MEASUREMENT SCIENCE REVIEW, 20, (2020), No. 2, 80-92

$ sciendo '\ 1pASQUREMENT SCIENCE REVIEW £ SAV

- P 2

2 ¥e

ISSN 1335-8871 ’Q[t[ [lﬂ:g;
Journal homepage: https://content.sciendo.com ‘-%;r = S

Gaussian Recursive Filter for Nonlinear Systems with Finite-step
Correlated Noises and Packet Dropout Compensations

Li-Guo Tan!, Cheng Xu>*, Yu-Fei Wang?, Hao-Nan Wei®, Kai Zhao**, Shen-Min Song*

!Research Center of Basic Space Science, Harbin Institute of Technology, Harbin 150001, China

2Science and Technology on Complex System Control and Intelligent Agent Cooperation Laboratory, Beijing 100074, China
3Beijing Electro-mechanical Engineering Institute, Beijing 100074, China

“Control Science and Engineering, Harbin Institute of Technology, Harbin 150001, China

*Corresponding author: xch2000_1980@163.com, 1014553342@qq.com

This paper is focused on the nonlinear state estimation problem with finite-step correlated noises and packet loss. Firstly, by using the
projection theorem repeatedly, the mean and covariance of process noise and measurement noise in the condition of measurements before
the current epoch are calculated. Then, based on the Gaussian approximation recursive filter (GASF) and the prediction compensation
mechanism, one-step predictor and filter with packet dropouts are derived, respectively. Based on these, a nonlinear Gaussian recursive filter
is proposed. Subsequently, the numerical implementation is derived based on the cubature Kalman filter (CKF), which is suitable for general
nonlinear system and with higher accuracy compared to the algorithm expanded from linear system to nonlinear system through Taylor
series expansion. Finally, the strong nonlinearity model is used to show the superiority of the proposed algorithm.
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1. INTRODUCTION equation, which makes the process noise uncorrelated with
measurement noise [9]; GASF, based on a novel two-step
prediction method, which avoids calculating the mean and
covariance of process noise in the condition of the
measurement at the same epoch [10]; alternative framework
based on the state augmented by process noise and the
conditional Gaussian distribution [11]. In [11], it proves that
the algorithms in [9], [10], and [11] are equivalent in linear
systems. In [12] and [13], two alternative frameworks

developed. One is based on approximating a nonlinear propos.ed in [1.1] are mgdiﬁed and us.ed to design nonlinear
system, while another is based on approximating the Gaussian filtering algorithms, respectlve}y. In [‘14] .and [15],
probability distribution. For the former, the representative & MOIc complex form of noise is considered in linear and
methods are the extended Kalman filter (EKF) [4] and the nonlinear systems, respectively. In [16] and [17], finite-step
divided difference filter (DDF) [5]. For the latter, there are correlated noise is considered for optimal linear estimators
the Gauss-Hermite quadrature filter (GHQF) based on the and distributed fusion filter, respectively. It can be known
Gauss-Hermite quadrature rule [6], the unscented Kalman from [16] that finite-step correlation noise is a more general
filter (UKF) based on the unscented transformation [5], the  Case.
CKF based on the spherical-radial cubature rule [7], and For the problem of packet dropouts, three different
particle filter (PF) based on random sampling [8]. compensation mechanisms are proposed, respectively. In[18]
Apparently, CKF has a smaller computational burden than  and [19], based on the zero-input compensation mechanism,
GHQF and PF, has higher precision than EKF, and has higher ~ two different models are designed and corresponding
numerical stability than UKF. estimators are proposed for data packets arriving at the filter
For the systems with correlated noises, methods can be  within and without a sampling interval. To find an alternative
summarized into three categories, including decoupled measurement, the hold-input compensation mechanism is
framework based on the reconstruction of the pseudo-process  proposed. In [20], a white binary distributed random variable

In the past few years, networked control systems (NCSs)
have caused widespread concern [1]-[3], because they link
the cyberspace and physical space, including networks
among sensors, estimators, controller, and actuators.
However, as NCSs become more and more complex, various
non-ideal situations arise in the system model, such as
nonlinearity, correlated noises, packet loss and so on.

For a nonlinear system, two types of methods are
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is used to describe that the sensor measurement received by
the data processing center is from the current or last epoch. In
[21], due to the communication constraint, only one network
node is allowed to gain access to a shared communication
channel and the optimal weighting factor is introduced to
describe this situation. However, the optimal weighting factor
is not shown in [21], and an improved version of the
compensation mechanism is given in [22], where the
weighting factor is replaced by a matrix, and the simulation
results show the superiority of [22] compared with [21]. For
the reason that the latest information on measurements is not
used in hold-input compensation, the prediction
compensation mechanism is proposed and shows a better
filtering effect. In [23], the predictor of a lost packet is used.
In [16] and [24], based on the same compensation strategy,
delayed measurements, finite-step correlated noises and
packet loss are considered, respectively. In [25], fusion
algorithms for systems with multi-sensor measurement are
considered in which different sensors have different packet
loss rates.

Since finite-step correlated noise is widely present in
practical systems, and packet dropout is an inherent problem
in NCSs, it is very necessary to design estimation methods for
systems with finite-step correlated noises and packet loss.
However, for such problems, there is no unified framework
for nonlinear system in existing literatures. In this paper,
considering finite-step correlated noises and packet loss for
general nonlinear systems under the Gaussian framework, we
derive the nonlinear Gaussian recursive filter. It is worth
mentioning that other form correlated noises or the system
without packet loss is a special case of this article.

The rest of this paper is organized in the following order:
The problem formulation is shown in Section 2. The main
results are derived in Section3. The numerical
implementation is presented in Section 4. Section 5 gives the
simulation result. The conclusion is shown in Section 6.
Notation: |77| denotes the absolute value of 77. X
represents the mathematical expectation of x,  in the
condition of ) A where Y_ = L{yl,yz,. . ':.Vk-n} is a linear

space spanned by y , y,,---, y,_ - Forconvenience, we define

o h(xk ) —h (xk\/ ) >

, where, f and j take positive

Xy =X~ Xy, Gy =@, —By> h

—Lh

(7-1i)), -7

integers. g | p means that g is uncorrelated with p .

i Xl

2. PROBLEM DESCRIPTION

Assuming the following nonlinear dynamic system with
one-step compensation mechanism is considered:

Xt = f(xk)+rka)k 1

7, =h(xk)+uk

@

81

Vi =7l +(1_7k)zk\k-1 ()

where x, € R" is the state, z, € R” is the measurement,

¥, €R” is the measurement received by the data processing
center. Nonlinear functions f and p have been obtained.

