T , (3) 

 

where ( )00min ,min λ−λ= TT . 

With the observed realization (2) and the available prior 

information, it is necessary to estimate the moment of abrupt 

change 0λ  and the bandwidth 02Ω  of the process ( )tξ  after 

the abrupt change. 

 

3.  THE SYNTHESIS OF THE ESTIMATION ALGORITHM 

In order to synthesize the algorithm for estimating the 

moment and the magnitude of the abrupt change of the 

process ( )tξ  (1) bandwidth we apply the maximum 

likelihood method. According to this method, it is necessary 

to form the decision statistics – the logarithm of the 

functional of the likelihood ratio (FLR) – as a function of 

the current values of all the unknown parameters. If the 

inequality (3) holds, then according to [6]-[8] we have 
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Here ( ) ( ) ( )∫
∞

∞−
′Θ′−′=Θ tdtthtxty  , ,  is the output signal of 

the filter with the transfer function ( )Θω,H  satisfying the 

condition ( ) 1,
2

=ΘωH , if 2Θ≤ω , and ( ) 0,
2

=ΘωH , if 

2Θ>ω , while λ, Ω are the current values of the unknown 

parameters 0λ , 02Ω , respectively. 

The maximum likelihood estimates (MLEs) mλ , mΩ  of 

the measured values 0λ , 02Ω  are determined as the 

position of the greatest maximum of the decision statistics 

(4): 
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In practice, the maximum likelihood measurer (5) can be 

implemented as an N-channel device, each channel of which 

is matched to the bandwidth ( )∆Ω−+Υ=Ω 211 ii , Ni ,1= , 

( ) N12 Υ−Υ=∆Ω . The block diagram of such a device is 

shown in Fig. 1. Here the designations are: 1 is the switch 

that is open for time [ ]T,0 ; 20 is a filter with transfer 

function ( )01,ΩωH ; 2i is a filter with transfer function 

( )iH Ωω, ; 3 is the squarer; 4 is the subtractor; 5 is an 

integrator over the time interval [ ]T,0 ; 6 is the delay line for 

time T; 7 is an integrator; 8 is the ramp generator; 9 is the 

multiplier; 10 is the resolver that determines both the 

estimate of the bandwidth after the abrupt change by the 

channel number with the maximum response magnitude and 

the estimate of the moment of abrupt change by the position 

of the greatest maximum of the signal in this channel within 

the interval [ ]21,ΛΛ . It is obvious that the greater the 

number of channels N, the more accurate the measurer 

presented in Fig.1. implements the algorithm (5). 

 

 
 

Fig.1.  The maximum likelihood measurer of the moment and the 

magnitude of the abrupt change in the bandwidth of a Gaussian 

random process. 

 
4.  THE CHARACTERISTICS OF THE ESTIMATION ALGORITHM 

Let us find the characteristics of the measurer (5). For this 

purpose, we move from MLEs mλ , mΩ  (5) to normalized 

MLEs Tl mm λ−=1 , 101 −ΩΩ= mmv  defined as 
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Here 
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and 

 

 Ttt =~
,      101 −ΩΩ=v ,      0Ndq = , (9) 

 

Tl λ−=1 , T2,12,1

~
Λ=Λ , 012,12,1

~
ΩΥ=Υ , πΩ=µ 4011 T . 

 

If the condition (3) is satisfied, then the functionals 

( )vlM ,1 , ( )lM 2  (8), and therefore the functional ( )vlM ,  (7) 

are Gaussian ones approximately [6]. Thus, they can be 

completely described in the statistical sense by means of the 

moment or correlation functions of the first two orders. 

According to this, we present them as the sum of regular and 

fluctuation components [9], [10]: 

 

 ( ) ( ) ( )vlNvlSvlM ,,, 111 += ,    ( ) ( ) ( )lNlSlM 222 += .  

 

Here ( ) ( )vlMvlS ,, 11 = , ( ) ( )lMlS 22 =  are regular, 

( ) ( ) ( )vlMvlMvlN ,,, 111 −= , ( ) ( ) ( )lMlMlN 222 −=  are 

fluctuation components, and the averaging ⋅  is performed 

in terms of all possible realizations ( )tx  with fixed values 

for 0λ , 02Ω . By directly averaging (8), we find 
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where Tl 00 1 λ−= , 1010202 −ΩΩ=v . 

Using (10), we write the regular component 

( ) ( )vlMvlS ,, =  and the correlation function of the 

fluctuation component ( ) ( ) ( )vlMvlMvlN ,,, −=  of the 

decision statistics ( )vlM ,  (7) as follows: 
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We take into account that the regular component ( )vlS ,  

reaches the absolute maximum at the point ( )020 ,vl , while 

the realizations of the fluctuation component ( )vlN ,  are 

continuous with probability 1. Then the output signal-to-

noise ratio (SNR) for the algorithm (5), (6) is determined as 

[7], [9] 

 

( )
( )

( )
2

0201

00
2

00
2

2
1ln

1
1 

,

,








+

+
−µ== q

q

c
vl

vlN

vlS
z

q
,     (12) 

 
where 0=qc , if 002 >v , and qcq = , if 002 <v . 

