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The statistical calibration problem treated here consists of constructing the interval estimates for future unobserved values of a univariate

explanatory variable corresponding to an unlimited number of future observations of a univariate response variable. An interval estimate

is to be computed for a value x of an explanatory variable after observing a response Yx by using the same calibration data from a single

calibration experiment, and it is called the multiple use confidence interval. It is assumed that the normally distributed response variable

Yx is related to the explanatory variable x through a linear regression model, a polynomial regression is probably the most frequently used

model in industrial applications. Construction of multiple use confidence intervals (MUCI’s) by inverting the tolerance band for a linear

regression has been considered by many authors, but the resultant MUCI’s are conservative. A new method for determining MUCI’s is

suggested straightforward from their marginal property assuming a distribution of the explanatory variable. Using simulations, we show that

the suggested MUCI’s satisfy the coverage probability requirements of MUCI’s quite well and they are narrower than previously published.

The practical implementation of the proposed MUCI’s is illustrated in detail on an example.

Keywords: Statistical calibration, linear regression model, tolerance interval, multiple use confidence interval.

1. INTRODUCTION

Univariate linear regression model Yx = f T (x)β + ε ,ε ∼
N(0,σ2), where ε is an error, Yx is an observation correspond-

ing to a value x, f T (x) is a q-dimensional known function of

value x, vector β = (β0,β1, . . . ,βq−1)
T and σ2 > 0 are the

unknown parameters of the model, is used in many applica-

tions. For example, the 2-order polynomial regression (i.e.,

q = 3, f T (x) = (1, x, x2)) was used to model the relation-

ship between a one-dimensional response variable Yx and a

one-dimensional explanatory variable x in the example at the

end of Section 3. The statistical calibration is typically moti-

vated by the problem of estimating x for a subject in the case

when measuring corresponding Yx is relatively easier and it

does not require so much effort or expenses, etc. It means

that we want to make a statistical inference about x, but it is

possible to measure only the dependent variable Yx. A rela-

tion between the variables is fitted based on calibration data

from a calibration experiment. In this article we suppose a

univariate controlled calibration, i.e. in a calibration experi-

ment En = {(xi,Yxi
), i = 1,2, . . . ,n} the value xi, i = 1, . . . ,n

is treated as a known scalar and a response Yxi
, i = 1, . . . ,n is

assumed to be a random variable. The calibration experiment

is often designed so that the chosen values x1, . . . ,xn span the

range of the possible values, X = [xmin,xmax] ⊂ R, and it is

worth emphasizing that f T (x)β is a monotonic function on

X . An overview of statistical calibration tasks is provided in

Osborne [15].

The statistical calibration problem treated here is to con-

struct the interval estimates for the unknown independent val-

ues xn+1,xn+2, . . ., corresponding to an unlimited sequence of

additional observations Yxn+1
,Yxn+2

, . . . using the same cali-

bration data, i.e. using the same estimates of the unknown

parameters β , σ2. Two sources of error must be taken into

account in the problem, the uncertainty of the estimates of un-

known parameters of the model from the calibration data, and

the uncertainty of all future responses. Eisenhart [3] demon-

strated that a (1−α)-confidence set for a single future x can

be obtained by inverting a (1−α)-prediction interval in a lin-

ear regression. It means that the limits for the true x-value

after observing the response Yx are determined as the inter-

sections of the (1−α)-prediction band with the straight line

y = Yx, see Fig.1. If the fitted regression line was not strictly

monotone on X , we would get an ambiguous solution (i.e.,

we would find more than two intersections of the horizontal

line y =Yx with a band around such a fitted calibration curve).