T, is a known constant matrix with suitable dimension. |2
is a random variable satisfied with the Bernoulli distribution
and with probability p ( V= 1) =F [ 7k] =a,,
E[7k7k]:E[7k]:ak’ 0<q, <I.

Assumption 1: @, € R’ and v, e R" are the process and
measurement noises with zero mean and satisfied with

E[a)ka)lf—n} = Q,, > E[Ukvlirz} =R,
E[@o],]=5,.k=|

n?

where |n|=0,1--,N,. @ , =Q", R, =R,
Assumption 2: X, is the initial state and uncorrelated with
the process and measurement noises and satisfied with
Elx]=%,, E[(x,~%)(x, - %) | =P

In this paper, our goal is mainly to design the Gaussian filter
for the state y in the presence of finite-step correlated noises

and packet loss, namely
Xstsr = E[xk+1 |Yk+1]

T
Pk+1\k+1 = E[(xkﬂ T Xt )(xk+1 - xk+1\k+1) |Yk+1:|

3. GAUSSIAN RECURSIVE FILTER DESIGN
For the sake of clarity, the derivation process of the filter is
divided into the following three lemmas and two theorems.

Lemma 1: For system (1)-(3) and based on the Assumption
1, the innovation &, can be described by

—_ — x —]
Eir1 = Vi Jh(xkﬂ)Nkﬂ\kdxkﬂ Ok (5)
The corresponding covariance is as follows:
- - T
& _ X vv
0. = ak+1jh o (h S ) Nk+1\kdxk+1 T XL
~ X
~T w K+l
S d
e+t kY ke
e R Ui (©)
T
- X
~T XU k+1
T jh L k+1kd|: :|
Uk+1
where,
x _ . 00
k+llk N(xku’xku\k’ k+1\k)
peg XU
x P P
W _ N X | | e k+1lk k+1lk
k+l‘k - U ’ U ’ xXv r 122
ke kel (P/Hl\k ) k+1k
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n N,Ll‘k, X and P/:uk will be calculated in Theorem 1. where, N =min{k,N,}.

XU XU VU . .
In N, Yep, By and By, will be calculated in Lemma

ay fd I g ox wk
3' I)k,kfn‘kfnfl = ak—n I wk‘kﬂzfl (h Xnfin-1 ) Nk,kfn‘kfnfld X
k-n
Proof: ( N Tj
+a, | S, - K; 0., \K, .
Vi :E[yk+1 |Yk] ‘ 1;1 M=%k l( k=nlk ’)
13
:E|:7k+1zk+1 +(1_7/{+1)zk+1\k |Yk:| e (13)
=g = E|:h (xk+1 ) U, |Yk:| NI??Z—H‘I(—N—I =
= Ih (xk+1 ) Nlj+1\kdvk+l Ok o, - P,:‘U,fin,l Pk(f),f,n‘k,n,l
N ; , r
oL . _ _ . Kion I Xe-nfi-n-1 (Pk[j)lj—n‘k—n—l) I‘)kxfn\kfnfl
Substituting (7) into i = Vit = Vi yields (5).

Using (3) to rewrite &, we have
XX
where, X, and £Z,;_, | have been computed at k—n

Ept = Vi — Viap epoch. @, ,, and E;‘fi,,,l have been drawn in the process
=Vin%a T (1 ~Vin ) Lotk T Sreilk (8) of calculating @y, and E{T’:ﬁl .
=7Yin (zk+1 IR ):7k+1 (h T +Uk+1\k) o
I)k,k—n\k—n—l =

Then

J. @, ((i B Kk*n\kf"*lg"*"’lﬁ)

T ),
k
N> d
X ptlk-n—2 ) k,k—n—l‘k—n—Z
- X

N i T ,
+[Qn+l - Z K:\)k—lQ;—l (Klzu—n—l\k—l) ]Fknl

I=n+2

0. = E|:gk+lgz+l |Yk:|

= E|:(7k+1 (ﬁ o 'H}kﬂ\k ))(7k+1 (ﬁ

T
g F O )) |Yk:|

N T
12} & v T
TG [snﬂ - Z Kk\k—le—l (lkanfl‘kfl) JKknknl

T
_ I A ~ ~T I=n+2
- a"+1E|:h Tl (h Feetle ) |Yk :l * akﬂE |:U]‘+1"‘U"+1V‘ |Y]‘:| (14)
~ T ~ T
+ ak+1E|:h e Uk+1\k |Yk :| + ak+1E Ukﬂ\k (h Tl ) |Yk (9) Nliuzfnfl\kfnd -
T
_ ~ ~ x ) a) Pﬂ)(l} Pﬂ)X
_akﬂjh - (h m.u) Nk“‘kcbck+1 +ak+1PM‘k N { o, :|; klk-n-2 , kle-n-2 kk—n—1/k-n-2
X XX
Xeont | Xecnpiona | | Blision Pisuofpona

v fi

X
~T X0 k+1
Xl Uk+1\k Nk+1\kd
; Ui

T {I h

Lemma 1 is proved.

To get @ and P,:‘fil, because &, (” = 1,"',N) and

T

~T XU d k+1 A )

s Pt ket v 0; ,(n=1,--,N) have been known at the previous epoch,
k+1

we just need to compute K, (n=1---,N), which is
equivalent to the computation of Bct?,f;,,‘k_n_l (” =1,--,N )
Lemma 2: For system (1)-(3) and based on the Assumption ~ From (13) and (14), we know that all values in K ;Tk-n have

1, the estimation of @, condition on ¥,_; can be computed

N been calculated in K, . To get all Ky, (n=1---,N),
Yy

N we can process them in the following order,
Dy, = Z K, &, 10)  Kg > Ky, > K
N r Proof:
Pyl =0 - K ikn @i (K Ko ) (11) Using projection theorem repeatedly [27] yields
n=1 .
K, =Py (00,) (12) P = Oypona + LG >
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where,
® wy & -1
Kk‘kfn = })k,lffrz‘k—n—l (Qkfn ) (16)
Using the definition of covariance yields
ww T
I)k\k—l = E[(wk _wk\k—l )(wk _wk\k—l) |Yk—1:|
N T
= El:wk [a’k ~ Ope-n-1 szwkngknj 1 a7
n=1
N T
= I)k[\l;caiN—l - ZE[CO/{&:—M :| (Klf‘)kfn )
n=1
From (16), we have
I’k{t)/':;n‘kfnfl = E[wkglg—n:| = K/f\)k—angfn (18)
Because of @, LY, ,_,, we have
Oy = E[wk |Yk—N—1j| =0 (19)
ww r
Pilva= E|:wk (wk - wk\k—N—l) |Ykﬂ\/71:|
(20)

