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Velocity is an important parameter for fluid flow characteristics in profile logging. Particle tracking velocimetry (PTV) technology is often 
used to study the flow characteristics of oil wells with low flow velocity and high water cut, and the key to PTV technology is particle 
matching. The existing particle matching algorithms of PTV technology do not meet the matching demands of oil drops in the oil phase 
velocity measurement of oil-water two-phase flow with low velocity and high water cut. To raise the particle matching precision, we 
improved the particle matching algorithm from the oriented FAST and the rotated BRIEF (ORB) feature description and the random 
sample consensus (RANSAC) algorithm. The simulation and experiment were carried out. Simulation results show that the improved 
algorithm not only increases the number of matching points but also reduces the computation. The experiment shows that the improved 
algorithm in this paper not only reduces the computation of the feature description process, reaching half of the computation amount of the 
original algorithm, but also increases the number of matching results, thus improving the measurement accuracy of oil phase velocity. 
Compared with the SIFT algorithm and the ORB algorithm, the improved algorithm has the largest number of matching point pairs. And 
the variation coefficient of this algorithm is 0.039, which indicates that the algorithm is stable. The mean error of oil phase velocity 
measurement of the improved algorithm is 1.20 %, and the maximum error is 6.16 %, which is much lower than the maximum error of 
PTV, which is 25.89 %. The improved algorithm overcomes the high computation cost of the SIFT algorithm and achieves the precision of 
the SIFT algorithm. Therefore, this study contributes to the improvement of the measurement accuracy of oil phase velocity and provides 
reliable production logging data for oilfield. 
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1.  INTRODUCTION 

Flow velocity [1] is an important monitoring parameter for 
oilfield development and it can evaluate the production of 
each oil reservoir [2]-[3]. Due to low velocity and high 
water cut, flow characteristics of oil-water two-phase flow 
[4]-[7] are very different from those of other conditions. The 
interpretation of log data [8]-[10] such as velocity depends 
on flow characteristics, so it is necessary to study the flow 
characteristics of oil-water two-phase flow at low flow 
velocity and high water cut state. PTV technology [11]-[12] 
is a common multiphase flow velocity measurement 
technology, which attracts the attention of many scholars. 
Fu et al. analyzed measurement performances of 3D-PTV 
and typical 2D-particle image velocimetry (PIV) algorithm 
on laminar macroscopic flow with three known 
displacements,  and applied two algorithms to the indoor 
low  turbulence experiment generated  by low-speed exhaust 

pipes for comparison [13]. The results show that the 3D-
PTV algorithm has better velocity measurement ability than 
the 2D-PIV algorithm when the tracking particle density is 
greater than 2 and the particle density increases gradually. 
Therefore, it can be known that the number of tracking 
particles is one of the important factors that determine the 
measurement accuracy of PTV technology. 

The key to PTV technology [14] is to track the trajectory 
of characteristic particles and calculate their velocities, that 
is, to match the same particles at different times and 
calculate their velocities. The accuracy of particle matching 
directly affects measurement accuracy of flow 
characteristics [15], such as velocity. There are many ways 
to match particles, for example, Qin et al. proposed a 
transient feature extraction method based on improved 
orthogonal matching pursuit and the K-singular value 
decomposition (K-SVD) algorithm to detect early faults of 
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rotating parts in electromechanical systems [16]. Manickam 
et al. proposed the SIFT algorithm to enhance potential 
fingerprint matching to extend the fingerprint matching 
technology [17]. Ma et al. proposed an improved ORB 
algorithm based on the speeded up robust features (SURF) 
algorithm [18]. The experiment results show that the 
improved algorithm has strong robustness under complex 
conditions such as image blurring and noise interference. In 
the velocity measurement of oil-water two-phase flow, 
Kong et al. proposed a PTV algorithm based on the scale-
invariant feature transform (SIFT) feature point matching, 
which was applied to velocity measurement of oil-water 
two-phase flow with low particle concentration [19]. The 
measurement results are of high precision and the method is 
applicable to oil droplet overlap and oil droplet size 
distribution. Yu et al. proposed an improved binary feature 
point extraction algorithm based on ORB [20], which was 
faster and more accurate than the SIFT and the SURF 
algorithms. SIFT algorithm has high accuracy, but the 
calculation  process  is  complicated  and  takes  a long time. 
The oil phase of oil-water two-phase flow at low flow 
velocity is distributed above the horizontal pipe, and oil 
phase slippage occurs under the influence of gravity and 
density [21]. Even under the same operating condition, this 
phenomenon cannot make the average velocity of oil-water 
two-phase flow replace the average velocity of oil-phase 
flow. So far, few studies have been done on oil phase 
velocity measurement alone. In addition, many scholars 
have studied and improved the ORB algorithm to improve 
its algorithm matching accuracy. For example, Pang et al. 
proposed an improved ORB feature point matching 
algorithm based on particle swarm optimization algorithm to 
improve the image matching accuracy [22]. Shu et al. firstly 
used the angle cosine method to conduct preliminary 
screening of matching point pairs, and then used the 
RANSAC algorithm based on homography matrix to 
eliminate false matching point pairs to improve the 
matching accuracy [23]. The improved algorithm is robust 
and not affected by image blurring and brightness 
unevenness. Many studies have been conducted in the 
direction of improving algorithm accuracy. PTV algorithm 
is to calculate the average velocity vector of particles based 
on the final result of the matching. It should not only 
consider the accuracy of the matching algorithm, but also 
consider the number of matching results. The greater the 
number of matching results, the closer the PTV algorithm's 
calculation results will be to the average particle velocity, 
and therefore, the higher the accuracy of the final velocity 
measurement will be. 