Since the interval estimates for xn+1,xn+2, . . . are constructed

by using repeatedly the same estimates of unknown parame-

ters β , σ2, we would like to make a simultaneous confidence

statement about them. It must be pointed out that it is an

incorrect interpretation that 100(1−α) % of the interval esti-

mates for xn+1,xn+2, . . . determined by inverting the (1−α)-
prediction band contain the true x-value. Indeed, the coverage

is much less than 100(1−α) % and it decreases as the num-
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Fig. 1. Illustration of the construction of an interval estimate

[xlower,xupper] for the x-value corresponding to an observation Yx by

inverting a band around the fitted regression line.

ber of xn+i’s increases. Mandel [11] considered the problem

of constructing confidence sets for a prechosen number m of

future responses, he suggested to invert the simultaneous pre-

diction intervals. In literature proposed simultaneous predic-

tions intervals (see e.g., Lieberman [9], Carlstein [2]) become

extremely wide when m is large. We can conclude that the

simultaneous prediction intervals cannot be used in the case

of an unknown number of future observations and they are

impractical for use in the case when m is large. If a precho-

sen number m of MUCI’s is constructed by inverting the si-

multaneous prediction intervals, then the MUCI’s contain the

corresponding true values with a prescribed confidence 1−α .

This strong condition, that all m constructed MUCI’s contain

the true x-value, was replaced with the condition that at least γ
proportion of them contains the corresponding true value with

a confidence 1−α (see Acton [1], Halperin [4]). So, MUCI’s

are constructed by using the calibration data (i.e., by using

the same estimates of β , σ2) from a single calibration exper-

iment En and have the property that at least a proportion γ of

them contains the corresponding true x-value with confidence

1−α . The two-sided MUCI for the unknown x correspond-

ing to a future observation Yx is considered in Lieberman et

al. [10], Scheffé [16], Mee et al. [13], Krishnamoorthy and

Mathew [7], and Witkovský [17] in the closed form

I (Yx) = {x ∈ X : f T (x)β̂ −g(x)S ≤ Yx ≤ f T (x)β̂ +g(x)S},
(1)

where β̂ denotes the least squares estimator of β , S2 denotes

the residual mean square based on n − q degrees of free-

dom, and g(.) is a positive, unimodal function determined

subject to requirements of MUCI’s. It means, that the two-

sided MUCI is also found as an intersection of horizontal

line in y = Yx with a band around the fitted calibration curve

f T (x)β̂ ± g(x)S,x ∈ X (see Fig.1.). If an observation Yx∗ is

captured by the band [ f T (x∗)β̂ − g(x∗)S, f T (x∗)β̂ + g(x∗)S],
then it is obvious that I (Yx∗) will contain the true value

x∗. Hence, a function g(.) is to be chosen so as to sat-

isfy the condition of MUCI’s, which can be expressed as

Pβ̂ ,S
(

liminfK→∞
1
K ∑K

i=1 δ (xn+i)≥ γ
)

= 1−α , where δ (x) =
1 if f T (x)β̂ −g(x)S ≤ Yx ≤ f T (x)β̂ +g(x)S and 0 otherwise,

and 1
K ∑K

i=1 δ (xn+i) is the proportion of the intervals I (Yxn+i
),

i = 1,2, . . . ,K which contain the true corresponding x-value.

The variable δ (x) is Bernoulli distributed with success prob-

ability conditional on given β̂ ,S:

C(x;β̂ ,S) =

= PYx( f T (x)β̂ −g(x)S ≤ Yx ≤ f T (x)β̂ +g(x)S | β̂ ,S).
(2)

Thus, for a large number K of future observations the prop-

erty of MUCI’s is simplified based on the strong law of large

numbers to

Pβ̂ ,S

(

1

K

K

∑
i=1

C(xi; β̂ ,S)≥ γ

)

= 1−α, (3)

see e.g. Mee and Eberhardt [12], Krishnamoorthy and

Mathew [7]. The condition (3) can be rewritten for the one-

sided MUCI’s, see Krishnamoorthy et al. [8], Krishnamoor-

thy and Mathew [7], Han et al.[5].

