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A linearized model of frequency measurement for the Free Induction Decay (FID) signal is proposed to increase the Proton Magnetometer 

(PM) precision. First, the nonlinear model of frequency measurement is set up according to the characteristic of the FID signal. Then, 

according to the error analysis of the MCFM method, the model is linearized on the condition of precision requirement. Furthermore, to 

reduce the nonlinear error caused by approximate treatment and the trigger time error caused by the random noise, the Least Squares (LS) 

method is adopted to estimate the slope of the linearized model, and the frequency to be measured is the inverse of the slope. Finally, a PM 

Prototype is made to verify the effectiveness of the proposed method. Experimental results show that the precision of frequency measurement 

is obviously increased if the proposed method is adopted for the noised sine signal. Moreover, the RMSD and the NPSD of magnetic-field 

measurement are about 0.13 nT and 80 pT/Hz1/2, respectively if the proposed method is adopted by PM, which is better than the comparison 

method. 
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1.  INTRODUCTION 

The Proton Magnetometer (PM) is a weak magnetic-field 

measurement instrument based on the Nuclear Magnetic 

Resonance (NMR) of proton. The absolute precision of 

commercial PMs is about ±0.5 nT, at present, it is up to 

±0.2 nT due to the development of counting method and 

electronic technology [1]. So it has been widely used in the 

detection of static or quasistatic weak magnetic-fields, such 

as space exploration and geological exploration [2]-[4]. 

Nevertheless, the precision of commercial PMs is still not 

enough in some special applications such as magnetic-field 

metering, the absolute precision requirement of which is even 

smaller than 0.1 nT. The output signal of a PM sensor is 

called FID signal [5], [6], the frequency of the FID signal is 

proportional to the strength of the magnetic-field to be 

measured, and the magnitude of the FID signal is extremely 

weak – in the order of a few microvolts with an exponential 

decay, and is drowned by noise after approximately one 

second [7]. An amplified FID signal is displayed in Fig.1.a). 

As shown, the magnitude of the signal decays exponentially, 

and the envelope of the exponential curve displays large 

fluctuations, which indicate that the signal contains noise and 

the SNR is very low. The precision of PM is decided by the 

sensor, the amplifier circuit and the frequency measurement 

method [8]. If the sensor and the amplifier circuit have been 

fixed, the precision of the PM will be only decided by the 

frequency measurement precision of low SNR FID signal in 

a limited time frame. So, how to obtain accurate frequency 

values of low SNR FID signals is, therefore, key to improve 

the precision of PM. This makes research on high-precision 

frequency measurement methods in limited time frames, for 

low SNR sine signals, very important. 

In the frequency domain method, the DFT method [9] is the 

most direct method for low SNR sine signal frequency 

estimation, and a lot of improved DFT methods [10]-[13] are 

developed to increase the precision. The frequency estimation 

precision can reach a high level if these aforementioned 

methods are adopted. However, a large number of samples 

and ADC sample rate are demanded. Furthermore, the feature 

of real-time will be decremented because of the complexity 

of algorithm. So, the application of these methods in portable 

devices will be limited. Counter method and its variations are 

the commonly used methods for frequency measurement 

[14], [15], which include the multi-cycle frequency 

measurement (MCFM) method, the discrete phase-delay 

detection method, and the frequency measurement method 

based on delay chains, and so on. The principle of these 

methods is that the sine signal to be measured is firstly 
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converted to square wave at a comparator, and then the 

frequency of square wave is measured by the methods 

mentioned above. The precision of these methods is very high 

if there is no noise in signal, and method error is the main 

error for frequency measurement. However, for low SNR 

signal such as the FID signal, their performances will be 

decreased because trigger error caused by noise is far larger 

than method error. The IEEE-STD-1057 three- and four-

parameter sine wave fit algorithms have been discussed in 

[16]-[19], the parameters of sine wave can be estimated 

accurately by curve fitting, but it is very time consuming 

because a lot of trigonometric operations must be executed. 

