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The fringe projection profilometry with sinusoidal patterns based on phase-shifting algorithms is commonly distorted by the nonlinear 

intensity response of commercial projector. In order to solve this issue, sinusoidal width modulation is presented to generate binary sinusoidal 

patterns for defocusing the projection. However, the residual errors in the phase maps are usually notable for highly accurate three-

dimensional shape measurements. In this paper, we propose the fringe patterns of the sinusoidal, square, and triangular periodic waveforms 

with seven-step phase-shifting algorithm to further improve the accuracy of three-dimensional profile reconstruction. The absolute phase 

values are calculated by using quality guided path unwrapping. We learn that by properly selecting fringe patterns according to the target 

shape, the undesired harmonics of the measured surface have negligible effect on the phase values. The experiments are presented to verify 

the imaging performances of three fringe patterns for different testing targets. The triangular fringe patterns are suitable for the shape 

measurements of complex targets with curved surfaces. The results provide a great possibility for high-accuracy shape measurement 

technique with wider measuring depth range. 

 

Keywords: Digital imaging, fringe projection, waveform. 

 

 

 

 

1.  INTRODUCTION 

Recently, optical measurement has been an indispensable 
technique for many applications such as manufacturing 
process, virtual reality, and biomedical engineering [1]-[3]. 
General optical three-dimensional (3D) shape measurements 
are based on structured light illumination and phase 
calculation [4]. According to the analytical approach of the 
phase distributions, these measurements are divided into two 
ways: spatial domain method and transform domain method. 
The spatial domain method usually employs phase-shifting 
calculation to operate the primary data, for example, the 
common fringe projection profilometry (FPP) [5]. The FPP is 
a non-contact, non-interferometric, and high-speed technique 
which has been used extensively for profiling 3D complicated 
surfaces [6]-[12]. In the FPP, the structured illumination with 
typical sinusoidal fringe projected onto the target surface will 
get distorted pattern because of the surface height variations 
[13]-[15]. The distorted fringe patterns with spatial variations 
involve the topological information of the targets [16]-[18]. 
The digitized full-field information from the region of interest 
is easily acquired by using scalable FPP. The FPP is a 
versatile inspecting technique which can be adapted for 
space-constrained assembling and less-than-ideal 
illumination situations [19]-[22]. These imaging applications 
usually demand a qualitative detection and quality-dense 
topological information from the targets. Several algorithms 
for frequency estimation of fringe pattern have been 

presented in previous references [23]-[31]. These algorithms 
are usually based on spatial-frequency methods such as 
windowed Fourier and wavelet transforms. The local 
frequency estimation can be achieved by these algorithms, 
but the imaging resolution is limited by the sinusoidal 
patterns. Furthermore, the peak location search calculation 
involved in these algorithms requires long computational 
time. 

3D shape measurement based on FPP can be easily 

achieved by using a commercial video projector. However, 

an off-the-shelf projector has the nonlinear response of the 

projection engines. The response calibration of a projector is 

usually required for high-quality 3D shape measurement. 

Unfortunately, the nonlinear response cannot be eliminated 

by one-time calibration because the projected intensity 

response actually varies with the time lapse. In order to solve 

this problem, the methods of binary sinusoidal fringe patterns 

are proposed to avoid the nonlinearity effect [8], [10], [12]. 

The quality of 3D shape measurement is improved by 

encoding the binary fringe patterns in three-color channels. 

Nevertheless, these encoding methods reduce the 

measurement speed and the measuring depth range is limited 

by coding errors from the out-of-focus blur. In this study, the 

fringe patterns of the sinusoidal, square, and triangular 

periodic waveforms with seven-step phase-shifting algorithm 

are proposed to further improve the accuracy of 3D profile 

reconstruction. The dominant error-causing harmonics of the 
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measured surface can be reduced by properly selecting fringe 

patterns. The experiments are performed to verify the 

imaging quality of three fringe patterns for different testing 

targets. The description of the method is presented in 

Section 2. The experimental results and discussion of the 

testing targets are illustrated in Section 3. The conclusion is 

presented in Section 4. 

 

2.  DESCRIPTION OF THE METHOD 

The FPP-based technique is employed for detecting the 3D 

shape of the testing targets. Fig.1. shows the experimental 

arrangement. A DLP projector (Acer K132+) is used for 

projecting different fringe patterns on the target surface. A 

high-quality CCD camera (JAI AT-200CL) is used for 

capturing subsequent fringe patterns from the target surface. 