The condition (3) is a rather difficult condition to

work with. A sufficient condition to the property of

MUCI’s to hold is the condition of the (1 − α,γ)-
simultaneous tolerance intervals (STI’s) for a linear regres-

sion model (or equivalently the (1 − α,γ)-tolerance band),

i.e. Pβ̂ ,S

(

minx∈X C(x; β̂ ,S)≥ γ
)

= 1−α . Determination of

the MUCI’s accomplished by inverting the STI’s has been ex-

ploited by several authors, see e.g., Lieberman et al. [10],

Scheffé [16], Mee et al. [13], and Witkovský [17]. The two-

sided STI’s presented in Mee et al. [13] and the one-sided

STI’s presented in Odeh and Mee [14] are exact for a multi-

ple linear regression model. For the considered model, where

the covariates are assumed to have functional relationships,

the STI’s become conservative, except for the case of a sim-

ple linear regression. A simulation-based method for deter-

mining the exact one-sided STI’s for our considered model is

suggested in Han et al. [5]. Since the same fixed functional

form of function g(.) is used in Han et al. [5] as in Odeh and

Mee [14], the computation of the resultant MUCI’s is simple,

a built-in function for finding root of a function is in usually

used analytical software, e.g fzero() in MATLAB. The Han et

al. method can be modified to the two-sided case, but the re-

sultant MUCI’s, as in the one-sided case, will be conservative

and it means that they will be wider than necessary.

The layout of this paper is as follows. Section 2 deals with

the construction of the MUCI’s suggested from the marginal

property (3) assuming a distribution of the explanatory vari-

able. Section 3 provides a numerical comparison of the

MUCI’s based on the exact (1−α,γ)-STI’s and constructed

by the suggested method for the case of a simple linear regres-

sion. The application of MUCI’s is illustrated on an example.

Section 4 contains discussion and conclusions.
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2. NEW MULTIPLE USE CONFIDENCE INTERVALS

A future observation, Yx = f T (x)β + ε ,Yx ∼
N( f T (x)β ,σ2), corresponding to a value x ∈ X is as-

sumed to be independent of a vector of observations

Y = (Yx1
, . . . ,Yxn)

T from the calibration experiment En.

Let X denote a (n × q)-dimensional calibration experiment

design matrix with rows f T (xi), i = 1, . . . ,n. Throughout, we

shall assume that rank(X) = q. The least squares estimator

β̂ = (XT X)−1XTY of β , and the estimator of the mea-

surement error variance S2 = (Y − X β̂ )T (Y − X β̂ )/(n − q)
are independent. Under the model assumptions it holds

β̂ ∼ Nq(β ,σ2(XT X)−1) and S2(n − q)/σ2 ∼ χ2
n−q, where

χ2
n−q denotes a central chi-squared random variable with

n−q degrees of freedom.

Define independent pivotal variables

B =
β̂ −β

σ
∼ Nq(0q,(X

T X)−1), U2 =
S2

σ2
∼

χ2
n−q

n−q
, (4)

where 0q denotes the q-dimensional vector of zeros. By using
the pivotal variables, the probability of covering the observa-
tion Yx (2) can be written as

C(x;β̂ ,S) =

= PYx

(

f T (x)B−g(x)U ≤
Yx − f T (x)β

σ
≤ f T (x)B+g(x)U

)

= Φ
(

f T (x)B+g(x)U
)

−Φ
(

f T (x)B−g(x)U
)

=C(x;B,U),

(5)

where Φ(.) denotes the cumulative distribution function of

the standard normal distribution. Then, the condition (3) of

the MUCI’s can be expressed as

PB,U

(

1

K

K

∑
i=1

C(xi;B,U)≥ γ

)

= 1−α. (6)

Inspired by a connection between MUCI’s and a prediction

interval in a linear regression, we will consider the function

g(.) in the following form

gnew(x)= ν{1+d2(x)}1/2, d2(x)= f T (x)(XT X)−1 f (x) (7)

where the constant ν > 0 will be chosen to satisfy the cali-

bration condition. Note that for the case K = 1 it holds ν =
tn−q(1−α/2), where tn−q(1−α/2) denotes the (1−α/2)-
quantile of the Student’s t-distribution with n− q degrees of

freedom. For other possibilities for setting g(.) see Witkovský

[17]. Since there is arbitrariness in the choice of the sequence

{xn+i} it can be assumed that the sequence {xn+i} is randomly

generated with a probability distribution on the interval X .

