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This paper is focused on the nonlinear state estimation problem with finite-step correlated noises and packet loss. Firstly, by using the 
projection theorem repeatedly, the mean and covariance of process noise and measurement noise in the condition of measurements before 
the current epoch are calculated. Then, based on the Gaussian approximation recursive filter (GASF) and the prediction compensation 
mechanism, one-step predictor and filter with packet dropouts are derived, respectively. Based on these, a nonlinear Gaussian recursive filter 
is proposed. Subsequently, the numerical implementation is derived based on the cubature Kalman filter (CKF), which is suitable for general 
nonlinear system and with higher accuracy compared to the algorithm expanded from linear system to nonlinear system through Taylor 
series expansion. Finally, the strong nonlinearity model is used to show the superiority of the proposed algorithm. 
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1.  INTRODUCTION 

In the past few years, networked control systems (NCSs) 
have caused widespread concern [1]-[3], because they link 
the cyberspace and physical space, including networks 
among sensors, estimators, controller, and actuators. 
However, as NCSs become more and more complex, various 
non-ideal situations arise in the system model, such as 
nonlinearity, correlated noises, packet loss and so on. 

For a nonlinear system, two types of methods are 
developed. One is based on approximating a nonlinear 
system, while another is based on approximating the 
probability distribution. For the former, the representative 
methods are the extended Kalman filter (EKF) [4] and the 
divided difference filter (DDF) [5]. For the latter, there are 
the Gauss-Hermite quadrature filter (GHQF) based on the 
Gauss-Hermite quadrature rule [6], the unscented Kalman 
filter (UKF) based on the unscented transformation [5], the 
CKF based on the spherical-radial cubature rule [7], and 
particle filter (PF) based on random sampling [8]. 
Apparently, CKF has a smaller computational burden than 
GHQF and PF, has higher precision than EKF, and has higher 
numerical stability than UKF. 

For the systems with correlated noises, methods can be 
summarized into three categories, including decoupled 
framework based on the reconstruction of the pseudo-process 

equation, which makes the process noise uncorrelated with 
measurement noise [9]; GASF, based on a novel two-step 
prediction method, which avoids calculating the mean and 
covariance of process noise in the condition of the 
measurement at the same epoch [10]; alternative framework 
based on the state augmented by process noise and the 
conditional Gaussian distribution [11]. In [11], it proves that 
the algorithms in [9], [10], and [11] are equivalent in linear 
systems. In [12] and [13], two alternative frameworks 
proposed in [11] are modified and used to design nonlinear 
Gaussian filtering algorithms, respectively. In [14] and [15], 
a more complex form of noise is considered in linear and 
nonlinear systems, respectively. In [16] and [17], finite-step 
correlated noise is considered for optimal linear estimators 
and distributed fusion filter, respectively. It can be known 
from [16] that finite-step correlation noise is a more general 
case. 

For the problem of packet dropouts, three different 
compensation mechanisms are proposed, respectively. In [18] 
and [19], based on the zero-input compensation mechanism, 
two different models are designed and corresponding 
estimators are proposed for data packets arriving at the filter 
within and without a sampling interval. To find an alternative 
measurement, the hold-input compensation mechanism is 
proposed. In [20], a white binary distributed random variable 
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is used to describe that the sensor measurement received by 
the data processing center is from the current or last epoch. In 
[21], due to the communication constraint, only one network 
node is allowed to gain access to a shared communication 
channel and the optimal weighting factor is introduced to 
describe this situation. However, the optimal weighting factor 
is not shown in [21], and an improved version of the 
compensation mechanism is given in [22], where the 
weighting factor is replaced by a matrix, and the simulation 
results show the superiority of [22] compared with [21]. For 
the reason that the latest information on measurements is not 
used in hold-input compensation, the prediction 
compensation mechanism is proposed and shows a better 
filtering effect. In [23], the predictor of a lost packet is used. 
In [16] and [24], based on the same compensation strategy, 
delayed measurements, finite-step correlated noises and 
packet loss are considered, respectively. In [25], fusion 
algorithms for systems with multi-sensor measurement are 
considered in which different sensors have different packet 
loss rates. 

