
MEASUREMENT SCIENCE REVIEW, 20, (2020), No. 3, 126–138

Journal homepage: https://content.sciendo.com

A Comparison of Non-negative Tucker Decomposition and Parallel
Factor Analysis for Identification and Measurement of Human EEG
Rhythms

Zuzana Rošt’áková1, Roman Rosipal1,2, Saman Seifpour1, Leonardo Jose Trejo2

1Department of Theoretical Methods, Institute of Measurement Science, Slovak Academy of Sciences, Dúbravská cesta 9,
841 04, Bratislava, Slovakia, zuzana.rostakova@savba.sk
2 Pacific Development and Technology, LLC, 999 Commercial Street, Suite 205 94303, Palo Alto, CA, USA

Analysis of changes in the brain neural electrical activity measured by the electroencephalogram (EEG) plays a crucial role in the area of brain
disorder diagnostics. The elementary latent sources of the brain neural activity can be extracted by a tensor decomposition of continuously
recorded multichannel EEG. Parallel factor analysis (PARAFAC) is a powerful approach for this purpose. However, the assumption of the
same number of factors in each dimension of the PARAFAC model may be restrictive when applied to EEG data. In this article we discuss
the potential benefits of an alternative tensor decomposition method – the Tucker model. We analyze situations, where in comparison to
the PARAFAC solution, the Tucker model provides a more parsimonious representation of the EEG data decomposition. We show that this
more parsimonious representation of EEG is achieved without reducing the ability to explain variance. We analyze EEG records of two
patients after ischemic stroke and we focus on the extraction of specific sensorimotor oscillatory sources associated with motor imagery
during neurorehabilitation training. Both models provided consistent results. The advantage of the Tucker model was a compact structure
with only two spatial signatures reflecting the expected lateralized activation of the detected subject-specific sensorimotor rhythms.
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1. INTRODUCTION

In the area of brain research, multichannel electroen-
cephalographic (EEG) data provide a rich and complex repre-
sentation of changes of the brain’s neural activity over time,
either during rest or cognitive tasks. However, the interpreta-
tion of the raw multichannel EEG data for quantitative appli-
cations is not straightforward. A long-term interest in elec-
trophysiology is therefore focused on developing a method-
ology for extracting representation of multichannel EEG data
that provides compact quantitative metrics for research and
clinical applications [1].

One way to achieve a more compact and easily inter-
pretable form of data is the dimensionality reduction ap-
proach, which can be carried out by the detection of latent
sources of data variability. If data can be rearranged into the
form of a matrix; that is the conventional two-dimensional
representation, a latent structure can be detected by the prin-
cipal component analysis (PCA), factor analysis (FA), or in-
dependent component analysis (ICA) methods [2], [3]. How-
ever, due to the multichannel character of EEG data, presence
of repeated trials and often used focus on EEG signal charac-
teristics in the frequency domain, the three-way or multi-way
array (tensor) data representation has advantages over a ma-

trix form, where unfolding of selected dimensions into the
two-way representation is needed.

A generalization of PCA into higher dimensions was si-
multaneously developed by Harshman [4] as the parallel fac-
tor analysis (PARAFAC), and by Caroll and Chang [5] as
the canonical decomposition (CANDECOMP) models. A
straightforward implementation and natural interpretation of
the results makes the method a popular multi-way approach
for multichannel EEG data decomposition [1], [6].

Our long-term research interest is focused on a decompo-
sition of EEG data recorded during the neurorehabilitation
training of patients suffering from hemiplegia. The hemiple-
gia or a paralysis of one side of the body occurs frequently as
a consequence of an ischemic stroke [7]. A visual-feedback
training procedure in which a patient is asked to imagine a
movement of a paretic limb, but without real movements of
the limb, represents a new approach, which we have stud-
ied intensively [7], [8]. The impact of such rehabilitation is
reflected in changes of latent sources of the neural brain ac-
tivity, as represented by multichannel EEG data.

We performed neurorehabilitation training with a propri-
etary robotic splint [9], [10]. During the procedure the pa-
tient sits in a chair with the paretic hand fixed in the robotic
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Fig.1. EEG electrodes placement. The electrode array used in this
study is highlighted by red circles. The original image comes from
[18].

splint. After several seconds of eyes open or eyes closed rest-
ing state, the patient is asked to imagine movement of his
or her paretic hand. If the targeted sensorimotor oscillatory
neural activity recorded through the scalp EEG meets a given
threshold, the patient is rewarded by a real movement of the
hand executed by the splint.

The PARAFAC method has been used successfully to ex-
tract subject-specific sensorimotor EEG rhythms [9], [11];
however, the assumption of the same number of latent factors
within each dimension and simple structure linking factors of
the PARAFAC solution may be too restrictive. In the follow-
ing sections we denote these latent factors as atoms [1].

In psychometrics, chemometrics and related areas, a gen-
eralized and more flexible version of PARAFAC, called the
Tucker model, was developed and often used [12], [13].
There are a few studies applying the Tucker model to EEG
data. Moreover, the focus of these studies is either directed
to feature extraction or EEG artifact removal [14], [15], [16],
[17]. However, a closer focus on the interpretation of the ob-
tained decomposition within the expected neurophysiological
changes driven by the applied experimental design is missing
in these studies.

