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The linear regression model requires robust estimation of parameters, if the measured data are contaminated by outlying measurements
(outliers). While a number of robust estimators (i.e. resistant to outliers) have been proposed, this paper is focused on estimating the variance
of the random regression errors. We particularly focus on the least weighted squares estimator, for which we review its properties and
propose new weighting schemes together with corresponding estimates for the variance of disturbances. An illustrative example revealing
the idea of the estimator to down-weight individual measurements is presented. Further, two numerical simulations presented here allow to
compare various estimators. They verify the theoretical results for the least weighted squares to be meaningful. MM-estimators turn out to
yield the best results in the simulations in terms of both accuracy and precision. The least weighted squares (with suitable weights) remain
only slightly behind in terms of the mean square error and are able to outperform the much more popular least trimmed squares estimator,
especially for smaller sample sizes.
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1. INTRODUCTION

The simplicity and interpretability of the linear regression
model has resulted in an enormous number of applications in
modeling real data. The aim of linear regression is to model
a continuous variable taking into account one or more inde-
pendent variables (regressors). Regression can be used to pre-
dict values of the response based on such values of one or
more (continuous and/or categorical) variables, which are not
available. Already Carl Friedrich Gauss was using regres-
sion for equalization of networks constructed from geodesic
measurements and thus he connected to the two intertwined
science disciplines, namely measurement science and statisti-
cal point estimation. Later, Ronald A. Fisher or Francis Gal-
ton, who both contributed to development of regression anal-
ysis, were also passionate about measurement [1]. Regression
analysis has become an important part of analyzing measure-
ments by means of exploratory data analysis (EDA) or pre-
dictive data mining, with numerous applications not limited
to calibration of measuring instruments [2], estimating miss-
ing values, or detecting mixtures of two (or more) populations
or clusters of data [3].

Real measurements can be influenced by (random or sys-
tematic) errors coming from different sources (e.g. because
some measurements are performed under different condi-

tions), while there are established tools for estimating the un-
certainty of measurements in different situations (see e.g. [4]).
We can say that real measurements often suffer from out-
lying values (outliers), which remain however only vaguely
defined. If the linear model exists objectively, then any mea-
surement, for which the considered linear regression model
does not objectively hold, may be perceived as an outlier in
the model. If the linear model represents only our approxi-
mation to reality, then any anomalous measurements not fit-
ted well by the model play the role of outliers. In general,
outliers typically appear in real data in across various disci-
plines, e.g. in engineering applications [5] or image analysis
based on markers measured within images [6]. Outliers ap-
pear practically always in measurements of molecular genetic
and metabolomic biomarkers, for which severe measurement
errors are immanent to the measurement technology [7], [8].
Thus, there emerges a need for robust estimation of regression
parameters.

While the least squares estimator in linear regression is no-
toriously known to suffer from the presence of outlying values
in the data, numerous robust regression estimators have been
proposed as resistant alternatives [9], including various recent
tools tailor-made for very specific tasks. The concept of ro-
bust estimation is traditionally tied to resistance with respect
to outliers. However, there remains a gap in the area of esti-
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mating the variance of the random regression errors (i.e. error
variance), as there seem no systematic comparisons among
different robust estimates.

Within regression modeling, it is important to estimate the
regression parameters (say β ) together with the variance of er-
rors, commonly denoted as σ2 (if this is assumed to exist). If
the measurements are contaminated by outliers, then it is nec-
essary to estimate σ2 in a highly robust way. It is possible to
accompany each of the commonly used robust estimators of β

by a corresponding estimator of σ2, which allows to evaluate
the precision (uncertainty) of the regression fit. Estimation
of σ2 within robust regression is crucial for robust hypothe-
sis tests about the significance of regression parameters, for
the corresponding confidence intervals for the parameters, for
outlier detection or comparing the efficiency of various robust
estimates. Outlier detection based on robust estimates of σ2

has been popularized by the seminal book [10] and has been
several times used in practical applications [11].

In this paper, we work with several important classes of
(possibly highly) robust regression estimators, including S-
estimators, MM-estimators, or the least trimmed squares es-
timator. Nevertheless, we are primarily interested in the least
weighted squares estimator, which turns out to have appeal-
ing statistical properties [12]. As recalled in Section 2, their
corresponding estimators of σ2 are consistent (under spe-
cific assumptions). We are particularly interested in the least
weighted squares estimator, which remains much less known
compared to other available robust estimators. For the least
weighted squares, we propose new weighting schemes to-
gether with corresponding estimates for the variance of the
regression errors. We present an illustrative example in Sec-
tion 3 and numerical simulations in Section 4 comparing the
variance of the errors obtained by several highly robust esti-
mators. Finally, Section 5 concludes the paper.