Since finite-step correlated noise is widely present in 
practical systems, and packet dropout is an inherent problem 
in NCSs, it is very necessary to design estimation methods for 
systems with finite-step correlated noises and packet loss. 
However, for such problems, there is no unified framework 
for nonlinear system in existing literatures. In this paper, 
considering finite-step correlated noises and packet loss for 
general nonlinear systems under the Gaussian framework, we 
derive the nonlinear Gaussian recursive filter. It is worth 
mentioning that other form correlated noises or the system 
without packet loss is a special case of this article. 

The rest of this paper is organized in the following order: 
The problem formulation is shown in Section 2. The main 
results are derived in Section 3. The numerical 
implementation is presented in Section 4. Section 5 gives the 
simulation result. The conclusion is shown in Section 6. 

 

Notation:   denotes the absolute value of  . 
k k nx  

represents the mathematical expectation of 
kx  in the 

condition of 
k nY , where  1 2, , ,k n k nL  Y y y y  is a linear 

space spanned by 
1 2, , , k ny y y . For convenience, we define 

kk l k l x x x , kk l k l    ,    
k lx k k l h h x h x , 

 
k l k l k lx x x     f Lh f Lh , where, k  and l  take positive 

integers. a b  means that a  is uncorrelated with b .  

 
2.  PROBLEM DESCRIPTION 

Assuming the following nonlinear dynamic system with 
one-step compensation mechanism is considered: 
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n n R R . 

Assumption 2: 0x  is the initial state and uncorrelated with 
the process and measurement noises and satisfied with 

 0 0E x x ,   0 0 0 0 0

T
E     x x x x P . 

In this paper, our goal is mainly to design the Gaussian filter 
for the state x  in the presence of finite-step correlated noises 

and packet loss, namely  

1 11 1 k kk k E       x x Y  
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3.  GAUSSIAN RECURSIVE FILTER DESIGN 

For the sake of clarity, the derivation process of the filter is 
divided into the following three lemmas and two theorems. 

 

Lemma 1: For system (1)-(3) and based on the Assumption 
1, the innovation 1k   can be described by 
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In 1
x
k kN  , 1k kx  and 1

xx
k kP  will be calculated in Theorem 1. 

In 1
x
k kN 
 , 1k k , 1

x
k k

P  and 1k k
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3. 
 

Proof: 
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Substituting (7) into 1 1 1k k k k   y y  yields (5). 
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Lemma 1 is proved. 

 
Lemma 2: For system (1)-(3) and based on the Assumption 
1, the estimation of k  condition on 1k Y  can be computed 
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To get 1k k   and 1k k


P , because  1, ,k n n N    and 

 1, ,k n n N
  Q  have been known at the previous epoch, 

we just need to compute  1, ,k k n n N
  K , which is 

equivalent to the computation of  , 1 1, ,y
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    P . 

From (13) and (14), we know that all values in k k n
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we can process them in the following order, 
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where, 
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In the following, we calculate , 1k k n k n
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Lemma 3: For system (1)-(3) and based on the Assumption 
1, the mean and covariance of +1k  in condition kY  can be 
computed by 
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From (28), we have 
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P x Y

x Y

f K h

Y

K

f K h







 



  

  

1

1

1

+1 11

+1 11 1

+1
+1 1 1, 1

+1, 1 +1, 1

k n k n

k n k n

T

x k n

T T
k k n k nk n k n

T T
k n k k nk n k n k n k n

T
kx

k k n xk n k n k k n k n
k n

T
k n k nk k n k n k k n k n

E

E

N d

 







  

  

 

    

       

      


      

 
  
   

   
 

   
 

 







 

Y

Y

Y K

f K h
x

P P





 

 




1
T
k n k n  K

 

(42) 
From (10), we have 
 

1 1

1

k nk n k n k n k n

n N

k n k lk n k l
l n



     



  
 

 

  



K

  

 
                 (43) 

 

In (42), because of  1 1k k l l N     , we have 

 

   

1+1, 1 +1 1 1

+1 11

1

1 +1
1

T
k nk k n k n k k n k n k n

T
k k nk n k n

N T
T

k ln k k l k n k l
l n

E

E



  

        

   



    
 

   
   

  

 



P Y

Y

S K Q K

 

        (44) 

+1, -1k k n k n


 P  in (42) can be calculated like +1, +1k k n k n


 P  in 

(41), where n  in +1, +1k k n k n


 P  need to be substituted by 1n . 