= E[wka’kT |Yk—N—1:| =0,

Substituting (18), (19), and (20) into (15) and (17) gets (10)

and (11).
In (16),
I)kt:f—n‘k—n—l = E[@k‘k—n—lyz—n‘k—nfl |Yk7r171:|

Y,

T
+Uk771‘k7n71) | k—n-1

F-nl-n-1

)

= aknE|:d’kknl (’;

T
= aknE|:a’kknl (h R ) |Yknl:|
(21)
~ ~T
+ ak—nE [wk‘k—n—luk—n‘k—n—l |Yk—n—1 :|
T
~ a,
_ ~ wx k
= ak—nj.a’k\k—n—l (h S ) Nk$knknld|: :|
xk—n
[
+ aknt)k,k—n‘kfnfl
In the following, we calculate B, and N, ;.
From Lemma 3, we have
kan‘kfnfl = Uk—n - kan‘kfnfl
niN (22)
— v
=0~ Z Kk—n\k—lgk—l
I=n+1

Because of @, Lv,_, (I > N) and from (18), we have

83

v _ ~ ~T
I)k,k—n‘k—n—l - E[mk‘k—n—lvk—n‘k—)kl |Yk7n71:|
_ ~T
= E[wkuk—n\k—n—l |Yk+1J (23)
N T
_ @ & v
- sn - z Kk\k—le—l (Kk—n\k—l)
I=n+1
In N,ﬁ_n‘k_n_l, based on Theorem 1, ﬂfx_n‘k_,,_l can be

computed as follows.

xk—n‘k—n—l = xk—n - xk—n‘k—n—l

-/ (xkiH ) T = (xk—ﬂ\kfn—z - kan\kfnfl‘c"k—nfl )
- (‘f - Kk*n\k—n—lykfnflﬁ)
-K

kﬂx‘kfnfl;/kfnfluk—nfl‘kfrfo

24

Y-n-ilk-n-2 +wk*ﬂ*1\k*ﬂ*2

x _ ~ =T
R{,k—n‘k—n—l - E[wk‘k—)l—lxk—n‘k—n—l |I,k—n—l:|
_ ~T
= E[wkxk—n\k—n—l |Yk—n—1J
r - - T
(f _Kk—n‘k—n—lyk—n—lh) -
=E| o, +Fk77171wk—n—1‘k—n—2 |Y/(*71*2

-K

kfn‘kfnfl}/kfnflvk—nfl‘kfnfl

T
Xe-n-1lk-n-2 ) |
T
r

k—n-1

Y,

k-n-2

=FE

}

o, ((i_kan\k—M?’k,n,lﬁ)

~T
+E |:wk wk—nfl‘k7n72 |Yk—n—2 :|

~T T
—o_, B |:wk Dkfnfl‘kfn—z |Yk7n72 :| Kk—n‘kfnfl
T
~ ~ ,
— x k
= J.wk ((f - kan‘k—nflakfnflh) Ywions ) k,knlkn2d|: }
Xhon-1
+ Pruw 1—~T —a P(uu KT
kk=n=1lk-n-2" k-n-1 k=n=17 k,k=n=1lk=n-2"" k—n|k-n-1
(25)
From (10), we have
Oy fpn-2 = Bopt = Oy 12
n+N (26)
_ 1)
=0, ~ Z Kk—n—l‘k—lgkfl
I=n+2
In (25), because of @, L &, (1 > N) , we have
1270) _ ~ ~
I)k,k—n—l\k—n—z = E[wk\k—n—Zwk—n—l\k—n—Z |Yk7n72:|
_ =T T
- E|:wk wk—nfl‘kfn—Z |I,k—n—2:| 27)

N T
=0, - 2 K:\)k—/Qlf—I (K:)—n—l\kfl)

I=n+2

B k- In (25) can be calculated like P, in

k.

(23), where 7 in P,:f),f_,,‘k_n_l need to be substituted by n+1.
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Lemma 3: For system (1)-(3) and based on the Assumption
1, the mean and covariance of v,,, in condition ¥, can be
computed by

N
— v
Uk+1\k - ZKkﬂ‘kﬂ—nng—n (28)
n=1
N r
vo _ v & v
Pk+1\k - RO ZKIchl\kH—anH—n (Kk+l‘k+l—n) (29)
n=1
K', .  =P” 0..) (30)
ktlk+l-n = T k+Lk+1-nlk—n \ Zk+1-n
where,
vy
I)kﬂ,kﬂfn‘kfn
T
~ I Uy
=t [Bry (R ) o d
k+1-n k+1k—n Xt 1onlkon k+1k+1-nlk—n
\ " \ x.., | GD
N-1 r
v & 12
ta.,,| R~ szH‘k—[Qkfl (Kkﬂ—n‘k—l)
I=n
vx
k+1k+1=nlk—n
12 1259
V., Uk+1\k—n Pkﬂ\k—n Pk+1,k+1—n\k—n
=N X ; X ’ v !
X XX
fetl=n k+1—n‘k—n (Pkﬂ,kﬂ—n‘k—n ) 1)k+lfn‘k7n
XX
where, X 1afton and Pk+1-n\k-n have been computed at
LU .
k+1—n epoch. s and P,M‘H have been drawn in the
: VU
process of calculating Vi and EM‘,(.