To fill this gap and to better understand the applicability of
the Tucker model to EEG data decomposition, in this study

• we focus on atoms of the Tucker model decomposition
with clear neurophysiological interpretations,

• we aim to answer the question of whether these atoms
are in agreement or complimentary to the PARAFAC
decomposition and whether EEG decomposition can be
obtained with a more parsimonious Tucker model struc-
ture,

• finally, as a consequence of this analysis we focus on
a constrained non-negative version of the Tucker model
in order to improve stability and interpretability of the
obtained decomposition when applied to EEG data.

2. DATA

In the study we analyzed multichannel EEG of two chronic
hemiplegic patients recorded over several training sessions
with the robotic splint [10].

The EEG was recorded with five pairs of symmetrically
placed left- and right-hemisphere electrodes (Fig.1.) and ref-
erenced to averaged earlobe electrodes. See [11] for details.

For the first subject, five days, each consisting of three
three-minute long blocks of the rehabilitation training were
used. The total length of the EEG recording was 43.2 min-
utes. During the resting state, as well as during the motor
imagery part, the subject kept his eyes closed. Subject 2 took
part in the robotic splint training over 38 weeks with a fre-
quency of two trainings per week. During these training ses-
sions, the conditions of closed and opened eyes during the
resting or motor imagery periods were alternating. To match
the EEG records of the first subject, in the study only training
blocks with the closed eyes were selected from 13 recording
days. The total length of the selected EEG recordings for the
second subject was 40.9 minutes.

2.1. Data preprocessing
In the first step, the EEG recordings of both patients were

segmented into two-second long time windows with 250 ms
of overlap. EEG artifacts detection was performed in the
semi-automatic and manual mode by a trained technician us-
ing the BrainVision Analyzer 2 software [19]; details can be
found in [11]. Only artifact-free time windows were consid-
ered in the analysis.

Next, for every two-second time window we applied the
irregular resampling auto-spectral analysis (IRASA) [20].
IRASA decomposes the amplitude spectrum of each window
into a fractal (scale-free) and an oscillatory component, which
is the difference between the total spectrum and the fractal
component. The oscillatory and fractal components of EEG
may be generated by different mechanisms so it is important
to estimate them separately, especially when the focus of the
measurement is on localized oscillatory sources, as is the case
here [21], [22]. The oscillatory part of the spectrum was ob-
tained by subtracting the fractal part from the total spectrum
estimate. Negative values of the oscillatory spectrum were set
to zero and the transformation 10 ∗ log10(x+1) was applied.
Transformed oscillatory spectrum data were arranged into a
three-dimensional tensor X̃ ∈ R+

I×J×K (time × electrodes ×
frequencies), where I represents the number of all two-second
time windows, J = 10 is the number of electrodes, and K = 43
is the number of frequencies selected. In this study we con-
sider the frequency range between 4 and 25 Hz with a step
size of 0.5 Hz. Lower and higher bands were excluded on the
assumption that the retained band contained most or all of the
EEG signals to be controlled by subjects. Finally, the tensor
X̃ was centered across the first dimension

Xi jk = X̃i jk−
1
I

I

∑
l=1

X̃l jk, i = 1, . . . , I; j = 1, . . . ,J;k = 1, . . . ,K.

In order to detect a subject–specific oscillatory activity, the
tensor X was constructed separately for Subject 1 and 2.
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Fig.2. Graphical schemes of the tensor decomposition models used
in the study.

3. METHODS

First, we would like to highlight the terminology and no-
tations used in this study. The PARAFAC model decom-
poses EEG into unique space-time-frequency factors which,
as mentioned above, we denote as atoms. In our setting atoms
represent narrow-band EEG rhythms. The strength of the
presence of each EEG atom over the time is measured by the
time loadings obtained either by the PARAFAC or the Tucker
decomposition for which we use the term time scores (TS).

The columns of the decomposition matrices in the
PARAFAC or the Tucker model (Sections 3.1 and 3.2), cor-
responding to the space and frequency parts of the decom-
position, represent loading vectors. Following [1], we use the
term spatial and frequency signatures (SS, FS) to denote these
loading vectors. Note that while in the PARAFAC model each
atom is represented by a single space signature and a single
frequency signature, in the Tucker model each atom can be
linked to several frequency and space signatures as well as
time score vectors.

3.1. Parallel factor analysis
The PARAFAC method decomposes the tensor X ∈

RI×J×K into matrices A ∈ RI×F , B ∈ RJ×F , and C ∈ RK×F

and a core tensor G ∈ RF×F×F

Xi jk =
F

∑
f=1

g f f f ai f b j f ck f + ei jk, (1)

i = 1, . . . , I; j = 1, . . . ,J; k = 1, . . . ,K,

by minimizing the sum of squared residuals

I

∑
i=1

J

∑
j=1

K

∑
k=1

(
Xi jk−

F

∑
f=1

g f f f ai f b j f ck f

)2

under the constraints

‖a f ‖2 =
I

∑
i=1

a2
i f = 1, ‖b f ‖2 =

J

∑
j=1

b2
j f = 1,

‖c f ‖2 =
K

∑
k=1

c2
k f = 1, f = 1, . . . ,F.