Theorem 1: For system (1)-(3) and Assumption 1, the 
Gaussian recursive one-step predictor is given by 
 

1 1 1 1 kk k k k k k    x x K                          (45) 

 

1 1 1 1 1
xx xx T

kk k k k k k k k


     P P K Q K                    (46) 

 

  1

1 1, 1
xy

kk k k k k
 

  K P Q                         (47) 

 
where 

 1 1 1 1
x

k k kk k k k k kN d    x f x x                (48) 

 

 1 1

1

1

1 1 1

1 1

1 1 1

k k k k

k k

k k

T
xx x

x x kk k k k

kT T x
x kk k k k

k

T

kT T x T
x k k kk k k k k k

k

N d

N d

N d



 

 





  

 

  



 
  

 

  
   

  







 

 

 

P f f x

x
f

x
f P









  

  (49) 

 

 
 

1 1

1

1
1

1

1 1 1

k k k k

k k

T
x

k x x kk k

kk k
kT x y

k x kk k k k k k
k

N d

N d



 





 








  

 
 
 

     
  





 

 

f h x

K Q
x

f P



 

(50) 
 

In (45)-(49), k , k
Q , 1

x
k kN  , and 1

x
k kN 

  have been 

computed at the last epoch. In 1
x
k kN 

 , 1k k  , 1k k

P , and 1

x
k k

P  

are calculated in Lemma 2. In 1k kK , 1
y

k k

P  can be obtained 

from (13). 
Proof: 

From GASF in [11], we have (45)-(47), and 
 

 

 
11 1

1 1

k k k kk k

x
k k kk k k k

E

N d

 

 

    

 

x f x Y

f x x








              (51) 

  

  
 

1 1

1 1 1

1

1 1 11 1 1 1 1 1

11 1

1 1 1

1 1

k k k k

k k k k k k

k k

T
xx

k k kk k k k k k

T

x k x k kk k k k

T
kx T T x

x x k x kk k k k k k
k

T

kT T x
x kk k k k

k

E

E

N d N d

N d





 

  



       

 

  

 

     
     

 
   

 

  
   

  

 



  

   

 

 







P x x x x Y

f f Y

x
f f x f

x
f

 



  1
T

k kk k

P 

 

(52) 
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In (47), 

 
 

 

1

1 1

1 1

1

11, 1 1 1

11

11 1

1

1 1 1

k k

k k k k

k k k k

k k

xy T
k kk k k k k

T
x k k kk k

T
y

k x x k kk k k k

T
x

k x x kk k

kT x y
k x kk k k k k k

k

E Y

E

E

N d

N d



 









 

 



   



 



  

   
    
     



 
  

 







 

  

 

 

P x

f Y

f h Y P

f h x

x
f P









 






 

(53) 
 

Theorem 2: For system (1)-(3) and Assumption 1, the 
Gaussian recursive filter is given by 
 

11 1 1 1 1 kk k k k k k      x x K                      (54) 
 

11 1 1 1 1 1 1
xx xx T

kk k k k k k k k

       P P K Q K              (55) 

 

  1

11 1 1
xy

kk k k k
 

  K P Q                       (56) 

where, 

 1

1

1
1 11 1 1 1 1

1
k k

xy
k k

T
kx T x

k x kk k k k k k k k k k
k

N d N d





     





  
  

  
  

P

x
x h x K 



1k  , 1k

Q  1

x
k kN   and 1

x
k kN 
  can be seen in Lemma 1. 