From (12) it follows that the SNR 12 >>z , if the 

inequality (3) is satisfied and the value of q is not too small. 

In this case, the coordinates ( )mm vl ,  (6) of the position of 

the absolute maximum of the functional ( )vlM ,  (7) are 

situated in a near δ-neighborhood of the point ( )020 ,vl . 

While increasing 2z  ( ∞→2z ), the size of this 

neighborhood ( ) 0,max 020 →−−=δ vvll  [6], [9], and for 

the regular component and the correlation function of the 

fluctuation component (11), the asymptotic representations 

are valid: 
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We introduce the statistically independent Gaussian 

random processes ( )lr1 , ( )vr2  with mathematical 

expectations ( ) ( )011 llSlr −= , ( ) ( )0222 vvSvr −=  and 

correlation functions 
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If ∞→z  (12) and 0→δ , then the asymptotically 

Gaussian random field ( )[ ]0, SvlM −  converges in 

distribution to the sum ( ) ( )vrlr 21 + . Therefore, while 

increasing SNR z (12) the normalized estimates ml , mv  

converge in distribution to the corresponding estimates 
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and MLE mλ  and mΩ  (5) converge in distribution to the 

random variables 
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From (13)-(15) it follows that within the intervals 

[ ]δ+δ− 00 , ll , [ ]δ+δ− 0202 ,vv  conditions of the Doob’s 

theorem [11] are satisfied for the processes ( )lr1 , ( )vr2 , so 

they are continuous Gaussian Markov processes with drift 

coefficients 1ηa , 2ηa  and diffusion coefficients 1ηb , 2ηb : 
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In [12], the analytical expressions have been found for the 

statistical characteristics of the magnitude and the position 

of the greatest maximum of Markov random process with 

piecewise constant drift and diffusion coefficients.  

Referring to the results of the studies [12], for the 

probability densities ( )ηηiw  of the random variables miη , 

2,1=i  we obtain 
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The expression (17) is not suitable for practical 

calculations due to the difficulty of determining the value of 

δ.  In this regard, we note that according to (18) ∞→2
1iz , 

∞→2
2iz , if ∞→µ1  and 0>q . Thus, if the condition (3) 

holds and the value of q is not too small, then we can 

consider 12
1 >>iz , 12

2 >>iz  and, similarly to [12], instead of 

(17), use a simpler approximation of the form of 
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The accuracy of the formula (19) increases with minµ  (3) 

and iz1 , iz2  (18). 

Using (16), (19) it is easy to write asymptotic expressions 

for the conditional biases ( ) 00 λ−λ=λλ mmb , 

( ) 0202 Ω−Ω=ΩΩ mmb  and variances 
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the estimates (5): 
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The exact values of the integrals (21) with fixed iz1 , iz2  

can only be found using numerical computing. However, if 

the conditions 11 >>iz , 12 >>iz  are satisfied, then, 

following [12], we can propose the simpler asymptotic 

approximations for the biases and the variances of the 

estimates (5) instead of (20), (21). Indeed, in this case, the 

function ( )ηiw  is significantly different from zero in a small 

neighborhood of the point i0η  so that, without significant 

accuracy losses, the limits of integration in (21) can be 

extended to infinity. Then, after performing the 

corresponding mathematical operations we get 
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The accuracy of the formulas (22) increases with minµ  (3) 

and iz1 , iz2  (18). For small values of iz1 , iz2 , the 

calculations carried out by means of (22) can lead to large 

errors as the formulas (22), in contrast to (21), do not take 

into account the finite length of the prior intervals of the 

possible values of the unknown parameters mλ , mΩ . 

5.  RESULTS OF THE STATISTICAL SIMULATION 

In order to establish the borders of applicability for the 

found approximate formulas for the characteristics of the 

synthesized maximum likelihood estimation algorithm, we 

demonstrate the statistical computer simulation of the 

measurer (5). During simulation within the interval 

[ ]1,
~

1
~

2Λ−∈t  (9), the samples  

( )( ) 001 1,
~~ NTvtTyy pkkp +Ω=  (8) are formed at discrete 

points in time tktk
~~

1
~

2 ∆+Λ−= , { }tk
~~

 int,0 2 ∆Λ=  for 

every significant value of vpvp ∆+−Υ= 1
~

1 , 

( ){ }ν∆Υ−Υ= 12

~~
 int,0p  of the normalized bandwidth v (9), 

as it is described in [10]. In terms of the formed samples 

kpy~ , following [10], within the intervals [ ]12

~
1,

~
1 Λ−Λ− , 

[ ]1
~

,1
~

 21 −Υ−Υ  the samples ( )pnnp vlMM ,11 = , 

( )0,12 nn lMM = , ( )pnnp vlSS ,33 =  are calculated from the 

random fields ( )vlM ,1 , ( )lM 2  (8) and deterministic 

function ( )vlS ,3  (8). Here lnln ∆+Λ−= 2

~
1 , 

( ){ }ln ∆Λ−Λ= 12

~~
 int,0 . The discretization step for the 

variable t
~

 is selected to be equal to min05.0
~ µ=∆t , and 

for the variables l and v – to 001.0=∆=∆ vl . As a result, 

the relative mean square error of the stepwise approximation 

of the functional ( )vlM ,  (7) derived from the generated 

samples npnnpnp SMMM 321 −−=  does not exceed 10 %, 

when calculated according to the technique [13]. 