The tensor E =
(
ei jk
)
∈ RI×J×K represents the noise or er-

ror term. As depicted in the graphical scheme of the model
(Fig.2a.), the core tensor G has non-zero elements only on its
main super-diagonal. Consequently, each column of A is re-
lated with only one column of B and one column of C. In the
case of our data, the f th, f = 1, . . . ,F column of A, B, and C
represent the vectors of time scores, and space, and frequency
signatures of the f th atom.

In contrast to PCA, ICA or FA, the PARAFAC decomposi-
tion was proved to be unique under mild conditions [23].

To improve the physiological interpretation of the results,
the loading matrices are often constrained to be orthogonal,
non-negative, sparse, or smooth [6]. However, the orthogo-
nality constraint does not follow a priori knowledge and ex-
pected physiological interpretation of our data solution. The
time activation of different atoms is expected not to be inde-
pendent, but correlated over short time subintervals, and the
atoms can also share similar space locations.

Moreover, note that our input data are positive log10 val-
ues representing the oscillatory part of the amplitude spec-
trum. Therefore, we applied the non-negativity constraint on
the matrices A,B,C.1 Similar constraints were considered
in [15], and these constraints are also often used in a ten-
sor decomposition of spectral datasets in chemometrics [24].
Finally, we focused on extracting atoms representing sepa-
rate narrow-band EEG rhythms, therefore we applied the uni-
modality constraint on the columns of C.

3.2. Tucker model
A generalized version of PARAFAC for the tensor X ∈

RI×J×K – the Tucker model – follows the formula

Xi jk =
M

∑
m=1

N

∑
n=1

O

∑
o=1

g?mnoa?imb?jnc?ko + e?i jk, (2)

i = 1, . . . , I; j = 1, . . . ,J; k = 1, . . . ,K,

‖a?m‖2 = 1, m = 1, . . . ,M,

‖b?n‖2 = 1, n = 1, . . . ,N,

‖c?o‖2 = 1, o = 1, . . . ,O, .

The loading matrices A?,B?,C? are not assumed to have
the same number of columns and the core tensor G? has an

1We would like to highlight that a combination of orthogonality and non-
negativity constraints is not possible.
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arbitrary structure (Fig.2b.). The contribution of each loading
vector to a given atom is defined by the elements of the core
tensor G?, which can be understood as a tensor of weights.

In the following text, the model with M time score vectors,
N spatial signatures, and O frequency signatures is denoted
as the (M,N,O)-Tucker model.

In general, and in contrast to PARAFAC, the Tucker de-
composition is not unique [25], [6]. Any orthogonal rotation
of a loading matrix A?,B? or C? and the following inverse
rotation of G? produces a decomposition with the same data
fit as the original solution. Another problem with the Tucker
model is the need for careful interpretation of the extracted
atoms due to the arbitrary structure of G?, which links the
loading vectors of the decomposition to each atom [25].

In chemometrics, these problems – rotation freedom of the
solution and interpretation of G? – are solved either by con-
straining chosen elements of G? to fixed values (usually ze-
ros) using a priori information about the investigated data
[26], [27], or by rotating the solution to achieve G? with
sparse or special structure (super-diagonality, diagonal slices,
etc.) [25]. Another option for improving the stability of the
solution is restricting the loading matrices [26].

In the following analysis the Tucker model with i) unre-
stricted structure of G?, and ii) non-negative G? was taken
into account. The same non-negativity and unimodality con-
straints were applied to the loading matrices A?,B?,C? as in
PARAFAC.

The restriction ii) was proposed due to the difficult inter-
pretation of negative elements of G?. Together with the non-
negativity of the loading matrices, the model is known as the
non-negative Tucker decomposition (NTD) [26], [6].

In our analysis, we did not want to constrain chosen ele-
ments of G? to zeros in order to investigate and compare the
obtained solution with the constrained NTD model. There-
fore, to avoid instability of the solution, the algorithm was run
several times and then the best model was chosen. The crite-
ria of the model quality are described in the following section.
We also tried to rotate the G? core tensor in order to obtain a
clear neurophysiological interpretation of the decomposition.

3.3. Measures of model quality
To formally evaluate the performance of the Tucker and

PARAFAC models we considered two measures – the propor-
tion of variance explained (VarExpl) and the core consistency
diagnostic (CorConDiag) [28], [29].

The proportion of variance explained follows the formula

VarExpl = 1−

I

∑
i=1

J

∑
j=1

K

∑
k=1

(
Xi jk− X̂i jk

)2

I

∑
i=1

J

∑
j=1

K

∑
k=1

X2
i jk

≤ 1,

where

X̂i jk =
F

∑
f=1

ĝ f f f âi f b̂ j f ĉk f (PARAFAC)

X̂i jk =
M

∑
m=1

N

∑
n=1

O

∑
o=1

ĝ?mnoâ?imb̂?jnĉ?ko (Tucker model).

Estimates of vectors or matrices are labelled by “ˆ”.
CorConDiag is a measure originally developed for the

PARAFAC model and represents the appropriateness of the
constraints applied to G (super-diagonal structure). In the
first step, the matrices A,B,C and the tensor G are estimated
by PARAFAC with F factors. Then, using these matrices,
the Gunconstr core tensor of the (F,F,F)-Tucker model is esti-
mated in the least-squares sense.