Based on previous studies, the ORB algorithm was applied 
to calculate the oil phase velocity of oil-water two-phase 
flow with low flow velocity and high water cut, and the 
matching result was shown in Fig.1. The blue lines in the 
figure are the matching results of oil phase characteristics of 
the first and second images. The green points to the left of 
the blue lines are oil phase feature points in the first frame, 
and the red points on the right are oil phase feature points in 
the second frame. The ORB algorithm is an improvement on 
the Features from Accelerated Segment Test (FAST) 

algorithm [24] and the Binary Robust Independent 
Elementary Features (BRIEF) algorithm [25]. Compared 
with the SIFT and the SURF algorithms, the calculation 
methods of the FAST algorithm and the BRIEF algorithm 
are relatively simple and the calculation amount is also less. 
The calculation amount is inversely proportional to the 
calculation speed. In addition, the Hamming distance is used 
for matching in the ORB algorithm, and the number of error 
matches is large. So, the ORB algorithm computes fast 
enough, but with very low accuracy.   

 

 
 

Fig.1.  Oil-water two-phase flow oil matching results using the 
ORB algorithm. 

 
Considering the efficiency and accuracy of the ORB and 

the RANSAC algorithms, a PTV algorithm based on the 
improved ORB and RANSAC algorithms was proposed in 
this paper to improve the measurement velocity accuracy of 
oil phase in oil-water two-phase flow with low velocity and 
high water cut. The research method is simple and the 
calculation is efficient and accurate, which is convenient to 
analyze the flow characteristics of oilfield fluid and interpret 
the logging data. However, it is suitable for the study of oil-
phase velocity of oil-water two-phase flow with high water 
cut and low flow velocity. In this condition, the oil-phase in 
the fluid exists in a bubble and the oil-phase characteristic is 
extracted using the ORB algorithm to facilitate the 
calculation of oil-phase velocity.  

First, the improvement of feature point description for 
ORB feature extraction and the RANSAC algorithm is 
described. Then, the improved algorithm is verified by 
simulation and experiment. Last, the improved algorithm is 
applied to measure the oil-phase velocity of oil-water two-
phase flow with low flow velocity and high water cut, and 
the measurement results are analyzed. 
 
2.  ORB FEATURE EXTRACTION OF OIL PHASE 

ORB feature extraction [26] is an improved algorithm 
based on the FAST algorithm and the BRIEF algorithm, 
including feature point detection and feature point 
description. In this paper, the feature point description of oil 
phase is improved. 

To make feature point description distinguishable and 
improve the accuracy of subsequent matching, ORB feature 
point description [27]-[28] improves the BRIEF algorithm 
by adding rotation factor in the direction of feature points. 
The selection of randomly selected point pairs 
corresponding to a feature point descriptor in the ORB 
algorithm is shown in Fig.2.a). The point pairs are randomly 
selected in the region 31-by-31 center on feature points. The 
points are sorted out and defined as 2-by-2n dimensional 
matrix, which is named as point set matrix. And the matrix 
is fixed and consistent with all feature points in the image. 
Therefore, randomly selected point pairs should be rotated 
according to the direction of feature points, which extends 
the time used for feature point description. 
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            a) ORB algorithm                  b) improved ORB algorithm 

 
Fig.2.  The selection of feature point descriptors. 