There are some researchers focusing on how to increase the 

measurement precision of the FID signal. A Prony, SVD, and 

FDM method has been proposed in [20], [21], and [22], 

respectively, to measure the frequency of the FID signal, the 

simulations show that more than ten seconds are needed to 

obtain a high-precision result. A high-order Prony Method is 

presented in [23] to estimate the FID signal of NMR, but the 

time consumption is even higher than for the common Prony 

method. Dong [24] describes a delay multi-channel parallel 

measurement (MPM) algorithm for increasing the 

Overhauser magnetometer precision, and the precision is 

improved because of average calculation adopted. However, 

only rising edge of square wave is captured, the rest of rising 

edge and all falling edge of the square wave are missed. J. Ge 

[25] developed a multichannel interpolation frequency 

measurement method based on FPGA for Larmor frequency 

of the marine Overhauser sensor, the more channels there are, 

the higher the precision is. Yet the number of channels is 

limited by the resource of FPGA. An optimal multi-average 

frequency measurement is proposed in [26] to increase the 

frequency measurement precision. Nevertheless, only partial 

rising edge of square wave is used to reduce the trigger error. 

A linear model of frequency measurement method is 

presented in [27] to estimate the frequency of noised sine 

signal, the precision of frequency estimation is increased 

obviously because the Least Squares (LS) regression method 

is used to fit the linear curve. Nevertheless, the magnitude of 

the FID signal decays with an exponential curve. If the linear 

model is adopted directly, the feasibility must be verified. 

 
2.  MODELLING 

A.  Modelling of frequency measurement for FID signal 

Assuming that the square wave ‘ xf ’ shown in Fig.1.c) is 

converted from no noise sine signal by a hysteresis 

comparator, the following equation always holds if the 

amplitude of sine signal is invariable. 

 

( )T i A i B= × +                                 (1) 

 

Where i  is the time of the rinsing edge of square wave. 

( )T i is the time of the i-th rising edge of square wave. A is 

the slope of the line ‘L1’ in Fig.1.c), which is the period of 

the frequency to be measured. B is the time length from start 

point of frequency measurement to the first rising edge of 

square wave. 
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Fig.1.  The nonlinear modelling of frequency measurement for the 

FID signal, a) a wave picture of amplified FID signal, b) Trigger 

time deviation caused by the amplitude variations of the sine wave 

at the hysteresis comparator, c) the nonlinear curve of counting 

number for the FID signal, d) three curves, ‘L1’ is the straight line 

of counting number for the standard sine signal, ‘L2’ is the curve of 

counting number for FID signal, ‘L3’ is fitted straight line using two 

endpoint of curve ‘L2’. 
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As mentioned above, the amplitude of the amplified FID 

signal shown in Fig.1.a) decays with exponential curve, there 

must be the trigger time deviation because of different 

amplitudes of the FID signal, which is shown as Fig.1.b). 

Assuming that the point ‘S’ in Fig.1.a) is the first waveform 

of the signal, and the point ‘E’ is the last waveform, the 

relationship of the amplitude at two points can be expressed 

as 
 

kt

E SV V e−=                           (2) 

 

Where AV  is the amplitude of the point ‘S’. BV is the 

amplitude of the point ‘E’. k  is a constant, which is 

determined by the PM sensor and the gradient of the 

magnetic-field to be measured. 

The trigger time deviation at point ‘B’ can be deduced as 

follows. Assuming that the hysteresis voltage of the 

hysteresis comparator is hV∆ , then 

 

1sin( )S hV t Vω = ∆                            (3) 

 

2sin( )E hV t Vω = ∆                        (4) 

 

Where ω  is the angular frequency of the frequency to be 

measured, 1t  and 2t  are the trigger times of the different 

amplitude sine waves, which is shown as Fig.1.b). 

If 1t  and 2t  are small enough, expression (3) and (4) can be 

approximately rewritten as  

 

1S hV t Vω ≈ ∆                             (5) 

 

2E hV t Vω ≈ ∆                                  (6) 

 

Then the trigger time deviation ET∆  of the point ‘E’ can be 

expressed as 

 

2 1

1 1 1
( ) ( 1)EkTh h

E

E S S

V V
T t t e

V V Vω ω

∆ ∆
∆ = − = − = −       (7) 

 

Where ET is the time from point ‘S’ to point ‘E’. 

