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Lungs are used as an attractive possibility for administration of different therapeutic substances for a long time. An innovative method of

such administration widely studied nowadays is the application of aerosolized magnetic particles as the carriers to the lungs in the external

non-homogeneous magnetic field. For these reasons we have studied dynamics of such a system on a level of particle trajectory in air

in the presence of magnetic force as a driving force exerted on micrometric magnetic particle. On two typical examples of magnetically

driven systems—motion of magnetic particle in a gradient magnetic field and cyclotron-like motion of a charged particle in homogeneous

magnetic field in microscale, where the external accelerating forces are very large and the relevant time scale is of the order from fraction of

milliseconds to seconds, we have examined the importance of these forces. As has been shown, for particles with high initial acceleration,

not only the commonly used Stokes force but also the Basset history force should be used for correct description of the motion.
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1. INTRODUCTION

Computational simulation, as an important tool for the

study of fluid dynamics in biophysics and biotechnology, al-

lows to quickly improve the device functionality, minimizing

the cost of prototype testing, or can help to describe systems

unreachable experimentally [1], [2], [3], [4], [5], [6], [7].

In the Lagrangian simulation frame mostly used in mod-

els, the viscous Stokes’ drag force is usually concerned as

a dominant. In 1888 A. B. Basset [8] showed that the gov-

erning equation of motion for small spherical inertial par-

ticles should be formulated as an integro-differential equa-

tion with integral term denoted as the Basset history force,

which accounts for the diffusion of vorticity around the parti-

cle throughout its entire history.

Recent experimental and numerical studies, however, show

that this history term influences the dynamics of inertial parti-

cles significantly and therefore cannot be generally neglected

[9], [10], [11], [12], [13], [14]. For flow across an aerody-

namic shock, the Basset history force acting upon the particle

described by the Basset integral can be substatialy larger than

the viscous drag in the immediate shock region [15]. Also

the effects of the history force on an oscillating rigid sphere

at low Reynolds number cannot be neglected [16]. Particle-

fluid systems can be treated as aerosols or bubbles depending

on a ratio of their mass densities. Garbin et al. [17] studied

history force influence on microbubbles propelled by ultra-

sound, and showed that the instantaneous values of hydrody-

namic forces extracted from experimental data confirm that

the history force accounts for the largest part of the viscous

force. For an impulsively started flow over a bubble, accu-

rate finite difference results show that the history force on

the bubble decays as t−2 at large time [18]. Another inter-

esting observation is the influence of the Basset history force

on the change of both the nature and the number of attractors

of inertial particle advection for gravitational effects and hor-

izontal diffusion [10]. Recently, it was also shown that the

Basset history force has a negligible effect on linear stabil-

ity of particle laden flows [19]. History force affects chaotic

advection of inertial particles in a rather non-trivial way as

has been shown in [11]. A recent simulation [20] has shown

reduction effect of small-scale clustering of inertial particles

transported in homogeneous and isotropic turbulence. As we

have recently shown, the Basset history force is important

also for correct description of high gradient magnetic sepa-

ration [21]. Basset force, due to its difficult computation, is

often neglected. Nevertheless, recently there were efforts to

develop an efficient integral/quadrature scheme for its numer-

ical evaluation [22], [23], [24], [25] as summarized in [26].

Lungs are an attractive interface for administration of var-

ious therapeutic substances for common diseases, e.g., deliv-

ery of insulin [27]. Posibility of using magnetic carriers has
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been recently studied on experimental, as well as theoreti-

cal basis [7], [28], [29], [30], [31], in order to increase the

efficiency of this pulmonary route. Nevertheless, the Bas-

set history force is not taken into account. It is therefore our

aim in this study to implement a model describing the motion

of a micrometric sized spherical magnetic particle in air as

quiescent fluid ambient for comparison of the importance of

all relevant forces describing the dynamics of such sphere in

two widely used examples of magnetic systems—motion of a

sphere with magnetic moment in a gradient magnetic field and

cyclotron-like motion of a charged sphere in homogeneous

magnetic field.