 
This paper proposes a way to reduce the number of 

random points corresponding to descriptors to reduce the 
computing time of feature point description. Namely, a way 
to reduce the number of column vectors of matrix S . The 
algorithm steps of this paper are as follows: 

Step 1:  determine point set matrix S ′ . The second 
random point required by the lth binary code is taken as the 
first random point required by the (l+1)th binary code, as 
shown in Fig.2.b). If the length of binary code string is n , 
then the number of column vectors of matrix S ′ is 1n + . The 
matrix is expressed as (1): 

 
1 2 1

1 2 1

n

n
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S

y y y
+
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As shown in Fig.2., column vectors number of matrix S ′  

is reduced from 2n  column vectors of matrix S to 1n + . 
The computation of S ′→ Sθ′  is also reduced. 

Step 2:  determine the rotation matrix Sθ′ . Rotate matrix 
S ′  according to rotation matrix Rθ corresponding to the 
direction of characteristic points θ , and equation (2) is 
obtained: 
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According to (2), four multiplication operations and two 

addition operations are required to obtain each column in 
matrix Sθ′ . Compared with the ORB algorithm, the improved 
ORB algorithm reduces the multiplication amount Sm and 
the addition quantity Sa . The decrease of the multiplication 
amount Sm and the addition quantity Sa  are as follows: 

 
2 4 ( 1) 4 4 ( 1)
2 2 ( 1) 2 2 ( 1)

S

S

m g n g n g n
a g n g n g n

= × × − × + × = −
 = × × − × + × = −

          (3) 

 
Where, g is the number of feature points in the image. 
Step 3:  determine the descriptors of feature points. 

Because the form of ORB descriptors is a binary code string, 
the descriptors at feature point ( , )j j jP x y are shown in (4): 

 
1

1
2 j

m j
j m

f τ−
≤ ≤

= ∑                               (4) 

Where, m is the length of binary string descriptors, 256 is 
taken in this paper; jτ is a binary code, as shown in (5). 
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Where, ( )jI P′ is the smoothed pixel value at point 

( , )j j jP x y . 
ORB descriptors are independent of location and pixel 

value of selected random points, and they are related to the 
pixel values difference of two points. Stability of descriptors 
is determined by the greedy algorithm. Therefore, the 
decrease of random points number does not affect the 
stability of binary code string descriptors. The improved 
ORB algorithm is named as oriented FAST and Continuous 
rotated BRIEF algorithm, shortened as OCRB algorithm. 
 
3.  OIL PHASE FEATURE MATCHING IMPROVEMENT  

Only Hamming distance is used to match the extracted 
feature points after ORB feature extraction. In other words, 
the point pairs with the smallest Hamming distance are 
selected as the matching point pairs. The matching point 
pairs of all oil phases are shown in Fig.3. The blue lines in 
the figure are the matching results of oil phase 
characteristics of the first and second images. The green 
points to the left of the blue lines are the oil phase feature 
points in the first frame, and the red points on the right are 
the oil phase feature points in the second frame. 

 

 
 

Fig.3.  Feature point matching results of oil phase. 
 

Oil phase feature point matching results are divided into 
the following three matching types: 1) Correct matching 
point pairs. As shown in Fig.4.a), the similarity of feature 
points of the two images is the highest, and there is no 
feature point more similar than the other. 2) Wrong 
matching point pairs caused by high peripheral similarity. 
As shown in Fig.4.b), even if the similarity around some 
feature points in the two frames is the highest, wrong 
matching also occurs. 3) Wrong matching point pairs caused 
by repeated matching. As shown in Fig.4.c), it is obvious 
that some feature points in the first image have no 
corresponding and correctly matched feature points in the 
second image. So the feature points with the highest 
similarity are directly selected as matching point pairs 
according to the Hamming distance criterion. Repeated 
matching of one feature point will be formed, in which 
there's bound to be a false match. 
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        a) correct matching pairs           b) wrong matching pairs 
 

 
c) Multiple matching of single feature point 

 
Fig.4.  Oil phase feature point matching results classification. 

 
For these three matching types, it is urgent to eliminate 

wrong matching point pairs to improve matching accuracy. 
The RANSAC algorithm [29]-[31] is often used to eliminate 
wrong matching points, and has noise resistance and 
robustness. Correct matching point pairs are still obtained 
after several iterations for data containing a large number of 
wrong matches. 

Before the calculation of the RANSAC algorithm, the data 
with low similarity but correct matching were removed in 
the process of determining the observed data and model 
calculation data of the RANSAC algorithm, so the recall 
rate of the RANSAC algorithm was far less than 1. So the 
RANSAC algorithm does not perform well. Due to the 
instability of flow velocity of oil-water two-phase flow, the 
local velocity cannot represent the overall velocity. The 
more point pairs that match, the more accurate the average 
oil phase velocity in oil-water two-phase flow is. Therefore, 
the RANSAC algorithm is improved. 
 