Fig.1.a) depicts a crossed-optical-axes triangulation which is 

usually applied in the digital FPP. The CCD camera is 

mounted on a motorized rotating arm (Sigma Koki KST-

160YAW) so that the detecting angle could be varied 

precisely. Fig.2.a) shows the sinusoidal fringe pattern. In 

general, sinusoidal fringe distribution for N-step phase-

shifting algorithm with equal phase shifts can be 

characterized as: 

 

In(x,y) = A(x,y) + M(x,y) × cos[Φ(x,y) + 2πn/N]       (1) 

 

where x and y are the pixel indices along vertical and 

horizontal axes in the fringe pattern, A(x,y) is the average 

intensity of illumination, M(x,y) is the intensity modulation 

of fringe pattern, n is phase-shift index, and n = 1, 2, 3, …, N. 

Φ(x,y) is the phase to be solved by the following equation: 

 

Φ��, �� = tan�� ∑ ����,�� �������/������∑ ����,������ �������/��         (2) 

 

 
 

Fig.1.  Digital fringe projection profilometry: a) schematic diagram 

and b) photograph. 

 
 

Fig.2.  Projective fringe patterns with a) sinusoidal, b) square, and 

c) triangular periodic waveforms. Cross-sections of d) sinusoidal, 

e) square, and f) triangular patterns. 

 

The average intensity of illumination and the intensity 

modulation of fringe pattern are assumed to be the same value 

in theory. Fig.2.d) shows the cross-section of sinusoidal 

pattern with a constant intensity. This fringe pattern is a 

simple continuous sinusoidal signal and is defined within a 

multiple of 2π period. However, the sinusoidal signal has a 

finite range and the curve of the signal is slightly deformed in 

the experiment. The A(x,y) and M(x,y) may fluctuate during 

phase-shifting experiments. These fluctuations cause phase 

errors in the traditional phase-shifting calculations [32], [33]. 

In the fringe patterns, we usually process 8-bit gray-level 

images with intensity levels from 0 to 255 at each pixel. A 

gray-level image can be represented as the super-position of 

time-multiplexed binary patterns Mi with i = 1, 2, 3, …, 8. In 

these binary patterns, the most critical pattern of the binary 

representation is M1. Fig.2.b) shows the binary fringe pattern 

with square periodic waveform. The binary (square) fringe 

distribution for each gray-level image can be reconstructed 

through an equation as: 

 I���, �� = ∑ 2�"�#�M#���, ��"#%�             (3) 
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where Mi1 is the sequence of the binary fringe patterns 

corresponding to n = 1. Fig.2.e) shows the cross-section of 

binary fringe pattern with square periodic waveform. The 

intensity of the binary fringe pattern takes the values 0 or 1 

depending on the integer number of the position. Because the 

binary fringe patterns only contain zeros and ones, it is 

possible to eliminate the nonlinear response of the projector 

and camera. Furthermore, we also propose the triangular 

fringe patterns as a way to solve the problems caused by 

gamma nonlinearity in FPP. Fig.2.c) shows the triangular 

fringe pattern. The triangular fringe distribution for a 

sequence of phase-shifted patterns can be described as: 

 

I��x, y� =
()
*
)+

�,��,��
- �� + δ�� + ,��,��

� � + δ�  ∈  10, -
34

�,��,��
- �� + δ�� + 5,��,��

� � + δ�  ∈  1-
3 , 5-

3 4
�,��,��

- �� + δ�� − 5,��,��
� � + δ�  ∈  15-

3 , T�
      (4) 

 

where T is the pitch of the fringe pattern and δn is the nth 

phase-shifting distance along the x-axis, which is defined by: 

 

δ� = �8 − 1� -
� , 8 = 1, 2, … , N, N ≥ 2            (5) 

 

Binary-code fringe patterns only comprise black and white 

pixel values and the pattern decoding is relatively simple. 

Fig.2.f) shows the cross-section of triangular fringe pattern 

with gray-codes. Binary reflected gray-codes are also suitable 

for binary encoding because the pixel value only changes at a 

time. We propose to project and acquire a sequence of strictly 

binary fringe patterns for synthesizing a high-quality 

triangular fringe pattern. The Mi receive either value 1 or 0 

depending on the integer number of In(x,y). Normal fringe 

pattern is represented by a pure binary-code pattern which is 

commonly utilized in image processing. Thus, the triangular 

fringe pattern sequence is projected on the surface of testing 

targets. The wrapped phase values are calculated by applying 

seven-step phase-shifting calculation in equation (2). The 

differential phase angle between two following fringes is in 

multiples of 2π and the wrapped phase values are in a module 

of 2π. The quality guided path calculation is used to 

demodulate wrapped phase values with high reliability [34]. 