2. SUBJECT & METHODS

We consider the standard linear regression model

Yi = β0 +β1Xi1 + · · ·+βpXip + ei, i = 1, . . . ,n, (1)

where n denotes the total number of measurements avail-
able for a continuous response Y = (Y1, . . . ,Yn)

T and for p
independent variables (regressors), which may be either ran-
dom or deterministic. We will use the usual notation Xi =
(Xi1, . . . ,Xip)

T and X = (XT
1 , . . . ,XT

n )T . The random errors
(disturbances) e1, . . . ,en are assumed to be independent and
identically distributed (i.i.d.) with a distribution function F ,
which is absolutely continuous with the corresponding prob-
ability density function f . Throughout the paper, we assume
Ee2

1 to exist and denote the common variance of the errors
by σ2 := vare1. The statistical concept of variability corre-
sponds to the precision in measurement science, as it holds
varY1 = vare1 = σ2 for measurements with non-random re-
gressors.

It seems natural to estimate σ2 by the same estimation prin-
ciple, which is used for the very estimate of β . A joint estima-
tion of β and σ2 is however conceptually difficult and it was
even impossible for the M-estimators, i.e. the very first ro-

bust estimators, which naturally generalize maximum likeli-
hood estimation principles. In fact, studentized M-estimators
were proposed, which had to rely on an initial estimate of σ2,
which plays the role of a nuisance parameter [9]. This reveals
the importance of estimating σ2 and we focus here only on
such estimates, which are able to estimate β and σ2 jointly.
They are suitable for the so-called contaminated normal dis-
tribution corresponding to mixture of normal errors with out-
liers [13], or for errors with a heavy tailed distribution.

This section recalls the least squares and its weighted ver-
sion together with several (possibly highly) robust estima-
tors, namely S-estimators, MM-estimators and least trimmed
squares. In addition, we present new ideas for the least
weighted squares estimator. We also cite references, where
the consistency of these estimators of β and corresponding
estimators of σ2 was proven; usually it is needed to as-
sume that the distribution of errors is continuous and sym-
metric around 0, apart from additional technical assumptions.
Highly robust estimators are defined as those, which may at-
tain a high value of the breakdown point. We can say that
the breakdown point, which represents a fundamental con-
cept of robust statistics [9], is a measure of robustness of
a statistical estimator of an unknown parameter. Formally, the
finite-sample breakdown point evaluates the minimal fraction
of data that can drive an estimator beyond all bounds when
set to arbitrary values.

2.1. Least squares and weighted least squares
The least squares estimator with the analytical expression

bLS = (XT X)−1XTY is vulnerable to the presence of outliers
in the data. To avoid further confusions, let us also recall its
weighted version with given non-negative weights w1, . . . ,wn
fulfilling ∑

n
i=1 wi = 1. Let ui(b) denote the residual of the i-th

measurement based on a given estimate b = (b0,b1, . . . ,bp)
T

of β , i.e.

ui(b) = Yi−b0−b1Xi1−·· ·−bpXip, i = 1, . . . ,n. (2)

While the least squares estimator is suitable for measurements
with the same precision, the weighted least squares (WLS) es-
timator, also known as Aitken estimator or generalized least
squares, represents an analogy for differently precise mea-
surements, however with a known precision. Formally, the
WLS estimator is obtained as

bWLS = argmin
b∈Rp+1

n

∑
i=1

wiu2
i (b), (3)

i.e. by minimization of a weighted estimate of σ2 over b.
Equivalently, the WLS estimator is obtained as the solution
of the set of normal equations

n

∑
i=1

wiXi(Yi−XT
i b) = 0. (4)

Denoting by W the diagonal matrix with elements w1, . . . ,wn
on the main diagonal, the explicit form of bWLS is

bWLS = (XTWX)−1XTWY. (5)
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2.2. Estimation of σ2 and outlier detection
An important direction of robust statistics was established

on (ordinary) residuals (2). While outlier detection is of-
ten performed on studentized residuals instead of the ordi-
nary ones in (2), we are not aware of robust estimators based
on studentized residuals, where the latter require an estimate
of σ2 and of the projection matrix H =X(XT X)−1XT . An ex-
ternally studentized residual (jackknife residual, studentized
deleted residual) for the i-th measurement for i= 1, . . . ,n uses
an estimate of σ2 computed from all observations except for
the i-th. On the other hand, an (internally) studentized resid-
ual evaluates an estimate of σ2 exploiting all observations.
An example of a recent result is the work [14] investigating
(both internal and external) studentized residuals of regres-
sion quantiles, proposed with the aim to construct regression
diagnostic tools resistant to outliers.