A.  Improved RANSAC algorithm 

To obtain more correct data of matching point pairs, 
observation data and model calculation data of the 
RANSAC algorithm are extracted separately, as shown in 
Fig.5. 
 

 
 

Fig.5.  Analysis of improved RANSAC algorithm. 
 

In Fig.5., B is all valid data in the data, that is, the correct 
matching point pairs in all matched data. A is all invalid data 
in the data, that is, the wrong matching point pairs in all 
matched data. O is all data, that is, all matching data, 
including correct matching point pairs and wrong matching 
point pairs, and the expression of O is O=A∪B. Meanwhile, 
O serves as an improved RANSAC algorithm for 
observation data. As the model calculation data of the 

improved RANSAC algorithm, C' satisfies two conditions: 
1) it belongs to observation data; 2) the probability of the 
data being correctly matched is high enough. After repeated 
calculation and model fitting in C' data, the best model is 
selected, and has the largest number of corresponding inlier 
points in the model calculation data. The model is applied to 
the observation data to obtain the corresponding inlier points 
D' in the observation data, that is, the final matching point 
pairs. Where, F' and G' are, respectively, the correct 
matching point pairs and the wrong matching point pairs in 
the final matching point pairs D'. This algorithm is named as 
partial random sample consensus algorithm, and it is called 
PRANSAC algorithm for short. The precision and recall rate 
of the PRANSAC algorithm are, respectively: 

 

100% 100%

100%

F Fp
G F D
FR
B

′ ′ ′ = × = × ′ ′ ′+
 ′ ′ = ×


                 (6) 

 
Comparing the RANSAC algorithm with the PRANSAC 

algorithm, the accuracy p′ of the PRANSAC algorithm and 
p of the RANSAC algorithm are determined and obtained 

by confidence coefficient. Therefore, the accuracy of the 
two algorithms is not affected by the algorithm before and 
after the improvement. The ratio of the two recall rates r : 

 
R F B Fr
R F B F
′ ′ ′

= = =                              (7) 

 
The model calculation data and observation data of the 

RANSAC algorithm are C', the model calculation data of the 
PRANSAC algorithm is C', and the observation data is O. 
Obviously, due to the different observation data of the two 
algorithms, the matching point pairs retrieved from the 
model are different. Obviously, the correct matching data 
F ′ and F finally retrieved are different in size due to 
different observation data. The observation data of the 
former is larger than that of the latter, and the ratio of the 
recall rate r  is greater than 1, so the size of the correct 
matching data retrieved by the former is also greater than 
that of the latter. 

The improved feature matching is the final matching data 
processed by the Hamming distance and the PRANSAC 
algorithm. The algorithm steps are as follows: 

Step 1: Extract the model calculation data C′  in the 
PRANSAC algorithm. First, Hamming distance is used to 
conduct inverse matching of feature points, and data with 
bidirectional matching is retained. Then, the threshold of the 
Hamming distance is set to extract the data below the 
threshold, which is the model calculation data C' of the 
PRANSAC algorithm. 

Step 2: The observation data O and model calculation data 
C′  are normalized to reduce noise interference, so that the 
average distance [32] from each feature point to its shape 
point is 2 . The transformation matrix is as follows: 
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0 , , 1, 2
0 0 1

x

ij y
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 − ×
 = − × = 
  

               (8) 

 
Where, i  is the ith image, 1j = refers to observation data, 

2j = refers to model calculation data, xc  and yc  are the 

mean values of the horizontal and vertical coordinates of all 
feature points, respectively. s  [33] refers to normalized 
stretch ratio, which is shown in (9): 

 

2 2

2
( ) ( )x y

s
x c y c

=
− + −

                    (9) 

 
Where, x and y  refer to the horizontal and vertical 

coordinates of feature points, respectively. 
Step 3: Randomly select the data in model calculation data 

C′ , use the extracted data to estimate the model according 
to (10). The basic matrix F ′  is obtained. 

 

[ ]
1 2 3 1

2 1 2 2 4 5 6 1

7 8 9

1 0
1

T

f f f x
p F p x y f f f y

f f f

   
   ′ = =   
     

              (10) 

 
Where, 2p  is feature point of the second image matched 

by feature point 1p  in the first image. 

Step 4: F ′  is inversely normalized and transformed to 
obtain the basic matrix F  that conforms to observation 
data: 

 
1 1

12 22 21 11( ) ( )T TF H H F H H− −′=                       (11) 
 

Step 5: The distance from model calculation data to its 
polar line is calculated. A threshold is set for the distance, 
which is lower than the threshold is judged as the inner 
point. Otherwise, it is judged as the outer point. The number 
of points in the record is m . 