The phase-unwrapping calculation could also eliminate the 

phase errors caused by discontinuous surfaces. The 

unwrapping path is determined by the pixel reliability and the 

absolute phase values are obtained along a discontinuous 

route. The relationship between absolute phase value and real 

dimension is quantified by the triangulation method [35]. 

Because the imaging intensity of deformed fringe patterns 

from the target surface is a key parameter for phase-shifting 

calculation, our digital FPP is placed inside a darkroom to 

prevent any influence of ambient light in the environment. 

 

3.  EXPERIMENTAL RESULTS AND DISCUSSION 

The validation experiments have been performed to verify 

the performance of different fringe projections. The 

sinusoidal, square, and triangular fringe patterns are 

generated by a DLP projector with a resolution of 1024 × 768. 

The distorted fringe pattern images are captured by using a 

3CCD camera with a resolution of 1620 × 1236 under a 

viewing angle of 20°. The projector and camera are calibrated 

by means of a reference plane marked by black and white 

grids. Fig.3.a) to Fig.3.c) depict three testing targets of 

semicircular, rectangular, and triangular shapes. The nominal 

diameter of the semicircular testing target is 10 mm. The 

nominal width and height of the rectangular target are 10 mm 

and 10 mm. The nominal base-side and height of the isosceles 

triangular target are 10 mm and 10 mm. The material of these 

testing targets is polylactide (PLA) and they are made by 

using a commercial 3D printer. Fig.3.d) to Fig.3.f) depict one 

triangular fringe pattern projected on different testing target 

surfaces. The fringe patterns are deformed with respect to the 

target surface. A total of seven fringe patterns are recorded 

into an industrial computer for post-processing. The fringe 

pitch is 1 mm and the phase shift between each fringe pattern 

is π/2. The seven-step phase-shifting calculation is performed 

on these distorted fringe patterns [16]. 

 

 
 

Fig.3.  Testing targets of a) semicircular, b) rectangular, and 

c)  triangular shapes. Digital fringe patterns projected on the 

d)  semicircle, e) rectangular, and f) triangular target surfaces. 

 
Fig.4. depicts the wrapped phase maps calculated by seven-

step phase-shifting algorithm with sinusoidal, square, and 

triangular fringe patterns for three testing targets. It is shown 

that the modification in fringe pattern especially affects the 

wrapped phase map. The red arrows in Fig.4. indicate the 

phase errors in the wrapped phase maps. The appearance of 

phase errors depends on the projected fringe patterns. From 

these wrapped phase maps, we observe that the phase errors 

corresponding to bright fringes become inconspicuous for the 

triangular fringe projection. In Fig.4., the wrapped phase 

values are a periodic function of 2π. The quality guided path 

calculation is applied to unwrap these phase values. Fig.5. 

illustrates the unwrapped phase maps calculated by quality 

guided path algorithm with sinusoidal, square, and triangular 

fringe patterns for three testing targets. The values of 

unwrapped phase are a continuous rise in the number in which 
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white indicates the highest value and black indicates the 

lowest value. The rising trend of unwrapped phase value for 

sinusoidal, square, and triangular fringe projections can be 

observed in Fig.5. The unwrapped phase map distinctly 

indicates target features. Although phase error propagation 

can be exterminated by using quality guided path calculation, 

we still observe small ripple-like artifacts induced by the 

square fringe projection. 

 

 
 

Fig.4.  Wrapped phase maps calculated by seven-step phase-shifting 

algorithm with a) sinusoidal, b) square, and c) triangular fringe 

patterns for the semicircular (the first row), rectangular (the second 

row), and triangular (the third row) testing targets. The red arrows 

indicate the phase errors in the wrapped phase maps. 

 
The background perturbation in the unwrapped phase maps 

can be removed by using the reference plane reduction 

method [36]. The absolute phase values without background 

noise are obtained by subtracting unwrapped phase values of 

a reference plane. The real 3D reconstructions of testing 

targets are acquired by calibrating the relationship between 

absolute phase values and real dimensions. Fig.6. depicts the 

3D reconstructions of the semicircular, rectangular, and 

triangular testing targets with sinusoidal, square, and 

triangular fringe pattern projections. 3D surface shapes of the 

testing targets can be reproduced by the proposed fringe 

patterns. These experiments clearly show that either 

sinusoidal or triangular fringe projections could contribute 

reasonable results for the semicircular testing target, despite 

the small improvement that the triangular FPP has over the 

sinusoidal FPP. The measurement results with clearly 

noticeable ripples are produced for the rectangular testing 

target, specially projected by the square fringe pattern. The 

sinusoidal and triangular fringe projections could generate 

good 3D representations for the triangular testing target, but 

triangular FPP is slightly better than sinusoidal FPP, as shown 

in Fig.6. 