According to (7), the trigger time deviation 
i

T∆  can be 

directly written as 

 

1
( 1)ikTh

i

S

V
T e

V ω

∆
∆ = −                           (8) 

 

Where iT  is the time of the i-th waveform of the FID signal, 

which can be expressed as 

 

iT T i= ×                                     (9) 

 

Then, (1) should be revised as 

ˆ( ) ( 1)
2

kTih

i

S

VT
T i A i B T A i B e

Vπ

∆
= × + + ∆ = × + + −    (10) 

 

The curve ‘L2’ in Fig.1.d) can be used to express (10). 

 

B.  Linearization and feasibility analysis 

According to (10) we know that, i) there are five unknown 

parameters in (10), they are A , B , hV∆ , SV , and k . ii) the 

curve includes two parts, one is a straight line expressed as 

(1), another is an exponential curve expressed as (8). So, if 

we want to obtain the frequency of the FID signal, the 

parameter A  in (10) must be precisely solved by the analytic 

method. 

The MCFM method was commonly used to measure the 

frequency if there was no noise in the sine signal. Only two 

endpoints shown as point ‘S’ and ‘E’ in Fig.1.a) and Fig.1.d) 

are used to calculate the measured frequency for the method, 

and the straight line is just like ‘L3’ in Fig.1.d). The slope of 

‘L1’ and ‘L3’, respectively, can be expressed as,  
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Where N  is the number of the last waveform in Fig.1.c). 

Then the deviation of the slope between two curves can be 

deduced as 
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As mentioned above, the slope of the line is the period of 

the frequency to be measured. Therefore, the relative error of 

the measured frequency can be expressed as 
 

1 1
( 1)

2

kTNh

A

VT
e

T N V
δ

π

∆∆
= = −                (14) 

 

According to (14), the absolute error of the measured 

frequency is 
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Equation (15) indicates that, if the MCFM method is used 

to measure the frequency of the FID signal, the absolute error 

of frequency measurement is Nf∆ , moreover, the frequency 

value obtained by the MCFM method is smaller than the 

actual frequency. 

Ordering 
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Where M  is the amplitude attenuation factor, which can be 

used to evaluate the quality of the FID signal. Compared with 

(2), M can be expressed as 

 

1 /
kNT

M e=                              (17) 

 

The parameter NT  in (15) and (17) is the time duration of 

the measurement.  

If the MCFM method is adopted to measure the frequency 

of the FID signal, there are three errors: error of standard 

frequency(
s

f∆ ), method error of MCFM (
M

f∆ ), and error 

of trigger time(
N

f∆ ). They are uncorrelated random 

variables, and 
s

f∆  can be ignored if a high stability Oven 

Controlled Crystal Oscillator (OCXO) is adopted. So, the 

total synthesis error of the MCFM method can be expressed 

as 

 

2 2 2 21 1
( ( 1)) ( )
2

kNTh x

MCFM N M

A s

V f
f f f e

NT V fπ

∆
∆ = ∆ + ∆ = − +    (18) 

 

Where sf  is the standard frequency, xf  is the frequency to 

be measured. 

The frequency range of the FID signal is from 800 Hz to 

5000 Hz in the range of the geomagnetic-field. If the value of 

the standard frequency is 100 MHz, and the time duration of 

the measurement is 1 second, correspondingly, the maximum 

value of Mf∆  is 5×10-5 Hz. However, Nf∆ equals 5.2×10-4 Hz 

in spite of the signal quality being the best one ( k in (18) 

equals 0.5), which is almost an order larger than the method 

error. So the nonlinear error is the main factor to reduce the 

measurement precision of the FID signal. 

 

 
 

Fig.2.  The curves of (17) and (18): the right y-axis is the curve of 

the FID signal with different k, the left y-axis is the curve of the 

maximum absolute error of the MCFM method. 