Step 6: Repeat steps 4 and 5 for k  times. If the number of 
iterations k has not reached kmax and the optimal model has 
been determined, the iteration is terminated. The inlier 
points corresponding to the optimal model are selected as 
the matching point pairs finally obtained. If the number of 
iterations k has reached kmax and the optimal model has not 
been determined, the iteration is terminated. The optimal 
model selects the best model at present, and its 
corresponding inlier points are the matching point pairs 
finally obtained. Where, kmax is set to 1000 in this paper. 

OCRB feature extraction and feature matching based on 
the PRANSAC algorithm in this paper are combined and 
named as P-OCRB algorithm. 

4.  THE P-OCRB ALGORITHM VERIFICATION 

To verify the superiority of the P-OCRB algorithm, it is 
evaluated from aspects of description time, matching 
number and registration performance by taking Fig.6. as an 
example. In addition, the length of feature description time 
is related to and proportional to the amount of calculation in 
the process. The greater the amount of computation involved 
in feature description, the longer the description time will 
take. Therefore, the description time in this paper is reacted 
with the computational amount in the process. 
 
A.  Calculation amount of feature descriptions 

The feature points in Fig.6. are extracted and described, 
and results are shown in Fig.7. and Table 1. The colored 
circles in Fig.7. are feature points extracted by the OCRB 
algorithm in Fig.6. 

 

 
Fig.6.  Algorithm validation image.  

 

 
Fig.7.  Verification image after extracting feature points.  

 
According to Table 1., the descriptors calculation account 

of the ORB algorithm is 1.99 times that of the OCRB 
algorithm, which is approximately 2 times. It shows that the 
OCRB algorithm has great improvement in computational 
efficiency. And the correlation between feature points is 
small, which has little influence on subsequent feature 
matching. Therefore, the OCRB algorithm proposed in this 
paper is effective and feasible. 

 
Table 1.  Feature extraction and description. 

 

Algorithm 
Number 

of feature 
points 

The 
computation 

of single 
feature point 
descriptors 

The 
computation 
of all feature 

point 
descriptors 

ORB 
algorithm 866 512 443392 

OCRB 
algorithm 866 257 222562 
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B.  Number of feature matching point pairs and matching 
accuracy 

Feature matching is carried out according to the above 
feature extraction and description. First, all the feature 
points are matched in the forward direction and the reverse 
direction, and the feature points with bidirectional matching 
are preserved. The preserved feature points are matched one 
by one. Then, matching point pairs with similarity greater 
than 90 % are extracted from them. In other words, the 
threshold of the Hamming distance is set to 26 and matching 
point pairs with the Hamming distance lower than 26 are 
extracted. To clearly observe the difference between the R-
ORB algorithm and the P-OCRB algorithm, the observed 
data and model calculation data in the R-ORB algorithm are 
matching point pairs obtained by the bidirectional matching 
and similarity of more than 90 %. The observed data in the 
P-OCRB algorithm are the matching point pairs obtained by 
the bidirectional matching, and the calculated data of the 
model are the matching point pairs obtained by the 
bidirectional matching and the similarity of more than 90 %. 
The matching results are shown in Fig.8. 

 

 
a) P-OCRB algorithm  

 

  
b) R-ORB algorithm 

 
Fig.8.  The matching results of validation image.  

 
The number of matching point pairs obtained by the P-

OCRB algorithm and the R-ORB algorithm is 308 pairs and 
40 pairs, respectively. The number of matching point pairs 
of the former is significantly higher than that of the latter in 
Fig.8. Apparently, the P-OCRB algorithm has made a great 
breakthrough in the number of matching point pairs. Since 
the model calculation data of the two algorithms of 
PRANSAC and RANSAC are consistent, the optimal model 
selected is the same. The inlier points corresponding to the 
model are the matching point pairs finally obtained. 
Therefore, the accuracy of the selected optimal model 
determines the accuracy of the obtained matching point 
pairs. The matching effect of both algorithms is correct on 
the whole, and there is no wrong matching. Because the 
correct matching probability of the two algorithms is 
similar, the improvement of the algorithm has little effect on 
the accuracy. The P-OCRB algorithm can retain the high 

accuracy of the original algorithm while extracting a large 
number of correct matching data. 

To sum up, if matching data of the P-OCRB and the R-
ORB algorithms achieve the same accuracy, the number of 
final matches obtained by the R-ORB algorithm is much less 
than that by the P-OCRB algorithm. If the same number of 
matches is extracted using two algorithms, the accuracy of 
the final matches obtained by the R-ORB algorithm is lower 
than that of the P-OCRB algorithm. Therefore, the P-OCRB 
algorithm has more reliability and superiority than the R-
ORB algorithm. 
 