 

 
 

Fig.5.  Unwrapped phase maps calculated by quality guided path 

algorithm with a) sinusoidal, b) square, and c) triangular fringe 

patterns for the semicircular (the first row), rectangular (the second 

row), and triangular (the third row) testing targets. 

 

In order to compare the imaging differences between 

sinusoidal, square, and triangular FPP, the cross-section 

profiles of three testing targets by different fringe pattern 

projections are illustrated in Fig.7. The location of these 

cross-section profiles is at the center of a 3D representation 

of a measured target. The shape deformation in square FPP is 

larger than in sinusoidal and triangular FPP. In Fig.7.a), we 

can see that sinusoidal FPP produces low-frequency 

corrugations of the top measured surface. In Fig.7.c), 

triangular FPP creates the significant profile in which the 

surface ripples are hardly noticeable. The triangular FPP 

obviously mended the smoothness of the target surface. 



 

 

 

MEASUREMENT SCIENCE REVIEW, 20, (2020), No. 1, 43-49 
 

47 

 
 

Fig.6.  3D representation of the semicircular (the first row), 

rectangular (the second row), and triangular (the third row) testing 

targets with a) sinusoidal, b) square, and c) triangular fringe pattern 

projections. The red line in the bottom right indicates the location of 

the cross-section profile. 

 

 
 

Fig.7.  Cross-section profiles of the a) semicircular, b) rectangular, 

and c) triangular testing targets with different fringe pattern 

projections. 

 

In order to quantify the total imaging errors by different 

waveforms, the total imaging error is defined as R = (Am - As) 

/ As, where Am is the measured area of the target profile and 

As is the standard area of the target profile. Table 1. shows 

the total imaging errors calculated by measured area and 

standard area. This calculation indicates that triangular FPP 

for curved surface of targets can outperform sinusoidal FPP. 

The tolerances of measured diameter of semicircular target 

are 0.11 mm for sinusoidal FPP, 0.27 mm for square FPP, and 

0.06 mm for triangular FPP. The tolerances of measured 

height of rectangular target are 1.36 mm for sinusoidal FPP, 

0.71 mm for square FPP, and 1.05 mm for triangular FPP. 

The tolerances of measured height of isosceles triangular 

target are 0.31 mm for sinusoidal FPP, 0.86 mm for square 

FPP, and 0.18 mm for triangular FPP. In other words, the 

triangular FPP is already good enough if narrow fringe 

patterns are used for complex targets with curved surfaces. 

On the other hand, the square FPP is suitable for target 

measurement with flat surface. These experiments indicate 

that the triangular FPP shall be accepted for high-quality 3D 

shape measurement. In the future work, the measurement 

uncertainty analysis of the FPP system will be presented for 

improving the accuracy of the triangular phase-shifting 

calculation. 

 

Table 1.  Total imaging errors calculated by measured area and 

standard area. 

 

 Sinusoidal 

FPP 

Square 

FPP 

Triangular 

FPP 

Semicircular 

target 

3.8% 6.3% 3.7% 

Rectangular 

target 

7.8% 5.8% 7.5% 

Triangular target 5.8% 5.9% 5.1% 

 

4.  CONCLUSION 

This paper presented the digital phase pattern modulation 

for 3D shape measurements based on the multiple FPP to 

overcome the problems associated with traditional fringe 

projection techniques. Three types of testing targets are 

employed to estimate imaging performance for different 

fringe projections. The fringe patterns of the sinusoidal, 

square, and triangular periodic waveforms with seven-step 

phase-shifting algorithm are performed to reconstruct the 3D 

surface profile of the testing targets. We have analyzed the 

imaging shape differences and total imaging errors of 

different fringe pattern projections for three testing targets. 

Our experiments found that the triangular FPP provides the 

best imaging result and improves measurement quality. By 

properly selecting fringe patterns according to the target 

shape, the undesired harmonics of the measured surface can 

be eliminated from the phase maps. The triangular FPP is 

more suitable for 3D shape measurement with curved 

surfaces. Binary reflected gray-codes technique can be used 

in fields of topography, deflectometry, and interferometry for 

advanced measurement accuracies. We believe that further 

improvement is needed to achieve superior quality 3D shape 

measurements. Future works will be focused on developing 

an algorithm to generate optimal binary gray-codes fringe 

patterns for complex 3D shape measurements. The 

integration of the FPP system will be examined for fast 

measurement and the imaging time will be reduced to 

microsecond scale. 
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