P VX

[N

J.Ukﬂ ((i - Kk“f,,‘kfn;/kfnﬂ)

T )
vx k+1
Fenff-n-1 ) Nk+l,k—n‘k—n—ld |:x

k-n
, N-1 A
v & @
+ s—(n+1) - z Kkﬂ‘k—leJ (Kk—n\k—l) kan
I=n+1

=n+

|

N-1 T
v & v T
Ty [Rn+l - z KkH\k—IQkJ (Kk—n\k—l) ijann
I=n+1
(32)
vx
k+1k=nlk-n-1
vV LX
Uk+1 Ukﬂ‘k—n—l k+l‘k—n—1 I‘,kﬂ.k—n‘k—n—l
=N X 5 H T
x vx XX
k=n k=nlke=n-1 (I‘)I(Jrl,k—n‘k—n—l ) I‘)k—n‘k—n—l

To get U,y and P,fl‘k , based on (31) and (32) and the
analysis process in Lemma 2, we can calculate the gain matrix
in the following order,

K; > K

k+1k=N-+1 k+1lk-N+2

v

A VTS
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Proof:
Using the projection theorem repeatedly yields

N
Vs = Vpapn z K:H‘kﬂ—ngkﬂfn (33)
n=1
and
v vy & -1
Kk+1\k+1—n = I)I(+1,k+lfn‘k7n (Qk+1—n ) (34)
Using the definition of covariance yields
LU T
Pk+1\k = E|:(Uk+1 O )(Uk+1 O ) |Yk:|
T
= E[Ukﬂ (U/m - Uk+1\k ) |Yk:|
N T (35)
=E| v, [Ukﬂ LT ZK:Hangkﬂnj
n=1
N T
vV T v
= IJkH\k—N - ZE[Uk+lgk+l—;y J (Kk+l‘k+l—n )
n=1
From (34), we have
Pku+yl,k+lfn‘k7n = E[Ulc+1£1cT+l—n] = K:ﬂ‘kﬂ—anirlfn (36)
Because of v,,, LY, , we have
Opipen = E|:Uk+l |kaN:| =0 37
VU ~T
Pk+1\k—/v = E|:Uk+luk+1\k—N |Yk—1v:| (38)
= E[UkHUkT-H |Yk—N :| =R,

Substituting (36), (37), and (38) into (33) and (35), we get
(28) and (29).
In (34),

P

k+1k+1-nlk—n

]

T
Y+ 1onft-n +U]‘+1*"V"") |Y;""

T
Y,
Xk\lfn‘kfu) | k=n

~ ~T
+ ak‘rlan |:Uk+1‘k—nuk+l—n‘k—n |Ykan :|

T
_ ~ vx
= akﬂfnjukﬂ\kfn (h|xk‘|,,,‘k,,, ) Nk+1.k+lnknd|:

Puu

k+1Lk+1-nlk—n

_ =~ =T
=E |:Uk+1‘k—nyk+l—n‘k—n

=, E |:6k+1kn (h

=a., E {%k,, (’1 (39)

Uk+l

|

xk+1—n

+ ak+1771

LU vx
NeXt’ we Calculate })kﬂ,kﬂfn‘kfn and Nk+1,k+lfn‘k7n .
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From (28), we have P dini i (42) can be calculated like P, Ay ko 10
o -v v (41), where 71 in Pk+1 k+1-nfi—n D€€d to be substituted by n+1.
k+1=nlk—n k+1-n k+1-nlk—n
wiN_1 (40) Theorem 1: For system (1)-(3) and Assumption 1, the
=0, 2 K :an\ 16 Gaussian recursive one-step predictor is given by
I=n

X = X + Kk+1\kgk (45)

Because of v, L &,_, (/>N -1) and from (36), we have
By =Pl — Ky Qi K k+1\k (46)

LU ~ ~T
I)k+1k+1 n‘k n E|:Uk+l‘kﬂzvk+lfn‘k7n Yk—n:|
Xy s\7!
= E|:Uk+lvk+l nlk=n kan] (41) K =P g 1(Qk) (47
T
=R, ZKkﬂ\k 1Dk (Kkﬂ—n\k—/) where
Xkt = ff(xk )le\k—ldxk +rkwk\k—l (48)
Nk+1 k+l-nlk—n > based on Theorem 1, Pk+1 Jetl-nfk—n €T be B . T
calculated as follows. ka:l\k 1 J.f B (f XHH) Nlj\k—ld”vk
vx ~ ~T +J‘i‘ FTN,\»(U d xk

Pk+1k+1 nlk—n = E|:Uk+1\k—nxk+1—n\k—n |kan:| Fil-1 k‘k 1 ki1 @, (49)

= E|;Uk+1xk+1~ - kan:| ~ ) Ii‘
(f_KkJrlfn\kfn}/k*"h)
=E|v., +Fk—na~)k—n‘k—n—l |

-K

+

T
X
T ATx0 k oo T
Wl k\k 1F Nk\k 1d|:w }] +rkPk\k 1F
k

k-1 (

X

XU k wy

+ak_[f i k\k lNk\k 1d|:l) :|+rk1)kk I
k

Ne=nlke-n-1

Y,

k-n-1

T
a; _[ f g ) Nl;\k—ldvk

kst=nlh=n? k-nCk—nfp—n-1 K

—_ € -l
ke T k

r » - T
=E| v, ((f_KkJrlfn‘kfn]/kfnh) XH‘A,M) |Yknl:|
+E[Uk+1a’ - na Jl"f "

~ T
- ak—nE|:Uk+IUk7n\k—n—l |Yk—n7 i|Kk+1 nlk=n

- .[Uxm ((i - Kk+lfn\k*"a"’”il)

(50)

In (45)-(49), &,, 0O, N,f‘k_l, and Nk‘kl have been

computed at the last epoch. In N,f‘[,f_l s D k‘k_l ,and ka‘,[fl

v,
ox e+l . -
xk,”\m,,x) Nkenfonad { } are calculated in Lemma 2. In K.y, F"; can be obtained