2. MATERIAL AND METHODS

2.1. Physical model

2.1.1. Governing equations

The governing equation for the movement of spherical

body in viscous fluid ambient was derived already at the end

of the 19th century by A. B. Basset [8] as a classic theoretical

result from the unsteady Stokes’ equation, further developed

by Boussinesq and Oseen, and nowadays used in the general-

ized Maxey-Riley form [11], [32] as

mp
d~v

dt
= mf

D~u

Dt
− mf

2

(

d~v

dt
− D~u

Dt

)

− 6πbρfν (~v−~u)+
(

mp −mf

)

~g

− 6b2ρf

√
πν

∫ t

t0

dτ
1√

t − τ

(

d~v

dτ
− d~u

dτ

)

+~FMag, (1)

where mp and mf are the mass of the particle and mass of

the fluid excluded by the particle, respectively; ~v ≡ d~r/dt is

the particle velocity,~u(~r, t) is the velocity vector field of fluid

ambient; and

d~u

dt
≡ ∂~u

∂ t
+~v ·~∇~u, (2)

D~u

Dt
≡ ∂~u

∂ t
+~u ·~∇~u, (3)

denote the full derivative along the trajectory of the particle

and of the corresponding fluid element, respectively. The re-

maining symbols in (1): b, ρf, and ν are spherical particle

radius, and density, and kinematic viscosity of fluid, respec-

tively. The terms on the right-hand-side of (1) are identified

as: the force exerted by the fluid on a fluid element at the lo-

cation of the particle (further denoted as the fluid force), the

added mass term describing the impulsive pressure response

of the fluid, the Stokes drag, the buoyancy-reduced gravity,

the Basset history force term (an integral accounts for the

viscous diffusion of vorticity from the surface of the parti-

cle along its trajectory) [11], and the external magnetic force

term exerting on particle.

Integral in the Basset history force term can be put in the

case of non-zero initial difference of particle and fluid ele-
ment velocity to the form [11], [33]

1√
π

∫ t
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d
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t − τ
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1√
π
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d
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∫ t

t0

~v−~u√
t − τ

dτ (4)

using integration by parts.

Equation (1) involving (4) can be rewritten to the dimen-

sionless form after using characteristic time T , velocity U ,

and length a scales explained later:

1
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where the hat over the variable denotes its dimensionless

form,~n is a unit vector pointing upwards against gravity, and

the three dimensionless parameters used:

R =
2ρf

ρf + 2ρp
,

S =
2

9

b2/ν

T
, (6)

W = S

(

3

2
− 1

R

)

gT

U
,

are the density parameter, the size parameter, and the dimen-

sionless settling velocity, respectively [11]. The ρp denotes

the particle mass density.

2.1.2. Magnetic force

The magnetic force term used in our simulations depends

on the studied problem. We are analyzing two common prob-

lems:

1. the magnetic force exerting on superparamagnetic spher-

ical particle with magnetic susceptibility χ moving in

external gradient magnetic field [34] of single circular

current loop with magnetic flux density ~B:

~FMag = χVp
~∇

(

1

2
~H ·~B

)

(7)

can be expressed (using relation ~H = ~B/µ0) as its i-th

component in dimensionless form as

F̂Mag,i =
1

S

vm

U

(

B̂ j∂̂iB̂ j

)

, (8)

where the Einstein summation convention was used and

vm = 2b2χµ0I2/9π2νρfa
3 is the ’magnetic velocity‘,

with radius of current loop and current magnitude a and

I, respectively, and external magnetic flux density ex-

pressed in dimensionless form as ~̂B ≡ ~Baπ/µ0I (general

expression for ~B or its gradient using elliptic integrals

can be found in [35] or in shortened version in A). The

Vp and ∂̂i are the particle volume and i-th component of

dimensionless partial derivative operator, respectively.
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2. the magnetic force on moving particle in cyclotron-like

homogeneous magnetic field with magnetic flux den-

sity ~B ≡ (0, 0, B0) and particle carrying electric charge q

moving with non-zero initial velocity~v(0)≡ (0, ωa, 0):

~FMag = q
(

~v×~B
)

= mp (~ω ×~v) can be expressed in di-

mensionless form as

~FMag =
1

S

vm

U

(

~̂ω ×~̂v
)

, (9)

where vm = 2b2ρpUω/9νρf is the ’magnetic velocity‘, a

is initial radial distance of particle from axis, the angular

velocity vector is defined as

~ω =−q~B/mp ≡ (0, 0, ω) (10)

and its dimensionless form as ~̂ω = ~ω/ω .

2.1.3. Quiescent fluid ambient

In both modeled problems we have considered as a fluid

quiescent air ambient at 300K. Therefore, the total derivative

along the trajectory of the fluid element corresponding to the

particle (3) is from definition zero, or explicitly

D~u

Dt
≡ ∂~u

∂ t
+~u ·~∇~u =~0, (11)

and the force exerted by the fluid on a fluid element at the

location of particle also diminishes.