The literature on robust regression commonly considers the
following outlier detection method. If u1, . . . ,un are ordinary
residuals of (any) robust estimate of β , the i-th measurement
is classified (Xi,Yi)

T as an outlier if and only if

|ui|> 2.5σ̂ , (6)

where σ̂2 denotes an estimate of σ2.
The threshold 2.5 in (6) was advocated in references on

outlier detection in linear regression, especially in the seminal
papers published by promoters of the concept of the break-
down point [10], [15] and in numerous subsequent papers as
well (see e.g. p. 74 of [16]), although other values (e.g. 2 or 3)
are popular among practitioners as rules of thumb. The cut-
off value 2.5 is chosen with regard to the situation with nor-
mal errors; in such case only 1.24 % of residuals are classified
as outliers [11]. Still, it is necessary to admit that each robust
estimator would require its own particular value of the thresh-
old [5].

The current paper is interested in robust estimation of σ2,
which itself is a still overlooked topic in robust regression. It
is natural to use the same robust estimation principle to esti-
mate both β and σ2 in (1). In other words, a robust estimator
of σ2 can be adapted to obtain a corresponding (and consis-
tent) estimate of σ2.

2.3. S-estimators
S-estimators for linear regression defined as

bS = argmin
b∈Rp+1

s(u1(b), . . . ,un(b)), (7)

where s is a scale functional fulfilling certain conditions, were
investigated e.g. by [17]. Their corresponding estimator of σ2

is equal directly to s(u1(bS), . . . ,un(bS)). Sufficient condi-
tions for the consistency of S-estimators for β and of the cor-
responding estimator of σ2 was presented also in [17], while
consistency factors for S-estimators to achieve a given value
of the breakdown point (or alternatively to achieve a given
efficiency) for normal data were derived in [18].

2.4. MM-estimators
As S-estimators possess a low efficiency, MM-estimators

were proposed in [19] as two-stage estimation tools, whose
efficiency can be tuned independently of the robustness. The
computation starts with an initial S-estimator, while the corre-
sponding (estimated) scale (say ŝ) is used (provided technical
assumptions) in the second stage defining MM-estimators as

1
n

n

∑
i=1

ψ

(
ui(b)

ŝ

)
Yi = 0. (8)

While (8) itself has the form of an M-estimator (however with
a specific fixed scale), the MM-estimator of σ2 is defined
as the corresponding M-estimator of σ2. The consistency of
MM-estimators for both β and σ2 under specific assumptions
was derived in [19].

2.5. Least trimmed squares
The least trimmed squares (LTS) estimator of β for a se-

lected value of a trimming constant h (n/2≤ h < n) was pro-
posed in [10]. Denoting residuals corresponding to a partic-
ular b ∈ Rp as ui(b) and order statistics of their squares as

u2
(1)(b)≤ ·· · ≤ u2

(n)(b), (9)

the estimator is defined as

bLT S = argmin
b∈Rp+1

1
n

h

∑
i=1

u2
(i)(b). (10)

It will be convenient to use the notation α = (n− h)/n ∈
[1/2,1). Consistency of the LTS estimator and other prop-
erties were derived in [20] for random regressors under the
assumption that Ee4

1 ∈ (0,∞). The LTS estimator may attain
a high robustness but cannot achieve a high efficiency, which
is a consequence of the hard trimming, i.e. complete rejection
of outliers. We may consider the LTS as a special case of
the least weighted squares estimator, where the latter will be
recalled in Section 2.7.