Proof: 
From the projection theorem, we have 
 

11 1 1 1 1 kk k k k k k      x x K                     (57) 
where 

  1

11 1 1
xy

kk k k k
 

  K P Q                       (58) 
 
From (57), we have 
 

1 11 1 1 1
xy T

k kk k k k k kE 
    

   P x K Q                 (59) 
 

Substituting (56) and (58) into the covariance 1 1
xx

k k P , we 

have 
 

 
 

 

11 1 1 1 1 1

1 1 11 1 1 1 1

1 11 1 1

1 1 11 1 1 1

1 11 1 1 1

1 1

xx T
kk k k k k k

T
T

k k kk k k k k k k k

T
k kk k k k

T

k k kk k k k

xx T T
k kk k k k k k

kk k

E

E E

E

E

E

E

     

      

   

     

    

 

   
       

   
    

    



 

  





P x x Y

x x Y x K Y

K x Y

K K Y

P x Y K

K





 



 1 1 11 1 1 1 1

11 1 1 1 1

T T
k kk k k k k k

xx T
kk k k k k k





      

    

   
 

x Y K Q K

P K Q K

  (60) 

In (55), 
 

 1

1 1 1

1 1 1

1 11 1

1
1 1 1 1

1

k k

xy T
kk k k k k k

T
k kk k k k

T
x

k x kk k k k

kT x
k k k k k k k

k

E

E

N d

N d









  

  

  


   



   
   



 
  

 





 

 



 

P x y Y

x z Y

x h x

x
x 



                (61) 

 
Recursive computation of proposed algorithm: 

 

1.  Initialization( 0k  ): Initial values are 0x  and 0P ; The 

number of algorithm runs is set to M ; 1k  . 
While k<M 
2.  Let  0 min ,N N k , 

0 0k k N   , 
0 0k k N


 P Q , 

0 0k k N    and 
0 0k k N


 P R . 

Prediction: 

3.  (10), (11), and (12) are used to calculate 
1k k  , 1k k


P  

and 1k k


K . By using (13) and (14), 1k k


K  can be computed 

by 
0 0 11 k kk k N k k N

  
    K K K . 

4.  Compute 
1k kx , 1

xx
k kP , and 1k kK  through (45), (46), 

and (47). 
Correction: 

5.  Using (5) and (6) to calculate 1k   and 1k

Q . 

6.  (28), (29), and (30) are used to calculate 
1k k , 1k k


P , 

and 1k k

K . By using (31) and (32), 1k k


K  can be obtained 

by 
0 0 11 1 1 2 k kk k N k k N

  
       K K K . 

7.  Using (54), (55), and (56) compute 
1 1k k x , 1 1

xx
k k P  and 

1 1k k K . 

end while. 
 
4.  NUMERICAL IMPLEMENTATION 

The CKF [7] is omitted here. i , i , and i  represent 
sigma points set with suitable dimensions. 

Assuming that values before the k  epoch have been 
known, details of the numerical implementation are 
demonstrated as follows. 
 
Numerical implementation of Lemma 2： 

At first, rewrite (10) and (11) as follows 
 

1 k nk k n k k n k k n


     K                        (62) 
 

 1

T

k nk k n k k n k k n k k n
    

     P P K Q K             (63) 

 

Below, assuming 2k k  and 2k k

P  have been known, we 

calculate 1k k   and 1k k

P . 
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We define 
 

 
3 , 2 33

1 1

2 3 , 2 3 2 3

,

x
k k k k kk k

T
x xx

k k k k k k k

 



  

     

             

 P P

x P P


           (64) 

 
1)  Factorize 

1 1 1
T                                     (65) 

 
2)  Compute the cubature points 
 

 , 3

1 1, , 2 3

, 2 3

, 1,2, , 2
i k kx

ii k k k x
i k k

i n p


 

 
 

 
     
  





  


  (66) 