2.2. Numerical integration of the Maxey-Riley equation

The Maxey-Riley equation (1) or its dimensionless form

(5) is an integro-differential equation, which means that dur-

ing the integration process in each time step it is necessary to

compute the Basset history force integral term. For this pur-

pose we used variable time step order one quadrature scheme

presented in [36] proposed in [25]. In this sense, the Maxey-

Riley equation (5) can be transcribed to the system of ordi-

nary differential equations (ODEs). Moreover, using variable

time step definition of quadrature scheme allowed us to use

standard collection of MATLABTM(The MathWorks, 2017)

ODEs solvers for their calculation. For this purpose we have

used as the most suitable solver ode15s, based on the nu-

merical differential formulas of orders 1 to 5 [37].

Numerical calculations of studied problems were governed

by error manipulation, in particular by absolute error toler-

ances: AbsTol = 10−12 for dimensionless location vari-

ables, AbsTol= 10−10 for dimensionless velocity variables,

and with RelTol = 10−12 as the relative error tolerance for

both dimensionless location and velocity variables.

3. RESULTS AND DISCUSSION

We have performed simulations for MyOneTM[38] widely

used one micron bead particle in quiescent air as fluid am-

bient for two modeled problems: a) magnetic particle in the

gradient magnetic field of single circular current loop with

radius a and current magnitude I located in xy-plane with
axis identical with z-axis of the Cartesian coordinate system

and with initial position~r(0) = (−1/3a, 0,−a) and zero ini-

tial velocity (Fig.1.), and b) particle in cyclotron-like homo-

geneous magnetic field moving with angular velocity vector

~ω in perpendicular plane to the homogeneous magnetic field

with initial radial distance a and initial velocity U .

(a)

x

y

z

a

I

g

(b)

x

yg

B

v(0)

a

Fig.1. Schematic diagram (a) of single circular current loop arrange-

ment; and (b) arrangement of particle in cyclotron-like magnetic

field.

For both studied problems we have analyzed two sub-

problems: (i) a movement of particle described with the New-

ton equation of motion with magnetic force and buoyancy-

reduced gravity as driving forces and the Stokes’ viscous drag

as a single drag force; and (ii) the movement of particle de-

scribed with the Maxey-Riley equation (section 2.1) combin-

ing together with the three mentioned forces in previous sub-

problem also fluid, added mass, and the Basset history force.

The fluid force was due to quiescentness of air as fluid am-

bient neglected. The first and the second sub-problems were

further denoted for abbreviation as the Stokes and the Basset

problem, respectively.

Values of parameters used in simulations are shown in Ta-

ble 1.

3.1. Magnetic particle in gradient magnetic field of circular

current loop

In Fig.2. are shown trajectories of magnetic particle in the

magnetic field of circular current loop in air as quiescent fluid

ambient for the Stokes, as well as the Basset sub-problems.

As you can see, trajectories are almost indistinguishable. Bet-

ter overview on the difference of both sub-problems can be

obtained from Fig.3., where the time evolution of difference

of particle position components between the Basset and the

Stokes problem relatively to the characteristic length (current

loop radius a) are shown. Although the trajectories are in-

distinguishable, there is obvious delay of time evolution of

particle position components for the Basset sub-problem in

comparison with the Stokes one.
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Table 1. Values of geometrical and physical parameters used in sim-

ulations.

Description Symbol Value Unit

Particle: MyOneTM [38]

Particle diameter 2b 10−6 m

Particle mass density ρp 1791 kg/m3

Particle mag. susceptibility χ 1.433 1

Fluid ambient: air at 300K

Fluid mass density ρf 1.177 kg/m3

Fluid dynamic viscosity η 18.5×10−6 Pa.s

Fluid kinematic viscosity ν 15.7×10−6 m2/s

a) Loop problema

Loop radius a 5.0×10−3 m

Loop current magnitude I 5.0 A

Characteristic lengthb a a m

Characteristic velocityb U calculated m/s

Characteristic timeb T calculated s

b) Cyclotron problemc

Angular velocity ω 2π ×105 rad/s

Angular velocity vector ~ω (0, 0, ω) rad/s

Initial radial distance a 0.1×10−3 m

Characteristic length a a m

Characteristic velocity U ωa m/s

Characteristic time T 2πa/U s

a Magnetic particle moving in magnetic field of circular current loop.
b See B.
c Particle moving in cyclotron-like magnetic field.
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Fig.2. (Color online.) Comparison of trajectories of magnetic par-

ticle in circular current loop magnetic field in air as quiescent fluid

ambient solved as the Stokes and the Basset problem. Values of pa-

rameters used in simulations are shown in Table 1.