A consistent estimator σ̂2
LT S of σ2 based on the LTS regres-

sion was derived in [20]. Introducing auxiliary notation in the
form

cα = F−1
(

1− α

2

)
and χα =

α

α−2cα f (cα)
(11)

and denoting residuals corresponding to the LTS estimator by
uLT S

i for i = 1, . . . ,n, we may express Víšek’s estimator σ̂2
LT S

as

σ̂
2
LT S =

χα

h

h

∑
i=1

(uLT S
i )2. (12)

The effect of α on the values of χα is revealed in Fig.1. Let
us note that a formal choice α = 1 yields χα = 1, i.e. (12)
reduces to the standard estimate of σ2 for the least squares.
We may observe in Fig.1., that values of χα are decreasing
with an increasing α .

8
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2.6. Least weighted squares
The least weighted squares (LWS) estimator (see e.g. [12])

for the model (1) generalizes the LTS based on implicit
weighting of individual measurements. It performs down-
weighting of individual measurements through the idea to as-
sign small (or zero) weights to potential outliers. This down-
weighting may also be denoted as soft trimming to stress the
contrary of the hard trimming of the LTS. The LWS estimator,
which has acquired only much smaller attention compared to
the popular LTS, may attain a high breakdown point, if a suit-
able weight function is chosen. The high breakdown point can
be interpreted as a high resistance against noise or outliers in
the data. The LWS estimator is at the same time robust to
heteroscedasticity [12], but it its primary attention is focused
on estimating β and not on outlier detection. The idea of
the LWS, i.e. the implicit weights based on ranks of residu-
als, was successful in a variety of recent applications includ-
ing denoising gene expression measurements acquired by the
microarray technology [8] or image analysis based on land-
marks measured within facial images [11]. There is a good
experience with implicit weighting also for multivariate ro-
bust estimation, the minimum weighted covariance determi-
nant (MWCD) estimator proposed in [21], [22].

The definition of the LWS exploits the concept of weight
function, which is defined as a function ψ : [0,1]→ [0,1]; it
must be continuous on [0,1] with ψ(0) = 1 and ψ(1) = 0. The
weight function is assumed to have both one-sided derivatives
existing in all points of (0,1), where the one-sided derivatives
are bounded by a common constant; also, the existence of
a finite left derivative in 0 and finite right derivative in point 1
is assumed [23], [12].

Fig.1. Horizontal axis: values of α ∈ [1/2,1]. Vertical axis: values
of χα for the LTS estimator depending on α .

The LWS estimator with a given ψ is defined as

bLWS = argmin
b∈Rp+1

n

∑
i=1

ψ

(
i−1/2

n

)
u2
(i)(b). (13)

We may understand the quantities

wi = ψ

(
i−1/2

n

)
, i = 1, . . . ,n, (14)

as weights. Alternatively, we may start with choosing a fixed
non-increasing sequence of non-negative weights w1, . . . ,wn
and formulate an equivalent definition of the LWS estimator
of β in the form

bLWS = argmin
b∈Rp+1

n

∑
i=1

wiu2
(i)(b). (15)

Note that we do not need to require the weights to be stan-
dardized to the condition ∑

n
i=1 wi = 1.

Fig. 2. Horizontal axis: values of t ∈ [0,1]. Vertical axis: weight
functions ψ(t) corresponding to LWS1 (triangles), LWS2 (crosses),
LWS3 (circles) and LWS4 (plus signs).

If we denote the ranks of (2) by R1(b), . . . ,Rn(b), i.e. with
Ri(b) denoting the rank of u2

i (b) among u2
1(b), . . . ,u

2
n(b), we

may express the LWS estimator as

bLWS = argmin
b∈Rp+1

n

∑
k=1

ψ

(
Ri(b)−1/2

n

)
u2
(i)(b). (16)

This expression is appealing from the computational perspec-
tive. For the computation of the LWS estimator, an analogy
of the FAST-LTS algorithm of [24] exploiting the form (16)
can be formulated in a straightforward way. This approximate
algorithm was characterized as reliable based on empirical ev-
idence [25].

The derivative of the loss function

l(b) =
n

∑
i=1

ψ

(
i−1/2

n

)
u2
(i)(b) (17)

has the form (in our notation)

∂ l
∂b

=
n

∑
i=1

Xiui(b)ψ
(

F̂(n)(|ui|,b)
)
, (18)

where F̂(n) denotes the empirical distribution function

F̂(n)(r,b) =
1
n

n

∑
k=1
1[|uk(b)|< r], r ∈R; (19)

9
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a detailed proof was given on p. 183 of [12]. As a conse-
quence, the set of normal equations for the LWS estimator
in (1) has the form

n

∑
i=1

Xiui(b)ψ
(
F̂ (|ui|)

)
= 0, (20)

which apparently differs from (4) of the WLS by permuting
the weights before assigning to individual measurements.