5.  EXPERIMENT 

The experiment device for oil phase velocity measurement 
system is shown in Fig.9., which is composed of oil tank, 
water tank, oil-water separation tank, control system, and 
high-speed image acquisition module. The experiments are 
carried out in the simulated well of Daqing oilfield test 
service branch, and the image acquisition of the horizontal 
oil-water two-phase flow with high water cut and low 
velocity is conducted on the ground. According to the 
measurement requirements, the control system stirs and 
mixes the oil in the oil tank and the water in the water tank 
in a certain proportion. The mixed oil-water two-phase flow 
goes through the steady flow part and the test part, and then 
the oil-water two-phase flow is transported to the separation 
tank for oil-water separation, and finally to the oil tank and 
the water tank, respectively. In the test part, the images of 
oil-water two-phase flow are acquired by a high-speed 
camera. 

 

 
 

a) chematic diagram of oil phase measurement using PTV. 
 

 
 

b) physical diagram of oil phase measurement using PTV. 
 

Fig.9.  Experiment device for oil phase velocity measurement.  
 

In the experiment, the fluid temperature is controlled at 
77°F. Oil phase is white oil with a density of 0.8 g/cm3, and 
the water phase is tap water with a density of 0.99 g/cm3. 
The Reynolds number range of the oil phase is 914-4620. 
The pipe length of the steady flow part is 2 m, the pipe 
length of the test part is 0.1 m, and the pipe diameter is 
0.02 m. The acquisition system adopts HSVISION Macrovis 
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EoSens with a frame speed of 0.001 s. The image resolution 
obtained is 1280 pixels × 1066 pixels. To test the reliability 
of the P-OCRB algorithm for measuring oil phase velocity 
of oil-water two-phase flow, the control platform was used 
to control velocity and water cut of oil-water two-phase 
flow. The total velocity range is 0.092 m/s~1.105 m/s, and 
the water cut is 70 %~90 %. 
 
6.  RESULTS AND DISCUSSION 

As shown in Fig.10., oil phase images of oil-water two-
phase flow based on PTV are randomly selected for 
processing according to the differences in flow velocity and 
water cut. They are, respectively, the flow with velocity of 
0.368 m/s and water cut of 80 %, the fluid with velocity of 
0.368 m/s and water cut of 90 %, the fluid with velocity of 
0.553 m/s and water cut of 90 %, and the fluid with velocity 
of 0.737 m/s and water cut of 90 %. To verify the 
effectiveness and feasibility of the improved algorithm in 
oil-water two-phase flow, the P-OCRB, the R-ORB, and the 
R-SIFT (To facilitate subsequent comparison, Euclidean 
distance is used for matching after feature extraction by the 
SIFT algorithm, and finally, the RANSAC algorithm is used 
for fine extraction of matching data. The whole algorithm 
process is named as the R-SIFT algorithm.) algorithms are 
used to extract and match the characteristics of the oil phase 
in oil-water two-phase flow to compare the advantages and 
disadvantages of three algorithms for oil phase velocity 
measurement. Analysis was carried out in this paper from 
three aspects: feature extraction, feature matching and 
processing, and oil phase average velocity. 

 
a) velocity: 0.368 m/s, water cut: 90 % 

 

 
b) velocity: 0.368 m/s, water cut: 80 % 

 

 
c) velocity: 0.553 m/s, water cut: 90 % 

 

 
d) velocity: 0.737 m/s, water cut: 90 % 

 
Fig.10.  PTV image of oil-water two-phase flow.  

 
 

Table 2.  Feature extraction and description. 
 

Condition Algorithm 
Number of 

feature points 
Computations 
for per feature 

point descriptor 

Memory 
size of per 
descriptor 

Number of 
matching 

point pairs 

Time of 
description(ms) 