Here, we suggest to assume the uniform distribution of the

x’s on X . For a specified range of possible values of the ex-

planatory variable, this is a natural choice of the distribution

of the explanatory variable. Then, the scalar ν is a solution of

the following integral equation

PB,U

{

(xmax − xmin)
−1
∫

X

C(x;B,U)dx ≥ γ
}

= 1−α. (8)

The equation (8) is a population counterpart to (6) with the

average replaced by the expected value. The multiple inte-

gration is required for solving equation (8). Since the compu-

tation of constant ν depends on X and also on X , the tabu-

lations of its values are difficult for various α,γ . Hence, the

value of ν is calculated for each problem anew. The unknown

constant ν for the MUCI’s can be estimated with adequate

accuracy for practical work by a simulation. The detailed al-

gorithm of calculation ν is shown in Algorithm 1. The code

in MATLAB is available from the author upon request.

Table 1. Algorithm for calculating ν for the new MUCI’s.

Algorithm 1

1: Input: X , X = [xmin,xmax], α , γ , N - number of runs

(n is the number of rows of X , q is the number of columns of X)

2: Generate N times B ∼ Nq(0q,(X
T X)−1), and

U ∼
√

χ2
n−q/(n−q) (e.g. N = 500,000)

3: Find roots of the equation ∑N
i=1 Ind(covi ≥ γ)/N = 1−α ,

where Ind(covi ≥ γ) = 1, if covi ≥ γ and 0 otherwise

covi = (xmax − xmin)
−1
∫

X
C(x;Bi,Ui)dx

4: Output: ν

For example, suppose the simple linear regression, i.e.
f T (x) = (1, x), q = 2, B = (B0,B1)

T ,

(

B0

B1

)

∼ N2

(

(

0

0

)

,
1

Sx

(

∑n
i=1 x2

i

n −x̄

−x̄ 1

))

, U ∼

√

χ2
n−2

n−2
, (9)

where x̄=∑n
i=1 xi/n, and Sx =∑n

i=1(xi− x̄)2. Further, we shall

assume that x̄ = 0, ∑n
i=1 x2

i = n, n = 30, and X = [−3,3].
We calculated ν by the algorithm by taking γ = 0.90, and

α = 0.05 for 50 times, the average equaled 2.150 and the

standard deviation equaled 0.001. Note that the exact value

of ν for the setting parameters equals 2.151, see Table 2. The

Monte-Carlo approach is widely used in the development of

statistical methods, and it was also used in Han et al. [5].

The calculated value ν is used repeatedly for determining

I (Yxn+1
),I (Yxn+2

), . . . corresponding to a sequence of addi-

tional responses Yxn+1
,Yxn+2

, . . .. The MUCI’s are computed

by using a built-in function for finding the root of a function

in analytical software, e.g fzero() in MATLAB.

3. NUMERICAL RESULTS

We have numerically investigated the statistical proper-

ties of the MUCI’s constructed by inverting the suggested

band, i.e. with gnew and by inverting the exact simultane-

ous tolerance intervals for the case of a simple linear regres-

sion, see Mee et al. [13], Krishnamoorthy and Mathew [7]

(page 76, (3.3.15)). Mee et al. [13], for constructing the
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Table 2. The values of ν and λ for α = 0.05 and selected combina-

tions of n,τ,γ .

ν λ

γ n τ = 2 τ = 3 τ = 4 τ = 2 τ = 3 τ = 4

.90

10 2.846 2.873 2.894 1.367 1.379 1.386

20 2.297 2.325 2.364 1.149 1.158 1.164

30 2.128 2.151 2.187 1.089 1.096 1.102

40 2.042 2.059 2.090 1.063 1.068 1.073

50 1.988 2.002 2.029 1.046 1.051 1.055

.75

10 2.010 2.063 2.133 1.245 1.264 1.276

20 1.612 1.646 1.703 1.056 1.070 1.080

30 1.491 1.514 1.557 1.010 1.020 1.029

40 1.429 1.446 1.470 0.992 0.999 1.005

50 1.391 1.404 1.431 0.983 0.988 0.993

two-sided STI’s, supposed the function g(x), x ∈ X in the

fixed functional form gST I(x) = λ{z(1+γ)/2+
√

(q+2)d(x)},

where z(1+γ)/2 denotes the (1 + γ)/2-quantile of the stan-

dard normal distribution. The constant λ > 0 is chosen to

satisfy the condition of the STI’s for a multiple linear re-

gression, where the first m components are common for all

rows of X . In the case of a simple linear regression the

first component equals 1 for all f (x)T , i.e. f T (x) = (1, x)
(i.e., q = 2) for all x ∈ X . Under the assumption x̄ = 0 it