xk—n
o oo from (13).
+ P kel T = P K nlk=n Proof:
(42) From GASF in [11], we have (45)-(47), and
From (10), we have
X1 = E[f(xk )+T |Yk—1] 1)
Ot = Dpon = Oy = If(xk k‘k dx, +T o, it
¥ 43)
=, & xx
. I=n+1 et et P/f+1\k 1 :E[(xk+1 _xk+1\k—1)(xk+l _xk+1\k—1) |Yk—1:|
In (42), because of v,,, L@, , (!> N—1), we have :E[(f e +I,d, i 1)(f e +T0, (= 1) |Yk1}
12} ~ ~T J. ( ) dx +J‘f rTNxm d xk
L nlk—n—1 E|:Uk+l\k—n71wk—n\k—n—l|Y/f*n*1:| it i1 "V‘ -1 it "V‘ ! k=1 o,
_ T
_E|:Uk+1w nlk—n— l| k—n— lj| (44) &' FTNM] d X, +1_ poo FT
T i1 ‘k 1 K|ke-1 ) kT k-1
n+1 Z Kkﬂ\k 1QIf—1 (K/iu nlk— /) ‘
I=n+1 (52)
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In (47), In (55),
P” =F|x ey xv - =
K1, k|1 |: k+1le-1€k | k 1:| Pk;l‘k = E|:xk+1\ky{+1\k |Yk:|
j— s it T ~ ~
N E[(f Kl +rkwk\k*1 )g" |Y"*1:| = ak+1E|:xk+l\kz1{+l\k |Yk:|
7 7 ~ r wy = A d X (61)
= O!kE[f i (h Xl +Uk‘k71) |Yklj|+rk1)kk)l = ak+ljxk+1\k (h Tk ) Nk+1\kdxk+1
- - o -~ w X1
= akjf e (h . ) N,‘(‘kildxk +ak+ljxk+1kuz+1ka+lkd|: }
k-1 Kk Uk+1
7 ~ X0 X %) . . .
+ akj S D,(T‘k,lN i L)k } +D Py Recursive computation of proposed algorithm:
k
(33) 1. Initialization(k = 0): Initial values are x, and P,; The
Theorem 2: For system (1)-(3) and Assumption 1, the number of algorithm runs is setto M ; k=1.
Gaussian recursive filter is given by While k<M
X = Xt KB (54) 2. Let N, =min(N,k), Doy, =D0> Pyl =@
. Ui, = Vo and Pk“’,‘:fNU =R,.
I)k+l\k+1 T e — Kk+1\k+1Qk+1Kk+l\k+l (55) Prediction:
L 3. (10), (11), and (12) are used to calculate @, ,, L
K =P ’ 56 : ) ©
e et = L (Qk+1 ) (56) and K,f‘k_l - By using (13) and (14), K}, , can be computed
xy‘ _ by K}f‘)kaD - K:\IHVDH > KZ\)JH :
k+1k
) i , . X, 4. Compute x,,, . FZy . and K, through (45), (46),
Ay ka+1\k (h Yo ) NI;+1\k¢vk+l + _[Kk+1k0k+1kN1;r+1kd|: :| and (47).
i . . ol Correction:
Sy Qi Nk+1\k and Nk+1\k can be seen in Lemma 1. 5. Using (5) and (6) to calculate ¢,,, and Q7 .
Proof: 6. (28), (29), and (30) are used to calculate v, , P,:fl‘k,

From the projection theorem, we have
and K}, . By using (31) and (32), K/fﬂ‘k can be obtained

+k *
Xpoent = X T Kk+1\k+1£k+1 (57) ) | ) )
where by Kk+l\k—NU+l - Kk+1\kﬂvu+z > K/m\k :
, s\l . -
Ko =Py (QM) (58) 7. Using(54), (55), and (56) compute x,_,, . P, and
K .
From (57), we have gl‘k;]
end while.
Xy = T r
})kil\k = E|:xk+1\kgk+l:| =K @ia (59)

4. NUMERICAL IMPLEMENTATION

Substituting (56) and (58) into the covariance 17?:1‘“1, we The CKF [7] is omitted here. ¢;, ¢;, and & represent
sigma points set with suitable dimensions.

have
Assuming that values before the & epoch have been
w ool % known, details of the numerical implementation are
Feopen E[xk“‘k”xk”‘kﬂlyk ] demonstrated as follows

T
- % 37 %
- E|:xk+1\kxk+1\k |Yk+1 j| _E[xkﬂ\k (Kk+1\k+1£k+1) |Yk+1:|

- E|:(Kk+1\k+1gk+1 )"2;1% |Yk+1 :|

Numerical implementation of Lemma 2 :
At first, rewrite (10) and (11) as follows

— @
El K K r Y (60) Oy = Opp_p +Kk\/c—n£k—n (62)
+ k+1\k+1£k+l k+1\k+1£k+1 | k+1
T
_ XX = T T oo _ o) _ 2 & 2] 63
= Tklk E|:xk+1\k€k+1 |Yk+1JKk+1\k+1 Pk\k—n Pk\k—n—1 Kk‘k—an—n(Kk‘kfn) (63)
Ky E| T Vi |+ K OF K .
fellfe+1 k1 k+1\k| k1 k+1\k+1Q"+1 fellfe+1 Below, assuming @, and P,:";:iz have been known, we
_ px & T
= Thlk Kk+l\k+1Qk+1Kk+l\k+l calculate a)k‘,(fl and }7:";:’11 .
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We define
_ a’k‘k,3 _ Pka\;iz I)k[,ulf—z\k%
rl - X ’:1 - wx r xx (64)
k=2[k-3 (I)k,/;—Z\k% ) I’I;—Z\k—}
1) Factorize
B = lelr (65)

2) Compute the cubature points

@
Xi,k\k-s
X
X[,k—Z‘k—3

3) Compute the cubature points after propagation

x _
ik k=2k-3

]:zlg +f17i =l,2,--',2(l’l+p) (66)

X

Hi g3

:f(Xikiz‘k%),i=l,2,--~,2(n+p) (67)

X
G ko3

=h(X;ﬁ,‘72‘k73),i:1,2,--~,2(n+p) (68)

4) (14) in Lemma 2 can be expressed as

2(n+p)

S'x:

iklk=3
i=1

wx _ 1
kk-lk-2 — m

1 2(n+p) . .

2(n+p) Z Xi,k\k—3ak—2 (O-}.kfz\kfs
i=1

1 2(n+p)

2(n+p) Z X

ik|k-3
i=1
1 2(n+p)

2(n+p) Z X

ik|k=3
i=1
N
+ (Qz - Z
1=3

X

(ﬂx,k—Z‘k—S

i

f

k-1lk-2

2(n+p)

o %

X

ﬂi,k—Z‘k%

T
_ J+
2(n+p) r
X
O O, k23
i

1
——K
(2(’1 N p) k=1k-2
K(U

T
k\k—lefl (Kk—Z\k—l> ]FZZ

N ) N T
0, [sz - sz\klekfl (kaz‘kfl ) )Kkrlkz
=3
(69)
Substituting (69) into N,ff;_l‘k_z , all values in N,:'Z_l‘k_z
have been known. Then, we calculate (13).
_ a’k‘k,z _ Pka\;:u—z Pk(,ulffl\kfz
rz - X S = ox T XX (70)
k1k-2 (Pk,kfl\k—z ) Pkfl\kfz
1) Factorize
B, = Ezzg (71)

2) Compute the cubature points
(o}
xor _ Xi,k\k-z

ikk=1k-2 7 | rx
ik=1lk-2

]:Eﬁ+fwhﬂlfw2@+P)(n)
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3) Compute the cubature points after propagation

X
O koife—2

=h(szfl‘kiz),i:l,2,~~~,2(n+p) (73)

4) (13) in Lemma 2 can be expressed as

wy 1 2(n+p) 2 X T
B s = 2(n—+p) 2:1: X 2 (o-i,k—l\k—2)
1 2(n+p) 1 2(n+p) r
- _— X _— *
Ay 2(n+p) ; = 2(n+p) ; O mifp-2

N ) T
T [Sl - ZKWHQk—I (kal\kfl) j
1=2
(74)
Substituting (74) into (12), we get K/?‘)k,l, @y, and B(Tﬁl )

Numerical implementation of Theorem 1:

N/‘:‘kfl, g,, and Q; have been known at the k epoch.
Dy, K,ET,{_I , and P,{T;fil have been calculated in Lemma 2.