1st 2nd 1st 2nd 

a 
R-SIFT 467 463 

256rotation+ 
256gradient+ 

16mean 
128 bytes 241 402.8 399.46 

R-ORB 678 692 512rotation 32 bytes 58 129.39 132.10 
P-OCRB 678 692 256rotation 32 bytes 378 64.69 66.03 

b 
R-SIFT 435 418 

256rotation+ 
256gradient+ 

16mean 
128 bytes 128 375.37 361.54 

R-ORB 701 678 512rotation 32 bytes 30 133.78 128.82 
P-OCRB 701 678 256rotation 32 bytes 306 66.89 64.38 

c 
R-SIFT 804 815 

256rotation+ 
256gradient+ 

16mean 
128 bytes 308 693.59 703.29 

R-ORB 1543 1565 512rotation 32 bytes 42 295.45 299.65 
P-OCRB 1543 1565 256rotation 32 bytes 805 147.24 149.35 

d 
R-SIFT 1098 1031 

256rotation+ 
256gradient+ 

16mean 
128 bytes 623 947.08 900.46 

R-ORB 2800 2664 512rotation 32 bytes 58 535.34 508.73 
P-OCRB 2800 2664 256rotation 32 bytes 1059 267.26 255.24 
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A.  Feature detection and description processing 
Under different conditions, two consecutive frames of 

oil-water two-phase flow images are randomly extracted 
and their feature points are extracted using the P-OCRB, 
the R-ORB, and the R-SIFT algorithms. By calculation, the 
feature points obtained by different algorithms for oil-
water two-phase flow images under different conditions are 
shown in Table 2. Obviously, the number of feature points 
obtained by the R-SIFT algorithm is much smaller than 
that by the P-OCRB and the R-ORB algorithms. In 
addition, in the process of feature point detection in the R-
SIFT algorithm, Gaussian blur is required first, and then 
26-pixel points before and after the blur are compared to 
determine whether they are feature points. While the 
feature point detection in the P-OCRB and the R-ORB 
algorithms should be compared with 16-pixel points 
around them to determine whether they are feature points. 
It can be known that the R-SIFT algorithm has a much 
larger computational burden in detecting feature points 
than the P-OCRB and the R-ORB algorithms. 

Then, the description calculation amount of each feature 
point for different algorithms in the description process is 
shown in Table 2. The feature point description process in 
the R-SIFT algorithm is much more complicated than that 
in the P-OCRB and the R-ORB algorithms. And the P-
OCRB algorithm performed nearly half as much 
computations in the description process as the R-ORB 
algorithm. The R-SIFT algorithm descriptors are 
represented by 128-dimensional vectors, with each feature 
point descriptor occupying 128 bytes, while the P-OCRB 
and the R-ORB algorithm descriptors are represented by 
256-bit binary code strings, with each feature point 
descriptor occupying 32 bytes.  

Therefore, the order of ability used to detect a large 
number of features in the feature extraction process is as 
follows: P-OCRB = R-ORB > R-SIFT. 

The order of complexity degree of each feature extraction 
process is as follows: R-SIFT > R-ORB > P-OCRB. 

From the perspective of feature extraction, the P-OCRB 
algorithm has a comparative advantage, as it can not only 
extract a large number of feature points, but also improve 
the computational speed of feature description. 

 
B.  Feature matching and processing 

After the feature extraction, feature matching is carried 
out, and then partial matching point pairs are extracted 
from all matching point pairs to improve the matching 
accuracy. The final matching results using the R-SIFT, the 
R-ORB, and the P-OCRB algorithms are shown in Fig.11. 
The red, green, and blue lines in the figure are the 
matching lines of the two frames of images. The left side of 
the line is the feature points in the first frame, and the right 
side of the line is the feature points in the corresponding 
matching second frame. 

After analyzing and comparing three kinds of matching 
data, the comparison result is shown in Fig.12. The red and 
green lines in the figure are the matching data obtained by 
using the R-SIFT and the R-ORB algorithms, respectively. 

The yellow line is the matching data extracted by the P-
OCRB algorithm but not by the R-SIFT and the R-ORB 
algorithms. It can also be seen from Fig.11. that the 
number of matching point pairs using the P-OCRB 
algorithm is the largest, compared with the R-SIFT 
algorithm and the R-ORB algorithm. And there is no 
obvious error matching in the three figures. Therefore, the 
efficient order of feature matching results is P-OCRB>R-
SIFT>R-ORB. 

 

 
a) velocity: 0.368 m/s, water cut: 90 % 

 

 
b) velocity: 0.368 m/s, water cut: 80 % 

 

 
c) velocity: 0.553 m/s, water cut: 90 % 

 

 
d) velocity: 0.737 m/s, water cut: 90 % 

 
Fig.11.  The matching results of using different algorithm.  

 
Although the feature description of the SIFT algorithm is 

more accurate than that of the ORB algorithm, the accuracy 
of the two algorithms can be the same after using the 
RANSAC algorithm. The only drawback of the R-ORB 
algorithm is that it has fewer matching data. The P-OCRB 
algorithm not only makes up for the shortcomings of the R-
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ORB algorithm, but also avoids the computational 
complexity of the R-SIFT algorithm. So, the P-OCRB 
algorithm is feasible in the velocity measurement of oil-
water two-phase flow. 