 
3)  Compute the cubature points after propagation 
 

   , 2 3 , 2 3 , 1, 2, , 2x x
i k k i k k i n p     f          (67) 

 

   , 2 3 , 2 3 , 1,2, , 2x x
i k k i k k i n p     h          (68) 

 
4)  (14) in Lemma 2 can be expressed as 
 

   
 

 
 

 

 
 

 
 

 
 

 
 

2

, 1 2 , 3 , 2 3
1

2

2, 3 , 2 3 1 2
1

2 2

, 3 , 2 3
1 1

2 2

2, 3 1 2 , 2 3
1 1

1

2

1

2

1 1

2 2

1 1

2 2

n p T
x x

k k k i k k i k k
i

n p T
x T

ki k k i k k k k
i

Tn p n p
x

i k k i k k
i i

n p n p
x

ki k k k k i k k
i i

n p

n p

n p n p

n p n p

 













    




    


 

  
 

 

    
 







 
     



 





 

 

P X

X K

X

X K









 

 

2 22
3

2 2 2 1 2
3

T

N T
T

k l kk k l k k l
l

N T
T

k k lk k l k k l k k
l

  

  

   


     



  
 

   
 

   
 





Q K Q K

S K Q K K



 

(69) 
 

Substituting (69) into , 1 2
x

k k kN
  , all values in , 1 2

x
k k kN

   

have been known. Then, we calculate (13). 
 

 
2 , 1 22

2 2

1 2 , 1 2 1 2

,

x
k k k k kk k

T
x xx

k k k k k k k

 



  

     

             

 P P

x P P


          (70) 

 
1)  Factorize 

2 2 2
T                                      (71) 

 
2)  Compute the cubature points 
 

 , 2

2 2, , 1 2

, 1 2

, 1,2, , 2
i k kx

ii k k k x
i k k

i n p


 

 
 

 
     
  





  


  (72) 

3)  Compute the cubature points after propagation 
 

   , 1 2 , 1 2 , 1,2, , 2x x
i k k i k k i n p     h           (73) 

 
4)   (13) in Lemma 2 can be expressed as 

 

   
 

 
 

 
 

 

2

1, 1 2 , 2 , 1 2
1

2 2

1 , 2 , 1 2
1 1

1 1 1
2

1

2

1 1

2 2

n p T
y x

kk k k i k k i k k
i

Tn p n p
x

k i k k i k k
i i

N T

k k lk k l k k l
l

n p

n p n p

 



  









    


 

   
 

   





 
     

 
  

 



 



P

S K Q K







  

(74) 
 

Substituting (74) into (12), we get 1k k


K , 1k k  , and 1k k

P . 

Numerical implementation of Theorem 1:  

1
x
k kN  , k , and k

Q  have been known at the k  epoch. 

1k k  , 1k k


K , and 1k k

P  have been calculated in Lemma 2. 

1
x
k kN 

  has been calculated in Lemma 1 at the last epoch. In 

1
x
k kN 

 , from (14), we have 
 

  
 

 

1 211 1 , 1 2
1

0 1
1

1 0 1
1

k k

T
kx x

k k xk k k k k k k
k

N T
T

k l kk k l k k l
l

N T
T

k k lk k l k k l k k
l

h N d 

  

  





    


  


   


 
   

 
   
 

   
 







P f K
x

Q K Q K

S K Q K K






  (75) 

 
From (72), we have 
 

   , 1 2 , 1 2 , 1,2, , 2x x
i k k i k k i n p     f          (76) 

 
Then, 

   
 

   
 

 
 

 
 

 
 

 
 

2

1 , 2 , 1 2
1

2

1, 2 1 , 1 2
1

2 2

, 2 , 1 2
1 1

2 2

1, 2 1 , 1 2
1 1

1

2

1

2

1 1

2 2

1 1

2 2

n p T
x x

k k i k k i k k
i

n p T
x

ki k k k k i k k
i

Tn p n p
x

i k k i k k
i i

Tn p n p
x

ki k k k k i k k
i i

n p

n p

n p n p

n p n p

 













   




   


 