N,f";_l has been calculated in Lemma 1 at the last epoch. In

N,f‘[,f_l , from (14), we have
wx 7 7 g wx a)k
I)k‘]kl - J.a’k ((f B K]“k’lfk*lh) Fe-k-2 ) Nk.k—l\k—zd |:x :|
k-1

N .
> K 05

I=1

(2
Kk\k—l

(75)

+[Q0 -

N
~ % (so - ;K;kaszg—I (

J e,

/)

)oi=12,-,2(n+p)

KT

klk—1

KU

Kl

From (72), we have

/‘li)fk—l\k—z = f(X;'\.,k—l\k—Z (76)
Then,

1 2(n+p)

Z Xit,uk\k—z (ﬂi'tk—l\k—z

i=1

wa - -
Mt 2(n+p)

1 2(n+p)
X[/J
2(}1 + p) z

iklk-2
i=1
1 2(n+p)

z Xﬁk‘k*Z

i=1

i

T
X
(Kk\k—lakfl o’i,k—l‘k—Z )

2(n+p)

T
Z ﬂzkfl\k—z ]

2(n+p)

1 2(n+p)

1
+2(n+p) P [2(n+p)

N - N,
+[Q1 _szikazQL/(K;”,l‘k,,) ]Fkl

=2
N T
O [Sl _EKZ\)/HQ;«C—I (Klt)—l\kfl) J

2(n+p)

X
Z Kk\k—lak—lo-i,k—l\k—l

i=1

Xw

i klk=2

JT

KT

Klk-1

(77)
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We define
1:'3 _ kit 2, = Pk\k 1 (Pk\k 1) (78)
| Pepe-t | Pka\;: 1 })k(‘l;cwl
- _xk\k—l | - P"T’: ! BfTZ
F4 - 1 i w \ vo (79)
L7kt | (Pk\k 1) Pk\k 1]
1) Factorize
By =My My, (80)
2, =33 81)
B, = 2425 (32)
2) Compute the cubature points
Xi,k\k-l = Mk\k—lgi X si=10,2n (83)
X0 Xik‘k_l -
XMW1 =l =3¢ +1"3,1=l,2,---,2(n+p) (84)
i kJe—1
w0 X;‘Y,k\k—l = .
X = - =2,( +T,,i=12,--2(n+m) (85)
i, klle—1
3) Compute the cubature points after propagation
Hige = f(X[,k\k—l)’i =1,2,--,2n (86)
8 s = (X )i =1,2,0,2n (87)
e :f(sz‘k,l),i:1,2,“',2(n+p) (88)
5;/{\/(71 :h(Xjk\k 1) i:1,2,---,2(n+p) (89)
By = (X )i =1.200,2(n+m) (90)

4) Calculate mean and covariance in Theorem 1.
According to (13), we have

T
X
Pk\Ayl = (J.h T k\k N 16{0)1({}]
T
+o [S ZKk\k Qi /( e /) j

T
-—a, | ——
k 2(n+p) - zk\kl iK1
2(n+p)

1 6 1 2(n+p) r
- A * A X
ak 2(n + p) 12:1: i klk—1 2 (}’l + P) P iklk-1
. v T
+o [S ZKW 19 (Kk\lﬂ) ]

Oon

@y 1 & T £\7!

Kk+1\k :ak( kPk\k 1)(Qk) +a, (E;”i,kklai,kkl)(Qk)
1 2n T . =
[ S50 ](Qk)

1 2(n+m) VJ
+akm 12:1: zk\k 1( i klk— 1) (Qk)
1 2(n+m) . 1 2(n+m) . T o
-, [2(n—4—rn) ; A g1 (2(n—+m) 2. X e 1} ](Qk)

92)

1 2n
xk+1\k = Ezﬂi,k\k—l +kak\k—1 +Kk+1\k8k (93)
i=1

l 2n l 2n 2n T
Pk+1\k = E;ﬂi,k\kflﬂfk\k—l _E;ﬂi,k‘kfl [ zﬂ, = 1)
1 2(n+p)
Z(n +p) :

1 2(n+p) 2(n+p) r
YA Z ﬂi,k\k—l Z rX; s

2(”+P) i1

+ (ka\/ﬁl )TFZ

X
Hi it

2(n+p) r
FT
n+p ; /‘lxk\k 1( ik~ 1)
+
2(n+p) 1 2(n+p) r
Z ﬂx Jle—1 rkXi,k\k—l
n + p i=1 ) i=l1
+kakt\';:olrr k+1\ka k+1\k
(94)
Numerical implementation of Lemma 3:
At first, we rewrite (28) and (29) as follows
Oti-n = Vg +Kk\k nEh-n 9%5)
vL vV T
Pk\k n Pk\k -1 k\k an n( k- n) (96)

Below, assuming Uy and B +1\k , have been known, we

calculate Uy and P, +1\k

We define
_ U,M‘k,z _ I)klirul\l‘ 2 I)l‘uflk k-2
FS - X S5 = vx T xx (97)
k=1fe-2 (P/m k=1[k— 2) I’k—l\k—z
1) Factorize
B, =220 (98)
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2) Compute the cubature points

v

Xi Je+1k-2
X

Xz k=12

3) Compute the cubature points after propagation

vx
ik k-Tk—2 T

}:ng +T,i=1,2(n+m) (99)

2(n+m)

/‘l;\:k—l‘k—Z = f(Xik,l‘k,z)si = 1725"'a (100)

XY

i k=1lk-2

Gf,kfukfﬁh( )i—l,2,--~,2(n+m) (101)

4) (32) in Lemma 3 can be expressed as

o 1 2(n+m) ) i r
P -1 :m 12:1: Xi,k+l‘k—2 (ﬂi,k—l‘k—2)
n+m T
n+m 121: zk+1\k 2( K1 P 10',k 1 2)
1 2(n+m) ) 2(n+m) r
_m 2:1: Xi,k+1\k—2 Z ﬂzk k-2
1 2(n+m) ) 1 2(n+m) . !
+m 2,1: X str mlfﬂmakq Z; O, 2
r T
+[S2 _ZKliil\klelffl (K/ZU 1~ /) jrkl
1=2

KT

klk-1

N-1 ‘
0y [Rz _[Z;Klil‘k—lQ/;/ (K:—l\k /) J

(102)

Substituting (102) into N, 1> then, we calculate (31).