It is meaningful to consider only weight functions which
are non-increasing; only then, less reliable measurements ob-
tain smaller weights. Four possible (fixed) weighting schemes
for the LWS will be now introduced in the form of different
weight functions described below; the corresponding LWS
estimators will be denoted as LWS1 to LWS4.

1. LWS1. Linear weights

ψ(t) = 1− t, t ∈ [0,1]. (21)

2. LWS2. Weights generated by the (strictly decreasing)
logistic function

ψ(t) =
1+ exp{−s/2}

1+ exp{s(t− 1
2 )}

, t ∈ [0,1], (22)

for a given constant s > 0 responsible for the shape of
the logistic curve, while we consider s = 10 in all the
computations.

3. LWS3. Trimmed linear weights generated for a fixed
τ ∈ [1/2,1) by

ψ(t) =
(

1− t
τ

)
·1[t < τ], t ∈ [0,1], (23)

where 1[.] denotes an indicator function. Here, τ is in
relationship with the trimming, i.e. there are bτnc mea-
surements retained and the remaining measurements are
ignored, where bxc denotes the integer part of x∈R; this
is analogous to α for the LTS.

4. LWS4. Weights generated by the so-called error func-
tion in the form

ψ(t) = 1− 2√
π

∫ t

0
exp{−x2}dx. (24)

These four weight functions are shown in Fig.2. In real-
life applications, the LWS was successfully considered with
weighting schemes LWS1 [8] and LWS2 [11]. No other
weighting scheme seems to have been used in real-life appli-
cations, i.e. neither for the LWS nor for the MWCD estima-
tor. Víšek [12] proved the LWS estimator to be consistent for
random regressors under general assumptions on the weight
function and on the joint distribution of the regressors and the
weights. It is worth noting that only second moments of e1 are
assumed to exist. These weak assumptions, i.e. unexpectedly
weak from the point of view of the discussion on p. 10 of [20],
however required a very long proof of the consistency. The

proof is valid for each of the four weighting functions consid-
ered above.

Concerning now the LWS estimator with a given weight
function ψ , let us denote the corresponding residuals (i.e. af-
ter the optimal permutation of the weights) by uLWS

i for i =
1, . . . ,n. Denoting

γ =
∫

ξ (r)dr and ξ (r) = ψ(F(|r|))r2 f (r), (25)

let us express the consistent estimator of σ2 based on the LWS
by [23] in the form

σ̂
2
LWS =

1
nγ

n

∑
i=1

wi
(
uLWS

i
)2
. (26)

We now propose to consider a straightforward approxima-
tion of the integral in formula (25). We choose a large A > 0
and a large N > 0 in order to consider the integral over N
subintervals of the interval [−A,A]. We now approximate γ

by

γA =
2A
N

N

∑
k=1

ξ

(
A
N
(2k−N−1)

)
. (27)

For real data, the variance (26) can be estimated using (27)
in a straightforward way, while it holds γA → γ for n→ ∞

for all weight functions of above. We computed values of γA
(and also of 1/γA, useful within (27)), for different choices
of weights for the LWS, and the results are presented in Ta-
ble 2. There, we choose A = 10 and N = 10000. Because
different weight functions have remarkably different values of∫ 1

0 ψ(t)dt and thus corresponding values of ∑
n
i=1 wi (for a par-

ticular fixed n), which is not standardized (as stated already
above), values of γA are not directly comparable among differ-
ent weight functions. Thus, for example, LWS4 has a much
larger value of γA compared to other versions of the LWS, be-
cause it also assigns larger (unnecessarily large) weights to
potential outliers.

2.7. The simplest regression model
The simplest special case of the regression model (1),

known as the location model, has the form

Yi = µ + ei, i = 1, . . . ,n, (28)

where µ ∈R. This model, extremely useful to describe any
simple measurement of an unknown constant µ , considers X
from (1) to be equal to (1, . . . ,1)T . Various simple tools are
available for (28), which cannot be extened to (1); this is true
e.g. for outlier detection based on the interquantile range [9].
Still, the least squares estimator remains to have a zero break-
down point in (28). i.e. to be extremely vulnerable to se-
vere outliers. The LWS estimator, which remains meaningful
for (28) as well, has been successfully applied in [11], [8].