 
Fig.2., which is drawn according to (17) and (18) supposing 

that V∆  and / AV V∆  equals 5 mV and 0.005, respectively, 

can be used to evaluate the precision of frequency 

measurement. As shown, 1) the measurement error increases 

with the length of measurement time, the longer the 

measurement time is, the larger the measurement error is. 

This is contrary to the method error of the MCFM, which 

decreases with the time duration of measurement. 2) The 

measurement error decreases with the quality of the FID 

signal, the smaller the value of k  is, the better quality of the 

FID signal is, and the smaller measurement error is. 3) If the 

value of k  is smaller than one, the maximum measurement 

error is smaller than 3 mHz in one second, correspondingly, 

absolute precision of PM is 3 mHz×23.4874 nT/Hz according 

to [26], so it is better than 0.07 nT.  

Above all, although the frequency measurement model of the 

FID signal is nonlinear, the precision of frequency 

measurement is still enough if the MCFM method is adopted 

to measure the frequency of no noise FID signal. So a linear 

model expressed as (19) can be used to replace the nonlinear 

model expressed as (10) on the following conditions: i) the 

quality of the FID signal is good enough, which can be 

evaluated by the envelope of the FID signal. Usually, if  k   in 

(17) is smaller than one, the quality of the FID signal is 

considered as a good one. ii) There is no noise in the FID signal. 

 

( ) L LT i A i B= × +                            (19) 

 

3.  REGRESSION ANALYSIS FOR LINEARIZATION MODEL 

A.  Least squares fitting 

The SNR of the amplified FID signal is very low because 

the maximum amplitude is about one microvolt, which has 

been discussed in [26] in detail. So, a trigger time error could 

be brought in the process of waveform transformation, which 

is shown as Fig.3. Then, (18) should be revised as 

 

2 2 2
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∆ = ∆ + ∆ + ∆

∆
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(20) 

 

Where Rf∆  is the error caused by additional random noise, 

and SNRP  stands for the peak signal-noise-ratio, which has 

been discussed in [24] in detail. Usually, the value of SNRP  

decays from 50 dB to 30 dB if the quality of the FID signal is 

good enough, correspondingly, Rf∆ is about 10 mHz. 

Compared with other errors in (20), the error of frequency 

measurement caused by trigger time error is the main reason 

to reduce the measurement precision of PM. So, the total error 

can be approximately expressed as 

 

1 1 1
MCFM Rf f

NT SNRPπ
∆ ≈ ∆ =               (21) 

 

If the Least Squares (LS) method is used to fit the 

linearization model discussed in Section 2 there are two 

benefits for the frequency measurement of the FID signal: 
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i) Trigger time error will be greatly reduced because the 

noise is an additional random noise, which indicates that 

the value of trigger error Rf∆  will greatly decrease if the 

LS method is adopted. 

ii) The position of the fitted straight line, which is shown as 

‘L’ in Fig.4., should be between the straight line ‘L1’ and 

‘L3’, which indicate that the value of nonlinear error 

Nf∆  will be further reduced if the LS method is adopted. 
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Fig.3.  The trigger error, a) trigger time error caused by random 

noise, b) the counting error caused by trigger time error. 
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Fig.4.  The positional relationship of four curves, ‘L1’ is the straight 

line of no noised sine signal, ‘L2’ is the curve of the FID signal, ‘L3’ 

is the straight line using the MCFM method, ‘L4’ is the fitted straight 

line using the LS method. 

 

Assuming that 
' ( )T i  is the counting number of the standard 

frequency at the i-th rising edge of the frequency to be 

measured, the slope of (19) can be deduced by the LS method 

[27], and can be expressed as 

 

' '
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                (22) 

Then, the measured frequency xf  can be deduced as 
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           (23) 

 

B.  Error analysis 

There are two errors if the LS method is adopted to fit the 

linearization model. The first one is the method error, which 

is caused by the random error, and has been discussed in [27]. 