 

 
a) R-SIFT and P-OCRB algorithm 

 

 
b) R-ORB and P-OCRB algorithm 

 
Fig.12.  The Comparative analysis diagram. 

 
C.  Oil phase average velocity measurement 

The average velocity of oil phase was measured 
according to three matching results. The average oil phase 
velocity and theory flow velocity calculated by the R-SIFT 
algorithm, the R-ORB algorithm, and the P-OCRB 
algorithm are shown in Fig.13. The R-SIFT algorithm is 
used for oil-water two-phase flow with flow velocity of 
0.368 m/s, 0.553 m/s, 0.762 m/s, and 0.991 m/s to obtain 
the average error of oil phase flow velocity of 4.64 %, 
4.25 %, 1.37 %, and 5.87 %, and the maximum error of 
14.7 %, 9.68 %, 9.92 %, and 12.54 %, respectively. The R-
ORB algorithm is used for oil-water two-phase flow with 
flow velocity of 0.36 8m/s, 0.553 m/s, 0.762 m/s, and 
0.991 m/s to obtain the average error of oil phase flow 
velocity of 11.12 %, 10.27 %, 12.28 %, and 10.36 %, and 
the maximum error of 22.7 %, 21.8 %, 20.2 %, and 24.9 %, 
respectively. The P-OCRB algorithm is used to obtain the 
average  error  of oil phase flow velocity of 4.12 %, 
2.75 %, 2.51 %, and 2.36 %, and the maximum error of 
13.7 %,  7.68 %,  8.29 %, and 5.39 %, respectively. And 
the  measured  data  is  stable  around  the  actual  data after 

repeated experiments from two figures, and the variation 
coefficient of the experiment is 0.039. The smaller the 
variation coefficient, the higher the stability. Therefore, the 
stability of the P-OCRB algorithm is high. 

A large number of experiments are carried out to observe 
the accuracy of the calculation results and the difference 
before and after algorithm improvement. The maximum 
errors of oil phase average velocity using the R-SIFT, the 
R-ORB, and the P-OCRB algorithms are calculated to be 
9.42 %, 25.89 %, and 6.16 %, respectively. The average 
errors of the R-SIFT, the R-ORB, and the P-OCRB 
algorithms are 4.24 %, 13.34 %, and 1.2 %, respectively. 
Experimental data satisfies that the average oil phase 
velocity error calculated by the P-OCRB algorithm is 
generally lower than that calculated by the R-ORB and the 
R-SIFT algorithms. 

The flow pattern of oil-water two-phase flow with high 
water cut and low velocity is in the state of oil-in-water in 
the upper layer and free water in the lower layer due to the 
influence of density. The oil phase is in an upward state 
and the average velocity of the oil phase is bound to be 
affected by the movement velocity of part of the oil phase. 
Therefore, the more characteristic matching data of oil 
phase, the more accurate matching results, and the smaller 
the average velocity error of oil phase. The P-OCRB 
algorithm not only improves the accuracy of the R-ORB 
algorithm in measuring the oil phase velocity, but also 
avoids the complexity and time consumption of the R-SIFT 
algorithm. And the relative errors obtained by the P-OCRB 
algorithm are all within the range of -6.5 %~6.5 %, which 
meets the allowable errors of instrument measurement. 
Therefore, the P-OCRB algorithm can be applied to the 
measurement of oil phase velocity in oil-water two-phase 
flow with low velocity and high water cut, and it can 
improve the calculation speed and accuracy of the oil phase 
velocity. 

 

      
                                                 a) 0.368 m/s                                                                               b) 0.553 m/s 
 

       
                                                    c) 0.737m/s                                                                             d) 0.921 m/s 

Fig.13.  The Comparative analysis diagrams. 
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7.  CONCLUSIONS 
In this paper, the feature description of the ORB 

algorithm and the RANSAC algorithm is improved, and 
the improved algorithm is called the P-OCRB algorithm. 
The P-OCRB algorithm is applied to the measurement of 
oil phase velocity in oil-water two-phase flow with low 
velocity and high water cut. The following conclusions are 
obtained: 

1)  Compared with the R-SIFT and the R-ORB 
algorithms, the P-OCRB algorithm reduces the amount of 
computation, increases the number of matching points, and 
improves the accuracy of pixel matching. 

2)  The oil phase velocity measurement experiment of 
oil-water two-phase flow shows that the algorithm is stable 
and the velocity measurement errors are less than 6.16 %, 
far lower than those of the R-SIFT and the R-ORB 
algorithms. 
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