The LWS estimator of µ in (28) computed with fixed mag-
nitudes of the weights w1, . . . ,wn fulfilling ∑

n
i=1 wi = 1 is

equal to the weighted mean of the data Y1, . . . ,Yn with such

10
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Fig. 3. Raw data of Section 3. Horizontal line: measurements of
drug D. Vertical line: measurements of protein P.

permutation of the weights, which has the smallest weighted
variance

S2
w(Y) =

n

∑
i=1

wi

(
Yi−

n

∑
j=1

w jYj

)2

; (29)

see [11] for a proof. We give an important remark here
that the estimate of vare1 = σ2 of above, i.e. based on (26)
with (27), holds also in (28), so Table 2 remains valid in (28)
as well.

3. ILLUSTRATIVE EXAMPLE

To illustrate the performance of robust regression estima-
tors, we present the following illustrative artificial example.
Let us say that the level of drug D in the blood of patients
with hypothyroidism is a biomarker of the excretion level of
protein P in the body. In other words, there is a hypothe-
sis that the amount of protein P in the body is proportional
to the level of drug D in the blood. Measurements of both
these (continuous) variables were performed over a random
sample of n = 22 patients, so the measurements D1, . . . ,Dn of
the level of drug D and measurements P1, . . . ,Pn of the level
of protein P are available. We consider the linear regression
model To illustrate the performance of robust regression esti-
mators, we present the following illustrative artificial exam-
ple. Let us say that the level of drug D in the blood of patients
with hypothyroidism is a biomarker of the excretion level of
protein P in the body. In other words, there is a hypothe-
sis that the amount of protein P in the body is proportional
to the level of drug D in the blood. Measurements of both
these (continuous) variables were performed over a random
sample of n = 22 patients, so the measurements D1, . . . ,Dn of
the level of drug D and measurements P1, . . . ,Pn of the level
of protein P are available. We consider the linear regression
model

Pi = β0 +β1Di + ei, i = 1, . . . ,n. (30)

The raw data are shown in Fig.3. We also consider a contami-
nated version of the data shown in Fig.4, corresponding to the
situation when measurement errors, methodological errors or
errors of other types and sources lead to modification of two
observations with indexes 4 and 17.

The results of various estimators of (β0,β1)
T are presented

in Table 1. We can see that the least squares estimates are
highly sensitive to the contamination. While different robust
estimates give different results, we illustrate the interpretabil-
ity of the LWS. We namely present the plot of the weights de-
termined by the LWS3 estimator, i.e. with the trimmed linear
weights, which completely ignore (about) 25 % of the mea-
surements, in our case exactly 5 measurements. Fig.5. for the
raw data and in Fig.6. for the contaminated data. Only the
weights corresponding to the two measurements with index
4 and 17 are shown as full circles. These measurements are
well explained by the linear model in the raw dataset, but their
weights are reduced to 0 if their values are replaced by outly-
ing values. This shows that the LWS3 method is indeed able
to recognize them as being contaminated, while the values of
the weights of the remaining measurements are modified only
slightly after the contamination. Thus, the LWS3 estimator is
able to rely on the same measurements here, which are reli-
able and well explained by the linear model.

4. SIMULATIONS

We present two simulation studies denoted as A and B,
which were performed with the aim to investigate various
estimates of σ2 based on the least squares (LS) as well as
on several robust estimators. Particularly, we compute S-
estimators with breakdown point 0.5, MM-estimators with
breakdown point 0.5 and efficiency 0.95, the LTS (with two
different choices of α), and the LWS with four different
weighting schemes of above. In both simulations, these es-
timators of β and corresponding estimators of σ2 are consis-
tent, as the consistency assumptions are fulfilled for each of

Fig. 4. Contaminated data of Section 3. Horizontal line: measure-
ments of drug D. Vertical line: measurements of protein P.
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Table 1. Points estimates of β in the example of Section 3 over raw
as well as contaminated data.