  
 

 

   
 







 
     

 
     







 

 

P X

X K

X

X K









 

 

1 11
2

1 1 1 1
2

N T
T

k l kk k l k k l
l

N T
T

k k lk k l k k l k k
l

  

  

   


    


  
 

   
 





Q K Q K

S K Q K K



 

(77) 



 
 
 

MEASUREMENT SCIENCE REVIEW, 20, (2020), No. 2, 80-92 
 

88 
 

We define 

 1 1 1
3 3

1 1 1

,

T
xx x

k k k k k k

x
k k k k k k



 

  

  

  
   
     

 x P P

P P
               (78) 

 

 
1 11

4 4

1 1 1

,

xx x
k k k kk k

T
x

k k k k k k



 

 

  

             

 P Px

P P
               (79) 

 

1)  Factorize 

1 1 1
T

k k k k k k  P M M                           (80) 
 

3 3 3
T                                    (81) 

 

4 4 4
T                                     (82) 

 
2)  Compute the cubature points 
 

, 1 1 1 , 1, , 2ii k k k k k k i n     M x               (83) 
 

 , 1

3 3, 1

, 1

, 1, 2, ,2
x
i k kx

ii k k

i k k

i n p







 
     
  





  


   (84) 

 

 , 1

4 4, 1

, 1

, 1,2, , 2

x
i k kx

ii k k

i k k

i n m







 
     
  




 


  


    (85) 

 

3)  Compute the cubature points after propagation 
 

 , 1 , 1 , 1, 2, , 2i k k i k k i n   f                   (86) 
 

 , 1 , 1 , 1,2, ,2i k k i k k i n   h                    (87) 
 

   , 1 , 1 , 1,2, , 2x x
i k k i k k i n p   f             (88) 

 

   , 1 , 1 , 1,2, , 2x x
i k k i k k i n p   h              (89) 

 

   , 1 , 1 , 1,2, ,2x x
i k k i k k i n m   


f             (90) 

 

4)  Calculate mean and covariance in Theorem 1. 
According to (13), we have 
 

 

 
 

 
 

 
 

11 1 1

0
1

2

, 1 , 1
1

2 2

, 1 , 1
1 1

0

1

2

1 1

2 2

k k

T

ky T x
k xk k k k k k

k

N T

k k lk k l k k l
l

Tn p
x

k i k k i k k
i

TTn p n p
x

k i k k i k k
i i

k k k l

N d

n p

n p n p

 

  















  

 




 


 

 
 



  
   

  
 

  
 

 
    

  
        

 







 

 
x

P h

S K Q K

X

X

S K








 
1

N T

k l k k l
l

  
 



 
 
 

 Q K

(91) 

    

 

     

   

21 1

1 1 , 1 , 1
1

2 2 1

, 1 , 1
1 1

2( )
1

, 1 , 1
1

2( )

, 1 , 1
1

1

2

1 1

2 2

1

2

1 1

2 2

n
y T

k k k k kk k k k i k k i k k
i

Tn n

k ki k k i k k
i i

n m T
x

k ki k k i k k
i

n m
x

k i k k i k k
i i

n

n n

n m

n m n m

  



 



 







 

   




 
 

 

 




 
 

 
   

 
        





 



 









K P Q Q

Q

Q







 

 



  
2( )

1

1

T
n m

k


   
      

 Q

(92)
  

2

1 , 1 1 1
1

1

2

n

k kk k i k k k k k k
in   


  x K               (93) 

 

   
 

 
 

 
 

   
 

 

2 2 2

1 , 1 , 1 , 1 , 1
1 1 1

2

, 1 , 1
1

2 2

, 1 , 1
1 1

2

, 1 , 1
1

1 1 1

2 2 2

1

2

1 1

2 2

1

2

1

2

Tn n n
T

k k i k k i k k i k k i k k
i i i

n p T
x T

ki k k i k k
i

Tn p n p
x

ki k k i k k
i i

n p T
x T

ki k k i k k
i

i

n n n

n p

n p n p

n p

n p







    
  