Gunconstr ∈ argmin
H∈RF×F×F

I

∑
i=1

J

∑
j=1

K

∑
k=1

(
Xi jk−

F

∑
m=1

F

∑
n=1

F

∑
o=1

hmnoaimb jncko

)2

.

(3)
Finally

CorConDiagPARAFAC = 1−

F

∑
m=1

F

∑
n=1

F

∑
o=1

(
gmno−gunconstr

mno
)2

gmno2 ≤ 1.

(4)
Values close to 1 indicate that the constrained structure of

G is appropriate. CorConDiag < 0 reflects the need to relax
the constraints and to use a more general model.

The methodology can be generalized also for the
(M,N,O)-Tucker model with a restricted G? structure [29].
In this case

CorConDiagTucker = 1−

M

∑
m=1

N

∑
n=1

O

∑
o=1

(
g?mno−gunconstr

mno
)2

g?mno
2 ≤ 1.

(5)
Similarly to (4), G? represents the restricted core tensor es-
timator and Gunconstr of the unconstrained (M,N,O)-Tucker
model is estimated in the least-squares sense similarly as in
(3).

Moreover, the two measures can be used as an indicator
of the appropriate selection of the number of atoms either
in PARAFAC or in the Tucker model. However, Bro [24]
claims that it is difficult to decide about the optimal value of
this number and there is no general approach like the cross-
validation or proportion of variance explained in PCA. For
the Tucker model, this represents an even more challenging
task, because the number of time, space, and frequency load-
ing vectors of the decomposition can be different and their
links to each extracted atom vary.

Therefore, these formal measures have to be considered
with caution and they should serve more like an indicator
about the model fit than strict measures upon which the fi-
nal model should be selected. Plausible interpretation of the
final model components needs to be considered.

3.4. Detection of subject–specific atoms
The log10-transformed oscillatory amplitude EEG spec-

trum and the non-negativity and unimodality constraints in

129



MEASUREMENT SCIENCE REVIEW, 20, (2020), No. 3, 126–138

both investigated models are motivated by the aim to de-
tect subject-specific oscillatory sources. Following our pre-
vious study [11], we hypothesized that the subject-specific
PARAFAC atoms should be present in models with a suffi-
cient number of factors F . With this in mind we applied sev-
eral PARAFAC models with a varying number of atoms in-
stead of a single model with a fixed size. A similar procedure
was applied in the case of the Tucker model.

More specifically, we varied the number of factors F in
PARAFAC between six and 20. In the Tucker model, the
number of frequency signatures O varied between six and 12.
The number of time score vectors M in the model with O fre-
quency signatures varied between O and 2∗O. According to
the set of electrodes used, the number of spatial signatures N
was set to 2, 3, or 4.

The subject–specific atoms were then selected in the next
step, where a cluster analysis was applied to a set of all ex-
tracted atoms from all models. We applied the nonparametric
density-based clustering; the DBSCAN algorithm [30]. The
minimum number of “neighbors” in the method was set to
two and the diameter of the eps-neighborhood of a point pa-
rameter was varied between 0.2 and 0.5 [30]. A distance be-
tween the ith and the jth atom was measured as the weighted
sum of distances between their corresponding time scores,
space and frequency signatures.

All analyses were performed in MATLABr. We used
APECSgui, a set of proprietary MATLAB codes developed
by Pacific Development and Technology (2012) and the rou-
tines parafac.m and tucker.m with related subroutines from
the public N-way toolbox for MATLAB [31]. For NTD, we
replaced the standard least squares criterion for the core ten-
sor estimation in the tucker.m routine by a non-negative least
squares algorithm (fastnnls.m from the N-way toolbox). For
all models, the algorithm stops either when the maximum
number of iterations (set to 200) is reached or the relative
change of the fit is smaller than 10−6. The other parameters
in parafac.m and tucker.m were kept at their default values.

4. RESULTS

4.1. Tucker model with unrestricted G?

In the first step, a set of the (M,N,O)-Tucker models, O ∈
{6, . . . ,12}, M ∈ {O,O+ 1, . . . ,2 ∗O}, N ∈ {2,3,4} with no
restrictions to the structure of G? were applied to the EEG
data. In order to avoid convergence to a local minimum, the
algorithm was run five times and the solution with the highest
VarExpl and CorConDiag was chosen.

The obtained decompositions showed several weaknesses.
To graphically demonstrate some of the listed problems we
selected the (11,2,6)-Tucker model (Fig.3.). We observed:

• interpretation of frequency signatures
The unimodality of frequency signatures (FS) was vio-
lated (Fig.3., first row). Moreover, the estimated FS rep-
resent either low (≈ 4.5 Hz) oscillatory activity or noise
(> 20 Hz) and therefore are not of interest in this study.

• duplicate components
Duplicate frequency signatures and time scores were ob-
served in the solution in the majority of models.

• relationship between loading vectors
Difficult interpretation of the negative elements in G?.

• rotation of solution
It was difficult to find an orthogonal rotation which
would lead to G? with simplified structure and at the
same time not violating the non-negativity and uni-
modality constraints applied to the loading matrices.

• problems to find a stable solution
Regardless of the choice of M,N,O, the algorithm
reached the maximum number of 200 iterations, but the
relative change of fit was still above the set threshold of
10−6. The number of iterations needed for PARAFAC
and NTD to find a stable solution with the same stop-
ping criterion was lower than 100.