An overview on the dynamics of the Basset sub-problem

can be obtained from the time evolution of each kind of force

(their absolute values) acting on moving particle shown in

Fig.4.; and their mean value averaged over the whole time

of movement shown as histogram in Fig.5. Magnetic force

drives the motion with major counteracting Stokes drag force.

The movement is also decelerated with the Basset history
force, however, three orders of magnitude lower than the

Stokes drag. Similar effect has added mass force term with

five orders of magnitude lower contribution than the Basset

force term. Buoyancy reduced gravity acts also as constant

decelerating force in vertical direction for the given geometry

of model.

Dominant effect of the Basset history force term is pre-

sented at an early stage of movement, as well as in the close

vicinity of the circular current loop with the highest gradient

of magnetic field and, therefore, the highest magnetic force

(Fig.4.). The latter is the most significant for this problem.
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Fig.3. (Color online.) Time evolution of ratio of particle position (its

components) difference for the Basset (subscript B) and the Stokes

(subscript S) sub-problem to the characteristic length (loop radius)

for magnetic particle in the magnetic field of circular current loop.

Values of parameters used in simulations are shown in Table 1.
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Fig.4. (Color online.) Time evolution of absolute values of forces

acting on moving particle in the magnetic field of circular current

loop for the Basset problem. Values of parameters used in simula-

tions are shown in Table 1.
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Fig.5. (Color online.) Histogram of kinds of forces (their absolute

values averaged over the whole time evolution) acting on moving

magnetic particle in the magnetic field of circular current loop for

the Basset problem. Values of parameters used in simulations are

shown in Table 1.

3.2. Particle in cyclotron-like homogeneous magnetic field

In Fig.6. are shown trajectories of particle in the cyclotron-

like homogeneous magnetic field in air as quiescent fluid am-

bient for both, the Stokes and the Basset sub-problems. The

significant difference is obvious, as you can see also in Fig.7.,

where the time evolution of the ratio of the difference of par-

ticle position components between the Basset and the Stokes

sub-problem and the characteristic length (particle initial ra-

dial distance a) are shown.

Insight to the dynamics and significance of each kind of

force acting on the moving particle in the cyclotron-like mag-

netic field and quiescent air for the Basset sub-problem can

be taken from the time evolution of x- and y-components,

and absolute value of each kind of force in Fig.8., and also

from the histogram of mean values of forces averaged over

the whole time evolution in Fig.9. The movement of particle

is driven by magnetic force with almost exponential decay,

influenced mainly with one-half order lower Stokes drag with

similar time evolution. The Basset history force acts as de-

celerator with more complicated behavior and huge values at

early stage of movement due to non-zero initial relative ve-

locity of particle and quiescent air ambient [contrary to zero

initial relative velocity in the case of magnetic particle mov-

ing in the field of circular current loop problem (Section 3.1)].

Added mass force term copies exponential decay behavior

with huge values also at an early stage of movement. Con-

stant buoyancy reduced gravity accelerates the movement of

particle in vertical direction and together with viscous forces

causes particle settling. Magnetic force and the Stokes drag

have a major effect on particle movement averaged over the

whole time evolution. The mean Basset history force term

magnitude is lower about one and half order. The added mass

force term is lower than the Basset term about another two or-

ders. Buoyancy reduced gravity has the weakest contribution.

10

-2

Stokes vs. Basset problem

-1

10-10

z 
[m

]

0

1
10-5

x [m]

9

y [m]

10-5 0.5

80

Stokes
Basset

Fig.6. (Color online.) Comparison of trajectories of moving parti-

cle in cyclotron-like homogeneous magnetic field in air as quiescent

fluid ambient solved as the Stokes and the Basset problem. Values

of parameters used in simulations are shown in Table 1.
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Fig.7. (Color online.) Time evolution of the ratio of particle posi-

tion (its components) difference for the Basset (subscript B) and the

Stokes (subscript S) problem and the characteristic length (particle

initial radial distance) for particle in the cyclotron-like homogeneous

magnetic field. Values of parameters used in simulations are shown

in Table 1.