The normalized MLEs ml , mv  (6) are determined by the 

numbers maxn , maxp  of the maximum sample npM  of the 

functional (7) as lnlm ∆+Λ−= max2

~
1 , vpvm ∆+−Υ= max1 1

~
. 

Based on a series of the estimates obtained by processing of 

N realizations of the random field ( )vlM , , where 310=N , 

the values of the sample biases and variances of the 

estimates  ml , mv  are calculated for the specified set of the 

parameters 0l , 02v , q, 1µ . Thus, with probability of 0.9 

confidence interval boundaries deviate from experimental 

values no more than for 10...15 %. 

In Fig.2., the theoretical dependences are drawn from the 

normalized conditional variance ( ) 2
0 TVV ml λλ=  of the 

estimate of the moment of abrupt change in the bandwidth 

mλ  (5) as the function of the normalized value q (9) of the 

spectral density of the random process ( )tξ  (1). Solid lines 

are calculated applying more accurate formulas (19)-(21), 

while dashed lines – asymptotic formulas (20), (22). The 

curves 1 are plotted for 5.002 =v , 5001 =µ ; 2 – 5.002 =v , 

12001 =µ ; 3 – 75.002 =v , 12001 =µ . The corresponding 

experimental values of the conditional variance of the 

moment of abrupt change in the bandwidth are designated 

by squares, crosses, and rhombuses. Here the true value of 

the parameter 0l  (10) is taken to be 0.5. 
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Fig.2.  Normalized variance of the estimate of the moment of 

abrupt change in the bandwidth. 

 

 

 
 

Fig.3.  Normalized variance of the estimate of the bandwidth after 

the abrupt change. 

 

In Fig.3., by solid and dashed lines the similar theoretical 

dependences are shown of the normalized conditional 

variance ( ) 2
0102 ΩΩΩ= mv VV  of the estimate of the 

bandwidth after the abrupt change mΩ  (5) upon the 

parameter q, calculated according to (19)-(21) and (22). The 

curves 1 are obtained for 25.00 =l , 5001 =µ ; 2 – 

25.00 =l , 10001 =µ ; 3 – 5.00 =l , 10001 =µ . The 

corresponding experimental values of the conditional 

variance of the abrupt change in the bandwidth are 

designated by squares, crosses, and rhombuses. In this case, 

the true value of the parameter 02v  (10) is taken to be –0.5. 

From the conducted analysis and Fig.2., Fig.3. it follows 

that the theoretical dependences obtained for the variances 

( )0λλmV , ( )02ΩΩmV  (20), (21) already agree quite 

successfully with the experimental data, at least, under 

1001 ≥µ , 1.0≥q , 1.0
~

1 ≥Λ , 9.0
~

2 ≤Λ , 

1.0010102 ≥ΩΩ−Ω . And if output SNR is big enough, 

that is 3≥z  (12), then the simpler approximations (22) can 

be used for calculating the variance of the estimate of the 

moment and the magnitude of the abrupt change of the 

random process bandwidth. 

As it is noted in [10], for very big values of q the deviation 

of the experimental values of the variances ( )0λλmV , 

( )02ΩΩmV  may be observed from the corresponding 

theoretical dependences obtained while using (20), (21) or 

(20), (22). It is the result of the formulas for the 

characteristics (11) of the functional ( )vlM ,  (7) having been 

found on the assumption that the sizes of order of the 

correlation time of the process ( )tξ  are negligible. 

Therefore, when the variances of MLEs Tmλ , 02ΩΩm  

decrease to the size of order 2
min
−µ  (3), the calculation errors 

in (20)-(22) become considerable. 

 

6.  CONCLUSION 

In order to identify the abrupt change point in the fast-

fluctuating Gaussian process, the maximum likelihood 

method can be effectively applied. This approach allows us 

to obtain the algorithms for measuring the unknown moment 

of abrupt change and frequency parameter jumps of the 

random process, while neglecting the values of the order of 

its correlation time. These algorithms are technically the 

simplest ones in comparison with the common analogues. 

We apply the additive local Markov approximation method 

to write down the closed analytical expressions for the 

efficiency characteristics of the maximum likelihood 

measurer. 

We used the statistical simulation to establish that the 

obtained theoretical results successfully agree with the 

corresponding experimental data in a wide range of the 

observable data realization parameter values. Additional 

researches show that the measurers synthesized by means of 

the introduced approach can also be used in the analysis of 

the non-Gaussian random processes with unknown 

piecewise constant parameters and bring no great losses in 

performance. 
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