holds d2(x) = (1,x)(XT X)−1(1,x)T = 1/n + x2/S2
xx, where

S2
xx = ∑n

i=1 x2
i . Mee et al. [13] suggested a procedure for de-

termining λ over the range of d(x) given [dmin,dmax]. The

values of λ reported in Mee et al. [13] and in Krishnamoor-

thy and Mathew [7] were calculated for a double regres-

sion and assuming dmin = n−1/2 and dmax = ((1+ τ2)/n)1/2,

τ = {2,3,4}. It implies d2
max = 1/n+ τ2/n. For simplicity

and to obtain the same range, we considered X = [−τ ,τ ],
i.e. x2

max = x2
min = τ2 and S2

xx = n. Under the above assump-

tions the distributions of the variables B = (B0,B1), U are the

same as in (9). Table 2. provides the values of ν and λ com-

puted for n= {10,20,30,40,50}, α = .05, γ = {.75, .90}, τ =
{2,3,4} over X = [−τ ,τ ]. The values of ν and λ were deter-

mined by direct computation (i.e., three-dimensional quadra-

ture). Note that the values of λ presented in Table 2. are

slightly smaller than the values reported in [7] and [13]. The

difference between the values of λ is caused by the fact that

the values of λ tabulated in [7], [13] were determined assum-

ing a double regression (i.e., Yx0,x1
= β0x0 +β1x1), while the

values of λ in Table 2. were determined for the case of a

simple linear regression (i.e., Y1,x1
= β0 +β1x1, x0 = 1).

In what follows, the statistical properties of the two-sided

MUCI’s are numerically investigated for the considered set-

tings of parameters n,α,γ ,τ in Table 2. and by using the

values of ν and λ from Table 2.

3.1. Estimated confidence

Three different sequences of {xn+i}
K
i=1 were considered to

investigate the confidence of the considered MUCI’s, see

x values

-3 -2 -1 0 1 2 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Probability density functions

Uniform([-3,3])

Triangular(-3,3,0)

Triangular(-3,3,3)

Fig.2. Probability density functions of the considered distributions

in the numerical experiment.

Fig.2. The first sequence (S1) consists of xn+i’s generated

from U(X ), where U(a,b) denotes the uniform distribution

on the interval [a,b]. Since ν is calculated by assuming the

uniform distribution for x on a X , we considered two trian-

gular distributions for x of a different shape to analyse the

behaviour of the suggested MUCI’s when this assumption is

not correct. The second sequence (S2) consists of xn+i’s gen-

erated from Tr(X ,0), where Tr(I,b) denotes the triangular

distribution on an interval I with parameter of non-centrality

(mode) b. The third sequence (S3) consists of xn+i’s gener-

ated from Tr(X ,τ). In addition, we considered three ranges

of possible values given as X = [−τ ,τ ], τ = {2,3,4} for each

sequence. The distribution of β̂ depends on the design matrix

X through the fitted value S2
xx = n in our setting. By consid-

ering three different X for the fixed value of S2
xx, we tried to

investigate the influence of X on the confidence of MUCI’s.

The empirical confidences (6) are based on N = 100,000 gen-

erated triples (b0,b1,u)
T of the random variables B0, B1, U

and the mean coverage is analysed for K = 10,000 xn+i’s on

X corresponding to the selected sequence. The values of λ
and of ν reported in Table 2. were used.

The estimated confidences are presented in Table 3. The

estimated confidence of the MUCI’s based on the suggested

band around the fitted calibration curve is satisfactory close to

the prescribed level for all considered sequences of xi. As we

expected, the MUCI’s constructed based on the exact STI’s

are conservative, the estimated confidence level is over the

prescribed level and their empirical confidences grow by in-

creasing the values of τ for all sequences.