4.2. Non-negative Tucker decomposition
In the second step, we restricted the core tensor G? to be

non-negative, that is the NTD model was applied. We ob-
served that this restriction solved the problems described in
Section 4.1. The convergence problem as well as the duplicity
in time scores and frequency signatures diminished. The solu-
tion of the (10,2,6)-NTD model is depicted in Fig.4., where
frequency signatures with a clear unimodal structure can be
observed. Moreover, the sparse structure of G? is easier to in-
terpret (Fig.4., second row) and no orthogonal rotation of the
core tensor is needed.

Spatial signatures Following Fig.4., the estimated spatial
signatures represent scalp EEG activation over the right (SS
1) and left (SS 2) hemisphere. The same spatial patterns were
present in all NTD models with the fixed number of spatial
signatures N = 2, a varied number of frequency signatures
O = 6, . . . ,12, and time scores M = O, . . . ,2 ∗O. We would
like to highlight that neither NTD nor PARAFAC have any
prior information about laterality of the solution. Therefore,
we hypothesized that two space components are enough for
description of our data variability in the space domain.

A detailed inspection of models with N > 2 has shown that
the increased number of space components provides the solu-
tion where the two lateralized spatial patterns are horizontally
divided and represent scalp EEG activity over the right and
left hemisphere. Importantly, the cluster analysis of the space
signatures from all NTD models (Fig.5.) shows that these
two dominant spatial patterns were present in the majority of
models. Therefore, in the following analysis only the NTD
models with two space signatures were further investigated.
Note that the inference about the corresponding cortical ac-
tivation in the left and right hemisphere is beyond the scope
of this paper. For example, EEG source localization using an
inverse mapping method applied to high-density EEG could
be considered.
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Fig.3. Subject 1. The unconstrained (11,2,6)-Tucker decomposition. The frequency signatures (FS) (loading vectors) are depicted in the
first row. Slices of G? with the fixed frequency dimension are in the second row of the plot on the left. These slices show links between each
frequency signature and two spatial signatures (SS, second row on the right) and 11 time score (TS, third row) vectors.

G? structure The sparse structure of G? allows to find clear
links between the time scores, frequency and spatial signa-
tures.

By fixing a given frequency signature, the corresponding
slice of G? (depicted in the second row of Fig.4.) is a ma-
trix where each row relates to the set of extracted time scores
and each of the two columns to the one of the spatial sig-
natures. Elements of this matrix represent weights (links)
between time scores and spatial signatures. By inspecting
Fig.4., it can be observed that frequency signatures FS1, FS2,
FS3, and FS5 show links of about the same numerical value
for two different time scores related either to the left or right
spatial signature. In other words, this solution indicates dif-
ferent activation of the given oscillatory component over the
time recorded over the left and right hemisphere. In contrast,
this is not the case for FS4 and FS6, where the links in the cor-
responding G? slices indicate the same time activation over
the left and right hemisphere. By inspecting raw EEG data
and their spectral decomposition we identified that FS6 rep-
resents artifact oscillation centered at 22 Hz and affecting sev-
eral central and centro-parietal EEG channels. The amplitude
of this artifact varied across individual recording sessions and
was strongest during one of the recording days. This period
can be clearly identified in the trace of TS7 as a short burst
with increased time score values.

At this point we investigated whether the PARAFAC model
would provide a similar lateralized solution for the spatial sig-
natures and size of the model. Using the PARAFAC model
with nine atoms we observed spatial laterality for a subset of
atoms (Fig.6.). After increasing the number of atoms to 14,
we could observe lateralized spatial decomposition for the
majority of atoms (Fig.7.). However, this is at the expense

of increasing the number of frequency components, which
makes the physiological interpretation of the solution chal-
lenging.

Fig.8. compares in detail the left and right time scores of
the 8-8.5 Hz atom (dominant sensorimotor mu rhythm) of
NTD and PARAFAC for Subject 1. First, differences in the
left and right time scores indicate different lateralized activa-
tion of this 8-8.5 Hz rhythm over some time periods. Second,
the time scores of the PARAFAC and NTD models closely
match, indicating that both methods estimate the same EEG
sources.

In summary, these examples show that the compact form
of the NTD model with a variable number of spatial and
frequency signatures and time scores can outperform a
PARAFAC model with a more rigid structure and an equal
number of loading vectors for frequency, space, and time di-
mensions of the decomposition. In the next section, a more
formal comparison of the two models is discussed.

4.3. Comparison of PARAFAC and NTD
In this section, PARAFAC and NTD are compared accord-

ing to the VarExpl values.
As expected, VarExpl monotonically increases with the in-

creasing number of components in both the PARAFAC and
NTD models (Fig.9a.). In these examples, the value was
reaching its maximum at about 0.5. When comparing VarExpl
for PARAFAC with F and NTD with N = 2 spatial and O= F
frequency signatures and M ∈ {O, . . . ,2∗O} time scores, the
differences were negligible.