 


 

 
 



 


 
   

 




 
     







  



 



P    









 

 

 

 

 
 2 2

, 1 , 1
1 1

1 1 1

1

2

T

Tn p n p
x

kk k i k k
i i

T T
k k kk k k k k k

n p

P



 

 

 
 

  

 
 
 
 

  
     

 

 

K Q K

 

 

 

(94) 
 
Numerical implementation of Lemma 3:  

 
At first, we rewrite (28) and (29) as follows 
 

1 k nk k n k k n k k n


     K                        (95) 

 

 1

T

k nk k n k k n k k n k k n
    

     P P K Q K            (96) 

 

Below, assuming 1 1k k   and 1 1k k

 P  have been known, we 

calculate 1k k  and 1k k

P . 

We define 
 

 
1 2 1, 1 21 2

5 5

1 2 1, 1 2 1 2

,

x
k k k k kk k

T
x xx

k k k k k k k

 



     

      

             

 P P

x P P


         (97) 

 
1)  Factorize 
 

5 5 5
T                                    (98) 
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2)  Compute the cubature points 
 

 , 1 2

5 5, 1, 1 2

, 1 2

, 1, ,2
i k kx

ii k k k x
i k k

i n m



  

  
 

 
     
  





  


   (99) 

3)  Compute the cubature points after propagation 
 

   , 1 2 , 1 2 , 1,2, , 2x x
i k k i k k i n m     f           (100) 

 

   , 1 2 , 1 2 , 1, 2, , 2x x
i k k i k k i n m     h           (101) 

 
4)  (32) in Lemma 3 can be expressed as 
 

   
 

   
 

 
 

 
 

   
 

2

1, 1 , 1 2 , 1 2
1

2

1, 1 2 1 , 1 2
1

2 2

, 1 2 , 1 2
1 1

2

1, 1 2 1 , 1 2
1

1

2

1

2

1 1

2 2

1 1

2 2

n m T
x x

k k k i k k i k k
i

n m T
x

ki k k k k i k k
i

Tn m n m
x

i k k i k k
i i

n m
x

ki k k k k i k k
i

n m

n m

n m n m

n m n m

 













     




    


 

   
 



    








 
     

 
   





 



P X

X K

X

X K








 

 

 

2

1

1

2 11 1
2

1

1 2 1 1 1
2

Tn m

i

N T
T T

k l kk k l k k l
l

N T
T

k k lk k l k k l k k
l

  

  







     




     




   
 

   
 







S K Q K

R K Q K K



(102) 
 

Substituting (102) into 1, 1
x

k k kN
  , then, we calculate (31). 

 

 
1 1 1, 11 1

6 6

1 1, 1 1

,

x
k k k k kk k

T
x xx

k k k k k k k

 



    

   

             

 P P

x P P


        (103) 

 
1)  Factorize 
 

6 6 6
T                                  (104) 

 
2)  Compute the cubature points 
 

 , 1 1

6 6, 1, 1

, 1

, 1,2, ,2
i k kx

ii k k k x
i k k

i n m


  

 


 
     
  





  


(105) 

 
3)  Compute the cubature points after propagation 

 

   , 1 , 1 , 1,2, , 2x x
i k k i k k i n m   h            (106) 

 
4)   (31) in Lemma 2 can be expressed as 

   
 

 
 

 
 

 

2

1, 1 , 1 1 , 1
1

2 2

, 1 1 , 1
1 1

1

1 1
1

1

2

1 1

2 2

n m T
y x

kk k k i k k i k k
i

Tn m n m
x

k i k k i k k
i i

N T

k k lk k l k k l
l

n m

n m n m

 



  









    


 

  
 



  





 
     

 
  

 



 



P

R K Q K







   (107) 

 

Substituting (107) into (30), we get 1k k

K , 1k k , and 1k k


P . 