So it can be written as 

 

( , )

2 3 1 1

2
M LSf

SNRPNT N π
∆ =

−
                  (24) 

 

The second one is the nonlinear error caused by the LS 

method, and which can be expressed as 

 

( , )
L

N LS s

A A
f f

A

−
∆ =                           (25) 

 

Then, the total error of the proposed method can be 

expressed as 

 

2 2

( , ) ( , )LS M LS N LS
f f f∆ = ∆ +∆                  (26) 

 

Assuming that the time duration of measurement is larger 

than 0.6 seconds, and the counting number is larger than 1000, 

correspondingly, the method error in (24) is smaller than 2 

mHz. Except that, L
A should be smaller than 3L

A , so the 

nonlinear error caused by the LS method should be smaller 

than 5.2×10-4 Hz according to Section 2.2. In a word, 

compared with the error caused by random noise, the 

nonlinear error can be ignored, so the total error of the 

proposed method can be approximately expressed as 

 

( , )

2 3 1 1

2
LS M LSf f

SNRPNT N π
∆ ≈ ∆ =

−
             (27) 

 

Compared with (21), the error of the proposed method is 

about 2 3 / 2N −  times smaller than the MCFM method 

for the frequency measurement of the FID signal, and is about 

2 30 / 2N −  times smaller than the MPM method 

described in [24]. 

 
C.  Method implementation 

The capture function of timer in STM32 can be used to 

obtain the raw data to implement the proposed method, which 

is shown as Fig.5. The input capture channel 1 of the TIM2 

in STM32F207 is set as input rising edge capture mode. After 
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the timer is started, whenever a rising edge appears at the PA1 

pin, the counting number of TIM2 will be automatically 

loaded into the capture register of channel 1 by the STM32. 

The captured number is then stored in the array a[i] in the 

interrupt service subroutine, which is displayed in Fig.5. If all 

of a[i] are filled with the captured values, 
' ( )T i in (23) can be 

expressed as 

 
' ( ) [ ]T i a i=                               (28) 

 

Substituting (28) into (23), the estimated value of x
f  can 

be calculated. 

 

STARTSTARTSTARTSTART aaaa[[[[1111]]]] aaaa[[[[2222]]]] aaaa[[[[NNNN]]]]

fx

fs

 
Fig.5.  Raw data captured method by STM32. 

4.  EXPERIMENT AND ANALYSIS 

A.  PM Prototype 

A PM prototype shown as Fig.6.a) and Fig.6.b), consisting 

of a PM sensor, a digital board, an analog board, a shell, and 

a battery fixed in shell, was developed to verify the 

effectiveness of the proposed method for improving the 

precision and sensitivity of PM. Combined with a signal  

generator (33500B, keysight), the developed test platform is 

displayed in Fig.6.d). The signal generator is used for the 

indoor frequency measurement comparison experiment. The 

PM sensor, the structure of which is shown as Fig.6.c), is used 

for the outdoor magnetic-field measurement experiment. The 

structure and the working principle of the PM sensor has been 

discussed in [28] in detail. 

The amplifier in the analog board is used to amplify the 

weak FID signal, the output of which forms the PM sensor, 

the gain of the amplifier is about 200,000 V/V. A series 

resonant circuit, which is composed of two inductors in the 

PM sensor and a variable capacitor bank in the analog board, 

is designed to pre-amplify the FID signal. Meanwhile the Q 

value of the series resonant circuit is about 10. Consequently, 

the FID signal output from the PM sensor is amplified about 

2,000,000 times, and the amplitude of the amplified FID 

signal is about 2 Vpp. 
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Fig.6.  Test platform, a) PM prototype with a PM sensor, b) the circuit of the PM prototype, c) the structure of PM sensor, d) the structure 

of the test platform including signal generator, the PM sensor and the PM prototype. 
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B.  Indoor experiment 

Two indoor experiments were performed to verify the 

effectiveness of the proposed method to deal with the noised 

sine signal. The length of measurement time of both methods 

was set to 800 milliseconds for the indoor experiment. 