3.2. Average band width

By inverting the narrower band, the narrower MUCI’s are

obtained which provide more accurate information about the

unknown value x. Because the new band and STI’s around

the fitted calibration curve differ in the functional form of

function g(x), x ∈ X it is not possible to compare the bands

based only on the values in Table 2. The functions gST I(x),
gnew(x), x ∈ [−4,4] for γ = 0.9 with the values of ν and λ
from Table 2. are shown in Fig.3. For the case n = 10, a

band constructed with gnew for a β̂ , S2 would be uniformly

narrower on all X , while for the case n = 50 there is an in-

terval on X , where the tolerance band would be narrower.
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Table 3. The estimated confidences of the two-sided MUCI’s con-

structed by inverting the suggested band (ν) and by the exact STI’s

(λ ), respectively. Precribed level 1−α = 0.95.

ν λ

γ n τ

2 3 4 2 3 4

S1

.90

10 .950 .950 .951 .972 .976 .980

20 .949 .950 .950 .979 .986 .988

30 .950 .949 .953 .983 .989 .991

40 .952 .952 .952 .984 .992 .993

50 .952 .952 .950 .982 .990 .999

.75

10 .950 .952 .952 .977 .982 .984

20 .949 .950 .951 .986 .991 .992

30 .950 .950 .952 .987 .993 .994

40 .951 .952 .952 .989 .995 .996

50 .952 .951 .951 .988 .995 .995

S2

.90

10 .949 .952 .953 .968 .972 .975

20 .953 .955 .959 .974 .981 .986

30 .952 .957 .962 .974 .984 .988

40 .951 .957 .964 .975 .986 .991

50 .953 .957 .963 .974 .983 .989

.75

10 .950 .956 .96 .972 .979 .982

20 .953 .958 .965 .978 .987 .992

30 .952 .959 .968 .970 .989 .993

40 .952 .960 .960 .980 .990 .994

50 .954 .959 .966 .979 .989 .994

S3

.90

10 .949 .950 .950 .971 .977 .979

20 .949 .949 .949 .978 .985 .988

30 .950 .949 .950 .981 .988 .990

40 .949 .950 .951 .982 .991 .993

50 .950 .948 .949 .981 .990 .993

.75

10 .948 .947 .949 .976 .982 .984

20 .949 .948 .947 .983 .999 .991

30 .949 .948 .949 .986 .992 .992

40 .949 .950 .949 .989 .994 .995

50 .950 .948 .948 .987 .995 .995

For the considered combinations of parameters n,γ ,τ value

of the function gnew(.) is greater than value of the function

gST I(.) for x close to x̄ = 0, if there is an intersection of both

functions. A percentage of the range X , where value of the

function gST I(.) is less than the value of the suggested func-

tion gnew(.) is presented in Table 4. in brackets. In the ma-

jority of the considered combinations of parameters n,γ ,τ in

Table 4., the suggested band is narrower than STI’s on the

whole X .

Here, we also considered the average width of a band as an

optimality criterion for a comparison of the considered two

forms of MUCI’s. The average width of a band over X is

defined as ξ =
∫

X
g(x)dx/(xmax − xmin). Table 4. provides

values of ξ for the suggested band and for the STI’s for the

combinations of parameters n,τ ,γ from Table 2., and the val-

ues of ν and λ reported in Table 2. were used. The average

band width of the suggested band is smaller than that of the

STI’s for all considered combinations of parameters n,τ ,γ .

x

-4 -3 -2 -1 0 1 2 3 4
2

2.5

3

3.5

4

4.5

5

5.5

6

g
STI

(x), n = 10

g
new

(x), n = 10
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Fig. 3. Illustration of function g for the suggested band (gnew) and

for the exact STI’s (gST I).

Table 4. Average width of the suggested band (ξν ) and of STI’s

(ξλ ).