 
Numerical implementation of Lemma 1:  

 

To calculate 1
x

k k

P  in 1

x
k kN 
 , from (105), we have 

 

   , 1 , 1 , 1,2, ,2x x
i k k i k k i n m   f            (108) 

 
According to (42) in Lemma 3, we have 
 

 

  

   
 

   
 

 

1

+1 +1

+1
+1 1 1, 1

+1, 1 +1, 1 1

2

, 1 , 1 1
1

2

1 , 1 , 1 1
1

, 1

1

2

1

2

1

2

k k

T
x x

k k k k

T
T

kx
k k xk k k k k

k

T T
k n kk k k k k k k k

n m T
x
i k k i k k

i

n m T
x

kk k i k k i k k
i

x
i k k

i

N d
x

n m

n m

n m

 



 











  

  



  




   






  
  

   
   
















 

P P

f K h

P P K

X

K X












 

 
 

 
 

 
 

 

 

2 2

, 1 1
1 1

2 2

1 , 1 , 1 1
1 1

1

1 1
1

1

1 1 1
1

1

2

1 1

2 2

Tn m n m

i k k
i

Tn m n m
x

kk k i k k i k k
i i

T
N T

T T
k l k nk k l k k l

l

N T
T

k k lk k l k k l k k
l

n m

n m n m





  

  





 

 
 

 

   
 



    




   


 
   

 
     

  
   

  

  
   

 

 

 





X
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Then, we define 
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1)  Factorize 
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1 1 1
T

k k k k k k  P M M                        (112) 

 
2)  Compute the cubature points 
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3)  Compute the cubature points after propagation 
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4)  The innovation and covariance can be computed as 
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Numerical implementation of Theorem 2:  

 
From Lemma 1, we have 
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From Theorem 1, Lemma 1, and Lemma 3, and substituting 
(119) into (56), we get 1 1k k K , 1 1k k x , and 1 1k k P . 

5.  SIMULATION 

The strong nonlinearity model [11] is as follows. 
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 1, 2, 3,cosk k k k kz x x x                        (121) 

 

  11k k k k k ky z z                            (122) 

 

0 1 1 2 2k k k ka a a                            (123) 
 

0 1 1 2 2k k k kb b b                             (124) 
 

The variable k  is zero-mean Gaussian white noise with 

variance 1. k  is random signal with Bernoulli distribution, 

and the probability  1 0.9kp     . 0a , 1a , 2a , 0b , 1b , 

2b  are set as 0.9 , 0.6 , 0.4 , 0.5 , 0.6 , 0.7 , respectively. The 

initial system state and filter state are set as 

 0 0.7 1 1
T

x   ,  0 0.7 1 1
T

x   , and 0 3 3P I  . The 

Error and RMSE defined in [16] are rewritten as follows 
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where  
,
s

i kx  and  
,ˆ s

i kx  represent the original state and estimated 

values at ths  Monte Carlo run. Simulations are carried by 50 
Monte Carlo runs. 
 

 
 

Fig.1.  The estimation of the state. 
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Fig.2.  The Error. 
 

 
 

Fig.3.  The RMSE. 
 

 
Fig.4.  Comparison of the Error. 

 

 
 

Fig.5.  Comparison of the RMSE. 

From Fig.1. to Fig.3., we can conclude that the derived 
algorithm can form a valid estimate. In Fig.1. to Fig.3., the 
estimated effect of the first state may be not very good, which 
is determined by the system, and it is consistent with the 
results of [10]. Fig.4.-Fig.5. are the comparison of the derived 
algorithm and the algorithm in [16] generalized based on 
EKF. Obviously, the derived algorithm can obtain higher 
estimation accuracy, which shows that it is necessary to 
design the nonlinear filtering algorithm for nonlinear systems 
directly compared to extending the conclusions of linear 
systems to nonlinear systems based on EKF. 
 
6.  CONCLUSION 

In this paper, considering finite-step correlated noises and 
packet loss, a nonlinear Gaussian filtering algorithm is 
derived, and subsequently, corresponding numerical 
realization is also given. By using a strong nonlinearity 
model, we verified the validity of the proposed algorithm. 
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