— U,Hl‘k,l _ I)klirvl\k 1 I)klirxl k-1
F6 - X i vx r xx (103)
ki1 (I)k+1 klk— 1) Pk\k 1
1) Factorize
E,=Z.2! (104)

2) Compute the cubature points

:[X

2
ox ik+k—1
i k+1,klk-1 X

Ik‘k 1

]:zﬁgi +T,i=1,2,+-,2(n+m)(105)

3) Compute the cubature points after propagation

=h(X 2(n+m) (106)

)552172’...,

X
o’i,k‘k—l

4) (31)in Lemma 2 can be expressed as

&9

v 1 2(n+m) ) ) ;
P A1 Zakm Z D SR (O-i,k\kfl)
=
1 2(n+m) 2(n+m) T
_akm ; X;),kﬂkl( ; O'k‘k IJ (107)

+ak( ZK T /( K- /)Tj

Substituting (107) into (30), we get K H‘k, Vo s and P, kﬂ‘k

Numerical implementation of Lemma 1:

To calculate P,fl‘k in N,ffl‘k , from (105), we have

X

Hi i X;

= f (X )i =122 (n 4 m) (108)

According to (42) in Lemma 3, we have
=)

_ J.Uk+1((i_Kk+1\kak’;)
r;

qu

k+lk

PU\

K+
T

T
NUX
Chk-1

k+1,klk-1
T
Kk+1\k

d{vkﬂ}
X

v
Pk+1 Jle=1

Pu[u

k+1klk-1

2(n+m) r
Z ﬂ k|k—1 ( k lkfl)
n+m P i k| i+

2(n+m)

Z K, 0 1(

e

2(n+m) 1 2(n+m)
k\kl 2(n ) 121:

1

_ XY
2(n+m

ik+1k-1

)T
2(ntm)

> X

i=1

n+m

7y
n+m ; i k-1

v
i k+lk-1

JT

1
ST i k-1

2 n+m)

+( STl

(ak[ y l +1\k 0F /(

k+1\kak Z

o i
1)

JT

KU

K|kt
(109)
Then, we define

B xk+1‘k - I)kjirxl‘k I’k‘fl‘k
o R =t (110)

1l (Pkﬂ\k ) Pk+1\k

1) Factorize

E,=x.37 (111)
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Pk+1\k - Mk+1\kMk+1\k (112)

2) Compute the cubature points

> o _
X { . M]:% +Tpi=122(nkm) (113)

ik+1k

Xi,k+1\k =Mk+1\k;i +xk+1\k’i=1""’2n (114)
3) Compute the cubature points after propagation
Otk :h(Xik“‘k),i:1,2,~--,2(n+m) (115)
O ksik :h(Xi,kﬂ\k)’i =1,2,-,2n (116)
4) The innovation and covariance can be computed as
1 2n
Eri1 = Vi — E;O.i,kﬂ\k L (117)
2n r
Qi =y Ego—i,kﬂ\ko—i,kﬂ\k
2 2 T
_ak+1 Z i k+k [ g; k+1kJ + ak+1Pk+1\k
=1 i=1
2(n+m) T
T, m . o, e[k (Xi,ku\k)
1 2(n+m) 1 2(n+m) T
O, ,——— o’ — XY
k+1 2(n + m) ; ik+1lk 2(]’[ + m) p ik+1lk
T
1 2(n+m) i , T
+ak+1 (2(’1 N m) ; O-i,k+1\k (Xi,kﬂ\k )
T
1 2(n+m) 1 2(n+m) r
-a,, | ———= o’ —_— Xy
k1 2(n+m) ; i+ 2(n+m) ; i k1K
(118)

Numerical implementation of Theorem 2:

From Lemma 1, we have
2n

1
E ; X, Je+llk T/m\k
1 2n 1 2n r
Ty E z Xi,ku\k 0 Z O, ksl
i=1

i=1

th

ki = P

2(n+m)

T
+ak+l z X ek ( i k1lk )
2(n+m) 1 2(n+m) r
-a X ., ——— XY
k 1 k+1
+ IZ ik+1k + 2(n+m) ; ik+1]k

(119)

From Theorem 1, Lemma 1, and Lemma 3, and substituting
(119) into (56), we get Kk+1\k+1 > Xesifert 5 and P, klfk+1 -
5. SIMULATION

The strong nonlinearity model [11] is as follows.

. 2
X 3sin (sz,k) 0.1
X =| X4 X +e "% 110 |+] 0.1 |, (120)
X3 401 0.2x,, (xz’k +x3’k) 0.1
Ze = Cos(xl,k)+x2,kx3,k TU, (121)
Vi :7kzk+(1_7k)zk\k-1 (122)
@ = agiy, +ady,  +ayg, (123)
v =byy + b b1y, (124)

The variable 77, is zero-mean Gaussian white noise with
variance 1. 7, is random signal with Bernoulli distribution,
and the probability p(7, =1)=a =09 . a,, a,, a,, b,, b,
b, are setas 0.9, 0.6, 0.4, 0.5, 0.6, 0.7, respectively. The
system and filter state are set as
%=[-07 1 1], % =[-07 1 1], and B =1, The
Error and RMSE defined in [16] are rewritten as follows

initial state

N
Errorf =— 3 (x) = %)) 1<k <50,i=1n  (125)
s=1
2
RMSE! = ~5) 1<k <50,i=1n  (126)
where xl(‘k) and fcl(‘k) represent the original state and estimated

values at sth Monte Carlo run. Simulations are carried by 50
Monte Carlo runs.

Estimation of state

o 5 10 15 20 25 30 35 40 45 50
Time step

Fig.1. The estimation of the state.



Error of state

RMSE of state

RMSE of state

Error of state
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- ‘\‘ Is ’\/\‘- - '/\/ SN R e \;
'Y ~
/
5 10 15 20 25 30 35 40 45 50

Time step

Fig.2. The Error.