γ n τ = 2 τ = 3 τ = 4

ξν

.90

10 6.315 (0%) 10.152 (0%) 14.641 (0%)

20 4.853 (0%) 7.629 (0%) 10.81 (0%)

30 4.418 (0%) 6.863 (0%) 9.606 (5.4%)

40 4.200 (0%) 6.476 (0%) 8.988 (7.7%)

50 4.066 (0%) 6.239 (0%) 8.606 (8.6%)

.75

10 4.460 (0%) 7.292 (0%) 10.793 (0%)

20 3.405 (0%) 5.400 (0%) 7.787 (7.9%)

30 3.095 (0%) 4.830 (0%) 6.841 (9.9%)

40 2.940 (0%) 4.547 (0%) 6.362 (10.5%)

50 2.846 (0%) 4.375 (3.9%) 6.070 (10.5%)

ξλ

.90

10 7.056 11.732 17.262

20 5.298 8.638 12.495

30 4.759 7.673 10.991

40 4.487 7.177 10.208

50 4.318 6.867 9.717

.75

10 5.193 8.881 13.368

20 3.828 6.398 9.461

30 3.416 5.625 8.223

40 3.210 5.232 7.581

50 3.084 4.989 7.182

3.3. An Example

For a numerical illustration we considered a controlled ex-

periment that was conducted at the National Biological Ser-

vice, Louisiana, to predict the amount of sodium chloride so-

lution in dionized water (ASCS) based on electric conduc-

tivity (EC). The calibration data given in Johnson and Krish-

namoorthy [6] involved 31 pairs of (xi,yi), where xi is pre-

cisely known ASCS in dionized water and yi is corresponding

EC measurement obtained by using the Fisher conductivity
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meter i = 1,2, . . . ,31. The calibration data can be used re-

peatedly to construct MUCI’s for ASCS corresponding to all

future measurements of EC. In the analysis that followed, we

used 28 randomly chosen measurements (out of 31) to esti-

mate the parameters of a model. The omitted 3 measurements

are used to construct MUCI’s for corresponding ASCS. Be-

cause the three true ASCS in dionized water are known, we

can see how well constructed MUCI’s captured the true value.

A polynomial regression of the second order fits data

well. Based on an analysis of residuals the distribution of

the response can be modeled as normal, i.e. Yx ∼ N(β0 +
β1x + β2x2,σ2), where β = (β0,β1,β2) and σ2 > 0 are

unknown parameters. The ordinary least squares estimate

β̂ of β , and the residual mean square S2 estimate of σ2,

are β̂ = [1.5911,0.4158,−0.0043]′ and S2 = 0.0007. More

over x̄ = 8.5893, s2
x = ∑28

i=1 x2
i /28 = 110.5089, and d2(x) =

1/28+0.00972(x−8.5893)2 +0.000019(x2 −110.5089)2 −
0.00082(x− 8.5893)(x2 − 110.5089). For given q = 3, n =
28, and chosen γ = 0.90, xmin = 0, xmax = 24, and the con-

fidence level α = 0.05, we evaluated λ = 1.0607 and ν =
2.1735. Both determined bands are very close to each other

(ξν = 55.56 and ξλ = 59.46), the suggested band is narrower

than the tolerance band over the range of possible values of

ASCS in the example. Table 5. gives the MUCI’s based on

the three omitted measurements of EC and the corresponding

true ASCS in dionized water.

Table 5. The multiple use confidence intervals from the example,

where Iλ denotes MUCI based on STI’s, and Iν denotes the new

MUCI. The value x is in the artificial example known and given for

comparison.

y 2.4 3.8 7.5

x 2.0 5.5 17.0

Iλ (1.8137, 2.155) (5.469, 5.806) (17.001, 17.513)

Iν (1.8296, 2.141) (5.472, 5.802) (17.024, 17.488)

All MUCI’s constructed based on inverting the suggested

band are narrower than the MUCI’s constructed by inverting

the STI’s. Although both MUCI’s determined for EC equaled

7.5 missed the true ASCS value 17, it should be pointed out

that they do provide accurate information on the true value.