The first experiment was the contrast experiment of 

frequency measurement accuracy at a fixed SNR. The 

frequency range was set from 800 Hz to 5000 Hz, which 

corresponds with the global geomagnetic-field range. A 

noised sine signal was generated by a signal generator as the 

frequency to be measured. The amplitude of the sine signal 

was set to 2 Vpp, and the frequency was varied from 800 Hz 

to 5000 Hz. Moreover, the random noise, which is generated 

by modulation function of the signal generator, was added to 

the sine signal.  The bandwidth of  noise was set  to  20 MHz, 

and the amplitude percentage of noise-to-signal (APNS) was 

set to 15 % or 30 %. Hence, the peak-to-peak SNR of the 

generated signal was about 20.7 dB if the APNS was set to 

30 % (the peak coefficient of random noise is 4.6), and about 

26.7 dB if the APNS was set to 15 %. When the experiment 

was performed, the generated signal was provided as the input 

signal of comparator directly, which is shown as Fig.6.d). 

Fig.7. is the frequency measurement result of two methods 

when the frequency is 1900 Hz. The X-axis in Fig.7.a) and 

Fig.7.c) are the measurement times, and the Y-axis stand for 

the result of each time of frequency measurement. From Fig.7. 

we can see that:  

i) No matter what the SNR is, the probability density 

distribution of the proposed method is better than the MPM 

method. 

ii) The higher SNR is, the narrower the width of the 

probability density distribution curve is, and the larger peak 

value of the probability density distribution is.  

iii) Except that, when the SNR of the signal to be measured 

is 20.7 dB (the curve is shown as Fig.7.a)), the Root-Mean-

Square Deviation (RMSD) of the proposed method and the 

MPM method is 1.3 mHz and 7.9 mHz, respectively, the 

average value of the frequency measured by two methods is 

1899.9996 Hz and 1899.9989 Hz, respectively, and the 

maximum error is 5.1 mHz and 11.2 mHz. When the SNR 

equals 26.7 dB (the curve is shown as Fig.7.c)), the RMSD is 

0.6 mHz and 1.9 mHz, respectively, the average value is 

1899.9996 Hz and 1899.9991 Hz, respectively, and the 

maximum error is 2.3 mHz and 6 mHz. If the proposed 

method is adopted by PM, the maximum absolute error of 

magnetic-field measurement is about 0.12 nT when the SNR 

is 20.7 dB, and 0.05 nT when the SNR is 26.7 dB. From the 

calculation result we can see that, if the SNR of the FID signal 

is larger than 26.7 dB, the absolute precision of PM could be 

better than 0.1 nT.  

 

     
                                                                    a)                                                                                                    b) 

 

        
                                                                      c)                                                                                              d) 

 

Fig.7.  Experimental result of frequency measurement of low SNR sine signal, the frequency is 1900 Hz, a) the value of frequency measured 

by two methods when the SNR is 20.7 dB, b) the probability density distribution map of a), c) the value of frequency measured by two 

methods when the SNR is 26.7 dB, d) the probability density distribution map of a) and c). 
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Table 1.  Comparing result of different methods, SNR= 20.7dB, frequency =1900Hz. 

 

method Performed  mode Sample  

method 

Sample  

rate 

Sample 

 length 

Time length 

of sampling 

Executing 

time  

RMSD  

Interpolation FFT simulation (PC, matlab) ADC 10K sps 2048 ~200 ms ~1 s 25 mHz 

Prony simulation (PC, matlab) ADC 10K sps 2048 ~200 ms >20 s 3.1 mHz 

SVD simulation (PC, matlab) ADC 10K sps 2048 ~200 ms ~10 s 2.7 mHz 

MPM experiment (prototype, C)  CMP+ CNT 1.9K sps ~2000 ~1.0 s ~1 ms 7.9 mHz 

Proposed method experiment (prototype, C) CMP+ CNT 1.9K sps ~2000 ~1.0 s ~10 ms 1.3 mHz 

 

 

The second contrast experiment is the frequency 

measurement accuracy with different SNR at a fixed 

frequency. The frequency and the amplitude of the measured 

sine signal were set to 1900 Hz and 2 Vpp, respectively. The 

random noise, which is generated by modulation function of 

the signal generator, was added to the sine signal. The 

bandwidth of noise was set to 20 MHz, and the amplitude 

percentage of noise-to-signal was varied from 1 % to 30 %. 