Moreover, we analyzed also the CorConDiag values to de-
tect appropriateness of the non-negative (the NTD model) or
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Fig.4. Subject 1. The (10,2,6)-Tucker decomposition with non-negative G? (the NTD model). The frequency signatures (FS) are depicted
in the first row. Slices of the core tensor G? with the fixed frequency dimension are in the second row of the plot on the left. These slices
depicts non-zero elements of G? representing weights between each frequency signature and two spatial signatures (SS, second row on the
right) and 10 time score (TS, third row) vectors.

super-diagonal structure (the PARAFAC model) of the core
tensor. We would like to highlight that our aim is not a
direct comparison of the CorConDiag values between the
PARAFAC and NTD models, which would not be meaning-
ful because (4) and (5) are computed using the unconstrained
Tucker models with a different number of factors. Therefore,
the analysis was performed separately for the PARAFAC and
NTD models.

CorConDiag values for PARAFAC are stable across the
models with different number of atoms, but in general small
(Fig.9b.). The values increase with the number of compo-
nents, but do not exceed the value of 0.5. This was true for
both subjects. According to [28] this indicates that the super-
diagonal structure of the core tensor is probably too restrictive
for our data and should be relaxed.

CorConDiag for NTD was high regardless of the selected
size of the model. In the majority of models it exceeds the
value of 0.8 (Fig.9b.). This indicates that the NTD model
is appropriate for the description of our data structure. The
only exception in this trend were the (8,2,8)- and (16,2,10)-
NTD models for Subject 1 with CorConDiag ≈ 0.12, but we
consider this as a random effect.

However, as mentioned before, both VarExpl and CorCon-
Diag should be considered with caution when selecting the fi-
nal PARAFAC or NTD model. For example, for NTD we may
observe that all models seem to be of equal quality according
to Fig.9b., therefore a further exploratory step to interpret the
obtained solution needs to be applied. One of the solutions
we used in this study was the cluster analysis applied to a set
of solutions obtained by varying the model size.

4.4. Subject-specific sensorimotor oscillatory activity
In this section we focus on the interpretation of the ob-

tained results, with the aim to detect the subject-specific EEG
rhythms. For this purpose the DBSCAN cluster analysis
was applied separately on extracted spatial and frequency
signatures and time scores of the PARAFAC model with
F = 6, . . . ,20 atoms and NTD model with O = 6, . . . ,12 fre-
quency signatures, M = O, . . . ,2 ∗O time scores, and N = 2
spatial signatures. The cluster-specific patterns (computed as
cluster averages) for both subjects are depicted in Fig.10. (left
hemisphere) and Fig.11. (right hemisphere).

Both subjects show activity at around 8 Hz, which repre-
sents the well-known mu rhythm associated with motor im-
agery. Synchronization and desynchronization changes of
this rhythm were used to control the robotic splint during
the training. Two other motor-related rhythms were iden-
tified and located at 11-11.5 Hz and at 13.5 Hz. This was
true for both subjects. Following [32], we interpret them as
the lower and higher sensorimotor rhythms (SMR). In addi-
tion, for Subject 2 we could identify two rhythms in the beta
band, which we denote as the lower and higher beta. These
beta rhythms were not clearly identified for Subject 1. Note,
all these motor imagery related rhythms were interpreted fol-
lowing their change during the periods of motor imagery and
resting conditions, their estimated spectral decomposition, as
well as their spatial and frequency signatures and our experi-
ence with prior experiments with mirror box training of these
two subjects [11]. In addition, we identified the posterior al-
pha rhythm (9.5 to 10 Hz) with its source in the occipital re-
gion of the brain as well as the frontal theta rhythm (6 to 7
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Fig.5. Cluster analysis of the space components from all non-negative Tucker models (NTD). The patterns from the first and second cluster
were present in at least 70% of models and they represent the location of scalp EEG activation over the right and left hemisphere.

Fig.6. Subject 1. The PARAFAC decomposition of the EEG data with 9 atoms (factors). The frequency signatures (FS), time scores (TS)
and spatial signatures (SS) of the atoms are depicted in the first, second and third row, respectively.

Hz). To confirm visual alpha we also used spectral decom-
position of the O1 EEG electrode signal recorded during the
resting state eyes-opened and eyes-closed conditions before
and after the training. We observed no systematic changes of
the theta rhythm related to motor imagery.

5. DISCUSSION AND CONCLUSIONS

Identification and estimation of sources of neural activ-
ity in EEG recordings with the Tucker model is very rare in
the literature. In this article, we discussed potential advan-
tages of the Tucker model in comparison to the better-known
PARAFAC model.

In the first part of the analysis we observed that when
the unconstrained Tucker model was applied to multichan-
nel EEG recordings, the results were difficult to interpret due
to a complex structure of the core tensor elements. This was

specifically true for the task where, based on results of our
previous studies, we expected a clear detection of a set of
sensorimotor EEG oscillatory sources. We observed that by
restricting the core tensor G? of the model to be non-negative
(non-negative Tucker decomposition, NTD), the interpreta-
tion of the obtained results was improved. A core tensor with
a sparse structure was obtained and for which the detected
atoms closely resembled those estimated by the PARAFAC
model.