As can be seen from Fig.8., x- and y-component of total

force is decaying exponentially with visible oscillations. Sim-

ilar exponential decay is also present for magnetic and Stokes

forces in the Stokes problem. Although, for the Basset prob-

lem their behavior is affected with memory effect of history

force which causes oscillation of absolute value of velocity of

the particle about values exponentially decaying in the Stokes

problem (Fig.10.), which reflects inherent periodic circular

motion in cyclotron-like magnetic field (Fig.6.). Magnetic

and Stokes forces depend linearly on velocity, therefore small

depressions appear with some delay also in their values.
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Fig. 8. (Color online.) Time evolution of (a) x-, (b) y-components

and (c) absolute values of forces acting on moving particle in the

cyclotron-like magnetic field for the Basset problem. Values of pa-

rameters used in simulations are shown in Table 1.
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Fig.9. (Color online.) Histogram of kinds of forces (their absolute

values averaged over the whole time evolution) acting on moving

particle in the cyclotron-like magnetic field for the Basset problem.

Values of parameters used in simulations are shown in Table 1.

0 0.5 1 1.5 2 2.5 3 3.5 4
t [s] 10-5

10-3

10-2

10-1

100

v 
[U

]

Stokes problem
Basset problem

Fig.10. (Color online.) Time evolution of absolute value of instan-

taneous particle velocity for Stokes and Basset problems, their com-

parison, for particle in cyclotron-like magnetic field. Values of pa-

rameters used in simulations are shown in Table 1.

3.3. Relevance and validity conditions

For relevant applications of the Maxey-Riley equation as

the governing equation for the description of studied systems,

several validity conditions have to be fulfilled [11], [32]. The

first one, particle Reynolds number Rep ≡ |~v−~u|b/ν remain-

ing small during the entire dynamics, is fulfilled for both sim-

ulated problems and each sub-problem (as you can see illus-

tratively for the Basset sub-problem in Fig.11.). In addition,

the size parameter S must be small (i.e., the particle’s char-

acteristic time scale is much smaller than that of the flow),

what is also fulfilled (see Table 2.; the size parameter S is a

more appropriate number to characterize memory effects than
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the traditional Stokes number, which is St ≡ S/R in our nota-

tion [11]). The last condition, which assures that the so-called

Faxén corrections are negligible [32], is that the particle ra-

dius must be much smaller than the characteristic length scale

of the flow: b ≪ a, what is fulfilled.

Table 2. Characteristic values of scales and calculated dimension-

less numbers.

Parameter a) Loop problema b) Cyclotron problemb

Characteristic values of scales:

a 0.5×10−3 m 0.1×10−3 m

U 10.8×10−3 m/s 62.8 m/s

T 46.3×10−3 s 10×10−6 s

vm 0.11×10−3 m/s 212.9 m/s

Dimensionless numbers:

R 0.66×10−3 0.66×10−3

S 76.5×10−9 0.35×10−3

W −4.9×10−3 −0.84×10−6

Rec
p ≤ 6.3×10−6 ≤ 2.0

Std 0.12×10−3 0.54

a Magnetic particle moving in magnetic field of circullar current

loop.
b Particle moving in cyclotron-like magnetic field.
c Particle Reynolds number Rep = |~v|b/ν .
d Stokes number St = S/R.

4. CONCLUSIONS

The objective of this study was the analysis and implemen-

tation of a model to characterize the importance of various

forces arising in the accelerated motion of magnetic particle

in quiescent air as fluid ambient and in external high gradi-

ent magnetic field of circular current loop (the first modeled

problem), as well as, of particle carrying charge in cyclotron-

like homogeneous magnetic field (the second modeled prob-

lem). For the first modeled problem: even the trajectory of

particle described with the Maxey-Riley equation is almost

undistinguishable from the case considering only magnetic,

gravitational and Stokes force; a significant delay of particle

capturing is observed. Also for the second modeled problem

the difference of trajectory of particle in cyclotron-like mag-

netic field is well distinguishable.

As we have found, at the relevant time-scales of the or-

der from milliseconds to fraction of seconds, the Basset force

cannot be neglected for a correct description of the studied

systems, especially for the movement at the early stages, as

well as in regions with the highest driving forces.