P

\ P
N ~ N
gy Sed) Lo v Y WA N S,

5 10 15 0 25 30 35 40 45 50
Time step

Fig.3. The RMSE.

5 10 15 20 25 30 35 40 45 50
Time step

Fig.4. Comparison of the Error.

5 10 15 20 25 30 35 40 45 50
Time step

Fig.5. Comparison of the RMSE.
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From Fig.1. to Fig.3., we can conclude that the derived
algorithm can form a valid estimate. In Fig.1. to Fig.3., the
estimated effect of the first state may be not very good, which
is determined by the system, and it is consistent with the
results of [10]. Fig.4.-Fig.5. are the comparison of the derived
algorithm and the algorithm in [16] generalized based on
EKF. Obviously, the derived algorithm can obtain higher
estimation accuracy, which shows that it is necessary to
design the nonlinear filtering algorithm for nonlinear systems
directly compared to extending the conclusions of linear
systems to nonlinear systems based on EKF.

6. CONCLUSION

In this paper, considering finite-step correlated noises and
packet loss, a nonlinear Gaussian filtering algorithm is
derived, and subsequently, corresponding numerical
realization is also given. By using a strong nonlinearity
model, we verified the validity of the proposed algorithm.

REFERENCES

[11 Zhao, Y.B., Kang, Y., Liu, G.P., Rees, D. (2011).
Stochastic stabilization of packet-based networked
control systems. International Journal of Innovative
Computing, Information and Control, 7 (5), 2441-2455.

[2] Chen, G., Xia, J.,, Zhuang, G., Zhao, J. (2018).
Improved delay-dependent stabilization for a class of
networked control systems with nonlinear perturbations
and two delay components. Applied Mathematics and
Computation, 316, 1-17.

[3] Zhang, H., Shi, Y., Wang, J., Chen, H. (2018). A new
delay-compensation scheme for networked control
systems in controller area networks. I[EEE Transactions
on Industrial Electronics, 65 (9), 7239-7247.

[4] Bar-Shalom, Y., Li, X.R., Kirubarajan, T. (2004).
Estimation with Applications to Tracking and
Navigation: Theory Algorithms and Software. John
Wiley & Sons.

[5] Nergaard, M., Poulsen, N.K., Ravn, O. (2000). New
developments in state estimation for nonlinear systems.
Automatica, 36 (11), 1627-1638.

[6] Tto, K. (2000). Gaussian filter for nonlinear filtering
problems. In 39th IEEE Conference on Decision and
Control. 1EEE, 2, 1218-1223.

[7] Arasaratnam, 1., Haykin, S. (2009). Cubature Kalman
filters. IEEE Transactions on Automatic Control, 54
(6), 1254-1269.

[8] Doucet, A., Godsill, S., Andrieu, C. (2000). On
sequential Monte Carlo sampling methods for Bayesian
filtering. Statistics and Computing, 10, 197-208.

[9] Chui, C.K., Chen, G. (1989). Kalman filtering with real
time applications. Applied Optics, 28, 1841.

[10] Wang, X., Liang, Y., Pan, Q., Yang, F. (2012). A
Gaussian approximation recursive filter for nonlinear
systems with correlated noises. Automatica, 48 (9),
2290-2297.

[11] Chang, G. (2014). Alternative formulation of the
Kalman filter for correlated process and observation
noise. IET Science, Measurement & Technology, 8 (5),
310-318.



[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

MEASUREMENT SCIENCE REVIEW, 20, (2020), No. 2, 80-92

Huang, Y., Zhang, Y., Wang, X., Thao, L. (2015).
Gaussian filter for nonlinear systems with correlated
noises at the same epoch. Automatica, 60, 122-126.
Yu, H., Zhang, X.J., Wang, S., Song, S.M. (2016).
Alternative framework of the Gaussian filter for non-
linear systems with synchronously correlated noises.
IET Science, Measurement & Technology, 10 (4), 306-
315.

Tian, T., Sun, S., Li, N. (2016). Multi-sensor
information fusion estimators for stochastic uncertain
systems with correlated noises. Information Fusion, 27,
126-137.

Zhao, K., Li, P., Song, S.M. (2018). Gaussian filter for
nonlinear stochastic uncertain systems with correlated
noises. IEEE Sensors Journal, 18 (23), 9584-9594.
Sun, S.L., Tian, T., Lin, H.L. (2016). Optimal linear
estimators for systems with finite-step correlated noises
and packet dropout compensations. /EEE Transactions
on Signal Processing, 64 (21), 5672-5681.

Tian, T., Sun, S.L., Lin, H.L. (2019). Distributed fusion
filter for multi-sensor systems with finite-step
correlated noises. Information Fusion, 46, 128-140.
Sun, S.L., Wang, G.H. (2014). Modeling and estimation
for networked systems with multiple random
transmission delays and packet losses, Systems &
Control Letters, 73 (12), 6-16.

Sun, S.L. (2013). Optimal linear filters for discrete-time
systems with randomly delayed and lost measurements
with/without time stamps. [EEE Transaction on
Automatic Control, 58 (6), 1551-1556.

92

[20]

(21]

[22]

(23]

[24]

[25]

[26]

Sun, S.L., Xie, L., Xiao, W., Soh, Y.C. (2008). Optimal
linear estimation for systems with multiple packet
dropouts. Automatica, 44 (5), 1333-1342.

Zhang, W.A., Yu, L., Feng, G. (2011). Optimal linear
estimation for networked systems with communication
constraints. Automatica, 47 (9), 1992-2000.

Ma, J., Sun, S.L. (2019). A general packet dropout
compensation framework for optimal prior filter of
networked multi-sensor systems. Information Fusion,
45, 128-137.

Silva, E.I., Solis, M.A. (2013). An alternative look at
the constant-gain Kalman filter for state estimation over
erasure channels. /EEE Transaction on Automatic
Control, 58 (12), 3259-3265.

Ma, J.,, Sun, S.L. (2017). Linear estimators for
networked systems with one-step random delay and
multiple packet dropouts based on prediction
compensation. /ET Signal Processing, 11 (2), 197-204.
Ding, J., Sun, S.L., Ma, J., Li, N. (2019). Fusion
estimation for multi-sensor networked systems with
packet loss compensation. Information Fusion, 45, 138-
149.

Anderson, B.D.O., Moore,
Filtering. Courier Corporation.

J.B. (2012). Optimal

Received October 10, 2019
Accepted April 30, 2020