Raw data Contaminated data
Estimator Intercept Slope Intercept Slope
LS −582 0.239 −331 0.204
LTS (α = 0.55) −371 0.203 −359 0.201
LTS (α = 0.80) −515 0.228 −423 0.212
S-estimator −542 0.206 −387 0.207
MM-estimator −567 0.237 −486 0.222
LWS1 −465 0.221 −396 0.209
LWS2 −280 0.189 −282 0.189
LWS3 (τ = 0.75) −244 0.183 −251 0.185
LWS4 −519 0.230 −344 0.203

Fig. 5. Weights of the LWS3 estimator for raw data of Section 3,
shown in Fig.3. Horizontal line: index 1, . . . ,n. Vertical line: values
of the weight function.

the estimators. For the computations, we use R software [26]
with additional packages (robustbase, NORMT3).

In simulation A, we consider a simple setup with p = 1 and
n = 30 or n = 60. The regressor is randomly generated from
uniform distribution U(0,10), i.e. over the interval (0,10),
and we use fixed values β = (2,1)T and σ2 = 1. In this fixed
design, we generate J = 10000 datasets, where the errors are
generated as i.i.d. with ei ∼ N(0,σ2). In each dataset, we re-
place 10 % of measurements by outliers. First, a constant m
from U(0,10) is generated, and we randomly select 10 % of
the measurements. The regressor in these selected data points
is replaced by m+ v, where v∼ N(0,0.25) are i.i.d. normally
distributed. The response in these data points is obtained ac-
cording to (1) with i.i.d. errors generated from the uniform
distribution over (−6,−3) ∪ (3,6). Such design allows to
compare the ability of different regression estimators to es-
timate σ2, as we evaluate quartiles of the estimates together
with (empirical) mean square error

MSE=
1
J

J

∑
j=1

(σ̂2
j −σ

2)2; (31)

the value of MSE is small (i.e. close to 0) for estimators which
are accurate and at the same time precise in estimating σ2. In
other words, the values of MSE give only a combination of
accuracy and precision, which can be separated from each
other when interpreting the presented quartiles.

The top part of Table 3. presents the results of simula-
tion A. There, we evaluate averaged values of estimates of σ2

over all datasets (i.e. also over all designs). Particularly, the
averaged first (Q1), second (Q2) and third (Q3) quartiles are
reported in the table. The least squares are extremely mislead
by the contamination by outliers in terms of both accuracy
and precision. The best values of MSE are shown in bold-
face. These are acquired by MM-estimators, while the LWS
estimator stays only slightly behind. It is quite important to
choose suitable weights for the LWS; if zero weights are as-
signed to outliers, which is the case of LWS2 and LWS3,
the results are superior to those of the LTS (independently
on choosing its parameter α). We also observe that the es-
timation of σ2 is improved with an increasing n in terms of
MSE.

It is remarkable that the quartiles obtained by S-estimators
are identical and the same is true for the three quartiles of
MM-estimators, i.e. the methods are able to estimate σ2 pre-
cisely with an extreme reduction of the influence of the out-
liers. Of course, this precision holds only for the reported
quartiles, but still this phenomenon has not been (to the best
of our knowledge) presented. We perceive it as an appeal-
ing property for analyzing real measurements, especially for
MM-estimates, which are much more accurate compared to
S-estimates.

Simulation B considers a more complex dataset with p = 5
and again n = 30 or n = 60. Let us introduce the notation Ir
for a unit matrix of size r× r and 1r for the r-dimensional
vector (1, . . . ,1)T , where r ∈N. The regressor is constructed
as (X1, . . . ,X5)

T ∼ N(0,Σ) with Σ = (1− c)I5 + c151
T
5 and

c = 0.3. We use fixed values β = 16 and σ2 = 1. In this

Fig.6. Weights of the LWS3 estimator for contaminated data of Sec-
tion 3, shown in Fig.4. Horizontal line: index 1, . . . ,n. Vertical line:
values of the weight function.
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Table 2. Values of γA, i.e. approximations to γ , together with values of 1/γA for different choices of weights for the LWS estimator. The
approximation is independent on n.

Choice of weights LWS1 LWS2 LWS3 LWS3 LWS4
(τ = 0.90) (τ = 0.75)

Value of γA (27) 0.091 0.026 0.035 0.006 0.798

Value of 1/γa 11.01 37.75 28.44 173.32 1.25

Table 3. Performance of different regression estimators in the simulations A and B. For each estimator, three quartiles of a consistent estimate
of σ2 are presented. In the final column, the mean square error (31) of the estimate is reported.