A. CIRCULAR CURRENT LOOP MAGNETIC FLUX DEN-

SITY

Single circular current loop magnetic flux density and its

partial derivatives in the Cartesian coordinate system using

elliptic integrals K(k2), E(k2) [35]:

Bx =
Cxz

2α2β ρ2

(

(a2 + r2)E(k2)−α2K(k2)
)

, (12)

By =
Cyz

2α2β ρ2

(

(a2 + r2)E(k2)−α2K(k2)
)

=
y

x
Bx, (13)

Bz =
C

2α2β

(

(a2 − r2)E(k2)+α2K(k2)
)

, (14)

where C ≡ µ0I/π , α2 ≡ a2 + r2 − 2aρ , β 2 ≡ a2 + r2 + 2aρ ,

k2 ≡ 1−α2/β 2, γ ≡ x2 −y2, ρ2 ≡ x2 +y2, r2 ≡ ρ2+ z2; with

I and a as the current and radius of circular current loop in

xy-plane with axis identical with z-axis of the Cartesian coor-

dinate system, respectively; and µ0 as the vacuum permeabil-

ity.

∂Bx

∂x
=

Cz

2α4β 3ρ4

{[

a4
(

−γ(3z2 + a2)+ρ2(8x2 − y2)
)

− a2
(

ρ4(5x2 + y2)− 2ρ2z2(2x2 + y2)+ 3z4γ
)

− r4
(

2x4 + γ(y2 + z2)
)]

E(k2)

+
[

a2
(

γ(a2 + 2z2)−ρ2(3x2 − 2y2)
)

+ r2
(

2x4 + γ(y2 + z2)
)]

α2K(k2)
}

, (15)

∂Bx

∂y
=

Cxyz

2α4β 3ρ4

{[

3a4(3ρ2 − 2z2)− r4(2r2 +ρ2)

− 2a6 − 2a2(2ρ4 −ρ2z2 + 3z4)
]

E(k2)

+
[

r2(2r2 +ρ2)− a2(5ρ2 − 4z2)

+ 2a4
]

α2K(k2)
}

, (16)

∂Bx

∂ z
=

Cx

2α4β 3ρ2

{[

(ρ2 − a2)2(ρ2 + a2)

+ 2z2(a4 − 6a2ρ2 +ρ4)+ z4(a2 +ρ2)
]

E(k2)

−
[

(ρ2 − a2)2 + z2(ρ2 + a2)
]

α2K(k2)
}

, (17)

∂By

∂x
=

∂Bx

∂y
, (18)

∂By

∂y
=

Cz

2α4β 3ρ4

{[

a4
(

γ(3z2 + a2)+ρ2(8y2 − x2)
)

− a2
(

ρ4(5y2 + x2)− 2ρ2z2(2y2 + x2)− 3z4γ
)

− r4
(

2y4 − γ(x2 + z2)
)]

E(k2)

+
[

a2
(

−γ(a2 + 2z2)−ρ2(3y2 − 2x2)
)

+ r2
(

2y4 − γ(x2 + z2)
)]

α2K(k2)
}

, (19)

∂By

∂ z
=

y

x

∂Bx

∂ z
, (20)

∂Bz

∂x
=

∂Bx

∂ z
, (21)

∂Bz

∂y
=

∂By

∂ z
, (22)

∂Bz

∂ z
=

Cz

2α4β 3

{[

6a2(ρ2 − z2)− 7a4 + r4
]

E(k2)

+ α2(a2 − r2)K(k2)
}

. (23)

For paraxial limit case see the original source [35].
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Fig.11. (Color online.) Time evolution of the particle Reynolds number of (a) magnetic particle moving in magnetic field of a circular current

loop; and (b) particle moving in cyclotron-like magnetic field in air as quiescent fluid ambient for the Basset problem. Values of parameters

used in simulation are shown in Table 1.

B. CIRCULAR CURRENT LOOP PROBLEM SCALING

For magnetic particle in gradient magnetic field of circu-

lar current loop problem we have evaluated values of char-

acteristic parameters (length, velocity and time) numerically,

solving the movement of magnetic particle from the center of

circular current loop to its rim in the plane of circular current

loop in vacuum and gravity-free condition. Explicitly solving

an initial value problem:

mp
d~v

dt
= ~FMag, ~r(0) =~0, ~v(0) =~0, (24)

where the magnetic force is defined as (7) with magnetic flux

density ~B and its derivative specified in A. In this way, the

characteristic length a is defined as a radius of the circular

current loop. The characteristic time T is defined as a time of

movement from the center to the rim of the circular current

loop. And finally, the characteristic velocity norm as a U ≡
a/T .
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