Correspondingly, the SNR of the noised sine signal was 

varied from 50.2 dB to 20.7 dB. The RMSD of two methods 

for different SNR sine signals are shown in Fig.8., and each 

RMSD is calculated by 200 samples. According to the figure 

we can see that the RMSD of the proposed method was about 

5 times smaller than the MPM method when the SNR of 

measured sine signal is varied from 20 dB to 50 dB. 

 

 
 

Fig.8.  The RMSD of two methods for different SNR sine signal. 

 

According to the experiments above, comparison results of 

five frequency estimation methods for noised sine signal: 

Interpolation FFT, Prony, SVD, MPM, and the proposed 

method, are listed in Table 1. CMP in Table 1. stands for 

comparator, and CNT stands for counter.  

Form the results in Table 1., the time duration of sampling 

of previous three methods is smaller than that of the latter two 

methods,  nevertheless,  the  executing  time  is  much longer  

than that of the latter two methods. Moreover, the RMSD of 

the proposed method is the best one compared with other 

methods.  

 

C.  Outdoor experiment 

Outdoor experiment was performed to verify the 

effectiveness of the proposed method to increasing the PM 

precision compared with the MPM method. The experiment 

field is shown as Fig.9.a). The PM sensor is located far away 

from the PM prototype to reduce the electromagnetic 

interference. The sampling time interval was set to two 

seconds, one second was used to active the PM sensor, and 

the rest time was used to measure the frequency, display 

magnetic-field value on an LCD and send it to the PC. Once 

captured waveform of the measurement process is shown as 

Fig.9.b). 

Fig.9.c) is the curve drawn by 800 sampled data, which 

indicate that the curve of the proposed method is smoother 

than that of the MPM method, and the geomagnetic-field 

varies slowly during a long period of time. Fig.9.d) is the 

curve drawn by 100 samples selected from Fig.9.c), which 

indicate that the geomagnetic-field is almost not variable in a 

short time. Moreover, the RMSD of the two methods is 

0.13 nT and 0.32 nT, respectively for the data of Fig.9.d). 

Fig.9.e) and Fig.9.f) are the Noise Power Spectral Density 

(NPSD) of the measured magnetic-field by two methods. 

From Fig.9.f) we can see that the NPSD of the proposed 

method is about 80 pT/Hz1/2 if the frequency is larger than 

0.1 Hz. Nevertheless, the NPSD of the MPM method is about 

110 pT/Hz1/2 at the same frequency range. The results 

discussed above indicate that the proposed method can be 

used to increase the measurement precision of PM. 

Moreover, the actual measurement precision of the PM 

prototype is smaller than the result of frequency measurement 

discussed in Section 4, B. The result could be caused by two 

reasons: the first one is that the geomagnetic-field is variable 

in time, and the second one is that the extra noise interfaces 

with the coils in the PM sensor and the connection cable 

between sensor and prototype. 
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                                                       a)                                                                                                                   b) 

 

         
  

                                                          c)                                                                                                               d) 
 

         
 

                                                                e)                                                                                                                                     f) 

 
Fig.9.  Outdoor experiment result, a) experimental field, b) captured waveform of one-time measurement, c) the curve of measured 

geomagnetic-field, d) 100 samples selected form a), e) the NPSD curve of c), f) the linear fitted curve of the NPSD when the frequency is 

larger than 0.09 Hz. 
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5.  CONCLUSION 

This paper presents a nonlinear model of frequency 

measurement for the FID signal, a linearized method for the 

nonlinear model under limited conditions, and a frequency 

estimation method for the linearized model. The experimental 

results have validated the proposed method for increasing the 

precision of noised sine signal and the FID signal, 

demonstrating its practical feasibility. Moreover, the 

proposed method takes a very short time, and the 

implementation method is very easy. So the proposed method 

could be used in a similar application, such as the Overhauser 

Magnetometer. 
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