However, the formal testing reveals that in comparison to
PARAFAC, a smaller and compact NTD model is usually suf-
ficient to describe the same amount of data variability. Cor-
ConDiag, a formal measure of the model fit, was also fa-
vorable for NTD. We observed that the NTD models, where
the number of time scores M was approximately two times
higher than the number of frequency signatures O, CorCon-
Diag reached the value of 0.8. This indicates, that this com-
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Fig.7. Subject 1. The PARAFAC decomposition of the EEG data with 14 components. The frequency signatures (FS), time scores (TS) and
spatial signatures (SS) of the atoms are depicted in the first, second and third row, respectively.
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Fig. 9. The variance explained (VarExpl, top) and the core consis-
tency diagnostics (CorConDiag, bottom) for the PARAFAC and
non-negative Tucker decomposition (NTD) models with varying
number of factors. The number of factors for the PARAFAC model
was considered between six and 20. For NTD, the number of space
signatures (SS) was fixed and set to two. The number O of frequency
signatures (FS) varied between six and 12 and number of time scores
(TS) was chosen from the range [O,2∗O].
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Fig. 8. Subject 1. Top: The left and right NTD time scores of the
8-8.5 Hz atom. Middle: The left time scores of the 8-8.5 Hz atom of
NTD and PARAFAC. Bottom: The right time scores of the 8-8.5 Hz
atom of NTD and PARAFAC.

bination of the number of time scores and frequency signa-
tures leads to a sufficient description of the investigated EEG
structure. On other hand, the low CorConDiag values of the
applied PARAFAC models indicate that the super-diagonal
structure of the core tensor and the same number of factors in
each dimension may be too restrictive for our data. Finally,
we can also speculate that by focusing on the sensorimotor
rhythms activation through motor imagery and by using the
scalp EEG recorded over the sensorimotor cortical areas, the
observed left and right pairs of identified rhythms reflect ex-
pected laterality of sensorimotor cortical activation.
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(a) Subject 1

(b) Subject 2

Fig.10. Subject–specific atoms detected by PARAFAC (red) and NTD (black) located in the left hemisphere.
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(a) Subject 1

(b) Subject 2

Fig.11. Subject–specific atoms detected by PARAFAC (red) and NTD (black) located in the right hemisphere.
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An interesting feature of the results was the symmetric and
lateralized structure of some of the obtained spatial signa-
tures. Although the placement of EEG electrodes used in our
study was restricted to the scalp area covering the sensorimo-
tor cortical region, neither PARAFAC nor NTD has any prior
information about laterality of the solution. A compact NTD
model with two spatial signatures representing the left- and
right-hemisphere neural activity was observed to adequately
describe the spatial distribution of atoms in our data.

This was also supported by the cluster analysis applied to a
whole set of the NTD solutions obtained by varying the num-
ber of spatial and frequency signatures and time scores. This
clustering approach allowed us to identify dominant subject-
specific atoms, because we expected them to occur in the ma-
jority of models and represent dominant clusters in compar-
ison to atoms occurring at random. The lateralized spatial
distribution of individual EEG rhythms suggests the presence
of at least two equivalent current dipoles with a polarity re-
versal near the midline, and which may arise from pools of
neurons related to motor activity and imagery. It is natural to
expect that the temporal activation of these sources may show
a different level of synchrony. Therefore, we varied the num-
ber of time scores M between O and 2 ∗O with O equal to
the number of frequency signatures used in a particular NTD
model. This choice turned out to be reasonable and for sev-
eral rhythms we observed differences in time scores for the
two symmetric sources.

In PARAFAC, the laterality of the identified dominant
rhythms was observed only in models with a higher number of
components. While the obtained frequency and spatial signa-
tures and time scores of these atoms closely resemble the ones
obtained by the NTD model, their identification is more dif-
ficult due to the larger size of the PARAFAC models. Again,
the proposed approach of applying cluster analysis to a set
of solutions obtained from the PARAFAC models of different
size seems to be a useful strategy for selecting a representa-
tive set of atoms.

Although the focus of the paper was on general applicabil-
ity of the Tucker model to EEG data, the obtained results for
two post-stroke patients during the neurorehabilitation train-
ing with motor imagery is interesting to mention. When con-
sidering the NTD solutions, we found five homogeneous clus-
ters with high cardinality (number of elements per cluster) for
Subject 1. The average time scores, space, and frequency sig-
natures of the clusters represent characteristics of three senso-
rimotor related rhythms, and two rhythms not directly related
to sensorimotor activation and deactivation states. For Sub-
ject 2, the cluster analysis detected seven stable atoms. In
addition to Subject 1, low and high beta rhythms were found,
which may relate to sensorimotor activity. Although these
two rhythms were sporadically detected in Subject 1, they did
not create stable dominant clusters. The cluster analysis of
the PARAFAC atoms led to similar results, and a high level
of similarity between the time scores, space, and frequency
signatures of both PARAFAC and NTD models was observed.

Finally, we can conclude, that the NTD model is able to ex-

plain the same amount of EEG variability as PARAFAC, but
with fewer components and direct information about the atom
lateralization due to the sparse structure of G?. In PARAFAC,
the lateralized versions of atoms were observed only in mod-
els with a large number of components. Thus, we hypothesize
that the NTD model can be applied also for other EEG studies
where the atomic decomposition of the oscillatory spectrum
is the focus.
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Farkaš, I., Trejo, L. J. (2019). Effects of mirror-box
therapy on modulation of sensorimotor EEG oscillatory
rhythms: A single-case longitudinal study. Journal of
Neurophysiology 121(2), 620–633.