Regression Estimate of σ2 Estimate of σ2

estimator Q1 Q2 Q3 MSE Q1 Q2 Q3 MSE
Simulation A (n = 30) Simulation A (n = 60)

LS 2.29 4.46 6.20 16.2 2.97 4.18 4.85 10.5
LTS (α = 0.55) 0.87 0.96 1.01 0.08 1.25 1.28 1.31 0.05
LTS (α = 0.80) 0.96 1.02 1.06 0.09 1.11 1.16 1.20 0.05
S-estimator 1.48 1.48 1.48 0.25 1.43 1.43 1.43 0.19
MM-estimator 0.82 0.82 0.82 0.05 0.96 0.96 0.96 0.03
LWS1 1.20 1.28 1.32 0.09 1.24 1.27 1.33 0.07
LWS2 1.25 1.30 1.32 0.08 1.13 1.18 1.22 0.06
LWS3 (τ = 0.75) 1.20 1.27 1.28 0.07 1.14 1.17 1.22 0.06
LWS4 1.18 1.30 1.34 0.10 1.27 1.29 1.33 0.08

Simulation B (n = 30) Simulation B (n = 60)
LS 2.51 3.29 3.80 5.20 2.31 2.84 3.16 3.97
LTS (α = 0.55) 1.28 1.32 1.36 0.11 1.23 1.26 1.30 0.08
LTS (α = 0.80) 1.27 1.34 1.36 0.12 1.22 1.28 1.34 0.10
S-estimator 1.60 1.60 1.60 0.37 1.52 1.52 1.52 0.27
MM-estimator 1.29 1.29 1.29 0.09 1.25 1.25 1.25 0.07
LWS1 1.22 1.38 1.42 0.12 1.24 1.32 1.35 0.11
LWS2 1.22 1.27 1.36 0.10 1.16 1.20 1.31 0.10
LWS3 (τ = 0.75) 1.29 1.31 1.36 0.10 1.17 1.22 1.27 0.10
LWS4 1.21 1.39 1.44 0.13 1.33 1.37 1.40 0.12

fixed design, we generate J = 10000 datasets, where the er-
rors are generated as i.i.d. with ei ∼N(0,σ2). In each dataset,
we replace 10 % of measurements by outliers. First, m1 and
m2 are generated as independent from U(0,3), and we ran-
domly select 10 % of the measurements. The regressor in
these selected data points is replaced by m+ v, where m =
(m1,m2,5,5,5)T and v ∼ N(0,0.25). The response in these
data points is obtained according to (1) with i.i.d. errors gen-
erated from the uniform distribution over (−6,−3)∪ (3,6).
In this design, the outliers always have the form of leverage
points (in contrary to simulation A), i.e. are outlying also in
terms of the values of the regressors.

The results of simulation B are presented in the bottom part
of Table 3. The results again reveal the least squares to be very
unsuitable due to the contamination, while the MM-estimator
turns out to be the most successful in terms of MSE, leaving
behind the best versions of the LWS, i.e. LWS2 and LWS3.
Estimates of σ2 obtained by MM- and S-estimators have the

highest precision, while the (inefficient) S-estimates have a
very low accuracy. Again, the resulting values of MSE are
improved for n = 60 compared to n = 30. However, we can
say that these most suitable versions of the LWS (LWS2 and
LWS3) are able to come closer to those of MM-estimators and
also to overcome the LTS especially for n = 30, while they do
not become so much improved for n = 60.

5. CONCLUSIONS

This paper is devoted to estimating the variance σ2 of ran-
dom errors for several highly robust regression estimators.
The paper presents an overview of consistent estimates of σ2

corresponding to highly robust regression estimators and re-
calls possible applications of the estimated σ2. We are par-
ticularly interested in the LWS estimator, for which we for-
mulate a possible approximation (27) applicable to real data.
We performed two numerical studies on simulated datasets,
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while the best results in both of them are obtained with MM-
estimators, which are also theoretically known to combine
high efficiency with high robustness. The results confirm that
meaningfulness of the proposal (27). Particularly, the LWS
estimator (and especially with weights functions suppressing
outliers) performs reasonably well, especially for n= 30 com-
pared to n = 60. This is an interesting novel argument in fa-
vor of the LWS estimator, which has some other appealing
properties recalled in Section 2.7. The LTS and S-estimators,
which are theoretically known to be rather inefficient [19],
perform much weaker compared to MM-estimators or LWS.
Such conclusions go much beyond the recommendations of
an automated meta-learning approach of [25] for finding the
most suitable robust regression estimator for a given dataset.
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