4. DISCUSSION AND CONCLUSION

The procedure for constructing the multiple use confidence

intervals is derived directly from the calibration condition

(3) assuming a large number of future observations K and

a uniformly distributed explanatory variable. The proposed

multiple use confidence intervals are constructed by inverting

a symmetric band around the fitted calibration curve of the

fixed functional form, the width of the band is proportional

to a scalar ν . The value of ν computed for given parameters

1−α,γ ,n,q,X is repeatedly used for determining all future

multiple use confidence intervals. It was demonstrated that

the condition of the multiple use confidence intervals is satis-

fied quite well, and based on the provided numerical investi-
gation it is concluded that the proposed MUCI’s are narrower

than the MUCI’s constructed based on the STI’s. We can

recommend to use our MUCI’s in the case of a calibration,

where the range of possible values is spanned in the calibra-

tion experiment. The procedure for computing the value ν
can be modified appropriately to a known distribution of the

explanatory variable.

5. ACKNOWLEDGEMENT

The work was supported by the Slovak Research and De-

velopment Agency, project APVV-15-0295, and by the Sci-

entific Grant Agency of the Ministry of Education of the Slo-

vak Republic and the Slovak Academy of Sciences, project

VEGA 2/0081/19 and VEGA 2/0054/18.

REFERENCES

[1] Acton, F.S. (1959). Analysis of Straight-Line Data. New

York: John Wiley.

[2] Carlstein, E. (1986). Simultaneous Confidence Regions

for Predictions. The American Statistician, 40, 277–279.

[3] Eisenhart, C. (1939). The Interpretation of certain re-

gression methods and their use in biological and indus-

trial research. Annals of Mathematical Statistics, 10,

162–186.

[4] Halperin, M. (1961). Fitting of straight lines and predic-

tion when both variables are subject to error. Journal of

the American Statistical Association, 56, 657–669.

[5] Han, Y., Liu, W., Bretz, F., Wan, F., Yang, P. (2016).

Statistical calibration and exact one-sided simultaneous

tolerance intervals for polynomial regression. Journal of

Statistical Planning and Inference, 168, 90–96.

[6] Johnson, D., Krishnamoorthy, K. (1996). Combining

independent studies in a calibration problem. Journal of

the American Statistical Association, 91, 1707–1715.

[7] Krishnamoorthy, K., Mathew, T. (2009). Statistical Tol-

erance Regions: Theory, Applications, and Computa-

tion. New Jersey: John Wiley&Sons.

[8] Krishnamoorthy, K. , Kulkarni, P.M., Mathew, T.

(2001). Multiple use one-sided hypotheses testing in

univariate linear calibration. Journal of Statistical Plan-

ning and Inference, 93, 211–223.

[9] Lieberman, G. J. (1961). Prediction regions for several

predictions from a single regression line. Technomet-

rics, 3, 21–27.

[10] Lieberman, G.J., Miller, R.G., Hamilton, M.A. (1967).

Unlimited simultaneous discrimination intervals in re-

gression. Biometrika, 54, 133–145.

[11] Mandel, J. (1958). A note on confidence intervals in

regression problems. Annals of Mathematical Statistics,

29, 903–907.

[12] Mee, R.W., Eberhardt, K.R. (1996). A comparison of

uncertainty criteria for calibration. Technometrics, 38,

221–229.

269



MEASUREMENT SCIENCE REVIEW, 19, (2019), No. 6, 264–270

[13] Mee, R.W., Eberhardt, K.R., Reeve, C.P. (1991). Cali-

bration and simultaneous tolerance intervals for regres-

sion. Technometrics, 33, 211–219.

[14] Odeh, R.E., Mee, R. W. (1990). One-sided simultane-

ous tolerance limits for regression. Communication in

statistics -simulation and computation, 19, 663–68.

[15] Osborne, C. (1991). Statistical calibration: a review.

International Statistical Review, 59, 309–336.

[16] Scheffé, H. (1973). A statistical theory of calibration.

Annals of Statistics, 1, 1–37.

[17] Witkovský, V. (2014). On the exact two-sided tolerance

intervals for univariate normal distribution and linear re-

gression. Austrian Journal of Statistic, 43, 279–292.

Received July 8, 2019.

Accepted November 13, 2019.

270


	Introduction
	New multiple use confidence intervals
	Numerical results
	Estimated confidence
	Average band width
	An Example

	Discussion and Conclusion
	Acknowledgement