[12] Tucker, L. R. (1966). Some mathematical notes on
three-mode factor analysis. Psychometrika 31(3), 279–
311.

[13] Geladi, P. (1989). Analysis of multi-way (multi-mode)
data. Chemometrics and Intelligent Laboratory Systems
7(1), 11–30.

[14] Estienne, F., Matthijs, N., Massart, D., Ricoux, P.,
Leibovici, D. (2001). Multi-way modelling of high-
dimensionality electroencephalographic data. Chemo-
metrics and Intelligent Laboratory Systems 58(1), 59–
72.

[15] Cong, F., Lin, Q.-H., Kuang, L.-D., Gong, X.-F.,
Astikainen, P., Ristaniemi, T. (2015). Tensor decompo-
sition of EEG signals: A brief review. Journal of Neu-
roscience Methods 248, 59–69.

[16] Latchoumane, C.-F. V., Vialatte, F.-B., Solé-Casals, J.,
Maurice, M., Wimalaratna, S. R., Hudson, N., Jeong,
J., Cichocki, A. (2012). Multiway array decomposition
analysis of EEGs in Alzheimer’s disease. Journal of
Neuroscience Methods 207(1), 41–50.

[17] Acar, E., Aykut-Bingol, C., Bingol, H., Bro, R., Yener,
B. (2007). Multiway analysis of epilepsy tensors. Bioin-
formatics 23(13), i10–i18.

[18] Seeck, M., Koessler, L., Bast, T., Leijten, F., Michel,
C., Baumgartner, C., He, B., Beniczky, S. (2017). The
standardized EEG electrode array of the IFCN. Clinical
Neurophysiology 128(10), 2070–2077.

[19] Brain Products, GmbH (2013). BrainVision Analyser 2.
[20] Wen, H., Liu, Z. (2016). Separating fractal and oscilla-

tory components in the power spectrum of neurophysi-
ological signal. Brain Topography 29(1), 13–26.

[21] Buzsáki, G., Draguhn, A. (2004). Neuronal oscillations
in cortical networks. Science 304(5679), 1926–1929.

[22] He, B. J., Zempel, J. M., Snyder, A. Z., Raichle, M. E.
(2010). The temporal structures and functional signif-
icance of scale-free brain activity. Neuron 66(3), 353–
369.

[23] Kruskal, J. B. (1989). Rank, decomposition, and
uniqueness for 3-way and N-way arrays. In: Multiway
Data Analysis. Elsevier Science Publishers B.V. (North-
Holland), pp. 7–18.

[24] Bro, R. (1997). PARAFAC. Tutorial and applica-
tions. Chemometrics and Intelligent Laboratory Sys-
tems 38(2), 149–171.

[25] Kiers, H. A. L. (1998). Recent developments in three-
mode factor analysis: Constrained three-mode factor
analysis and core rotations. In: Data Science, Classi-
fication, and Related Methods. Springer-Verlag Tokyo,
pp. 563–574.

[26] Kiers, H. A. L., Smilde, A. K. (1998). Constrained
three-mode factor analysis as a tool for parameter es-
timation with second-order instrumental data. Journal
of Chemometrics 12(2), 125–147.

[27] Smilde, A. K., Tauler, R., Henshaw, J. M., Burgess,
L. W., Kowalski, B. R. (1994). Multicomponent deter-
mination of chlorinated hydrocarbons using a reaction-
based chemical sensor. 3. medium-rank second-order
calibration with restricted Tucker models. Analytical
Chemistry 66(20), 3345–3351.

[28] Bro, R., Kiers, H. A. L. (2003). A new efficient
method for determining the number of components in
PARAFAC models. Journal of Chemometrics 17(5),
274–286.

[29] Kompany-Zareh, M., Akhlaghi, Y., Bro, R. (2012).
Tucker core consistency for validation of restricted
Tucker3 models. Analytica Chimica Acta 723, 18–26.

[30] Ester, M., Kriegel, H.-P., Sander, J., Xu, X. (1996).
A density-based algorithm for discovering clusters in
large spatial databases with noise. In: Second Inter-
national Conference on Knowledge Discovery & Data
Mining. American Association for Artificial Intelli-
gence, pp. 226–231.

[31] Andersson, C., Bro, R. (2000). The N-way toolbox for
Matlab. Chemometrics and Intelligent Laboratory Sys-
tems 52, 1–4.

[32] Sterman, M. (1996). Physiological origins and func-
tional correlates of EEG rhythmic activities: Impli-
cations for self-regulation. Biofeedback and Self-
Regulation 21(1), 3–33.

Received January 13, 2020.
Accepted June 16, 2020.

138

http://aiolos.um.savba.sk/~roman/rrLab/video/RoboticArm_EN.mp4
http://aiolos.um.savba.sk/~roman/rrLab/video/RoboticArm_EN.mp4

	Introduction
	Data
	Data preprocessing

	Methods
	Parallel factor analysis
	Tucker model
	Measures of model quality
	Detection of subject–specific atoms

	Results
	Tucker model with unrestricted G
	Non-negative Tucker decomposition
	Comparison of PARAFAC and NTD
	Subject-specific sensorimotor oscillatory activity

	Discussion and conclusions

