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The article presents an analysis of the dynamic error occurring when processing a stochastic signal in an inertial measurement system. The 

problem was illustrated using both a calculation and a laboratory example. The technique of conditional averaging of signals was used in 

the experiment. The possibility to minimize the root mean square value of the error as well as the need for a time correction of 

measurement values in an inertial measurement system was demonstrated. 
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1.  INTRODUCTION 

The primary task during measurement processing of 

physical random signals is to minimize the original 

distortions of signals at their points of reception and in the 

analogue pre-processing system [1]-[3]. Another important 

task in the stochastic signal measurement process is to 

minimize random processing errors of complex analogue 

and analogue-digital measurement processing systems [4]-

[7]. Primary measurement transducers (sensors) are critical 

to the processing accuracy of instantaneous values of a 

stochastic signal. No signal distortion check in the pre-

processing track prevents further correct measurement 

processing. 

In analogue processing of randomly variable physical 

signals, distortions of instantaneous values of signals may be 

caused either by outside interferences or by actual imperfect 

characteristics of processing systems. An example of a 

distortion system is an inertial measurement transducer (e.g., 

a temperature sensor). In measuring the instantaneous value, 

an inertial system introduces distortion dependent on the 

time constant T. The output signal of the inertial transducer 

is distorted and delayed in relation to the input signal. 

Instantaneous values of the output signal recorded in real 

time do not represent the actual instantaneous values of the 

measured parameter [1], [2], [3]. 

 

2. DYNAMIC ERROR 

General dynamic processing in an inertial measurement 

system (Fig.1.) can be described by impulse response:  
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and spectral transmittance: 
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where: k – is the static gain; T – is the time constant. 

 

 
 

Fig.1.  Model of dynamic processing. 

 

The processing quality of the stochastic signal x(t) in a 

measurement system is expressed by the root mean square 

value of the error: 

 

∆��������� � ����� � ������������������������,                   (3) 

 

where: x(t) – the processed physical stochastic input signal; 

y(t) – the output signal of the measurement system. 

If the signal x(t) is stationary, then the error value ∆��������� 

does not depend on time and is determined by error 

variance: 

 

∆����� ����∆� � ��� � ��� � 2 ���0�,         (4) 
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where: ��� �#$ ��� – variances of signals x(t) and y(t); 

 ���0� – correlation function of signals x(t) and y(t) for τ = 

0. 

Practical tasks of random signal processing concern the 

signals which are not theoretical white noise. Actual signals, 

most often low-band ones, do not have a flat characteristic 

of the power spectral density function. In practice, such 

signals occur after the passing of broadband noises through 

inertial systems. A simple and practically useful model is 

one with low-band noise with an exponential autocorrelation 

function. After passing through another inertial system, such 

a signal has a finite value of the autocorrelation function 

derivative  ��%� for τ = 0. When a random signal passes 

through inertial systems, its probability density function 

becomes normalized [8], [9], [10]. 

For an inertial model of processing a stochastic signal x(t) 

with a limited bandwidth, exponentially correlated with the 

correlation interval %� � �
&, the autocorrelation function 

 ��%� is expressed by: 

  ��%� � ���'(&|*| ,                        (5) 

 

The corresponding double-sided power spectral density is 

expressed by the following relationship: 

 

+���� � �,-.&
&.	�.  .                         (6) 

 

Fig.2. graphs the functions  ��%� and +����.  

 

a) 

 
 

b) 

 
 

Fig.2.  Characteristics of the autocorrelation function a) and the 

double-sided spectral density power b). 

 

In order to calculate the error variance (4), one must first 

calculate the correlation functions  ��%� and  ���%�: 

  ��%� � /�������� � %��,                    (7a) 

  ���%� � /�������� � %��.                   (7b) 

 

After indirect substitutions, transformations and 

calculations, one can demonstrate that for the time constant 

0 � �
1 and for k = 1 in an inertial measurement system, the 

autocorrelation function  ��%� and power spectral density 

+���� of the output signal are expressed as follows: 

 

 ��%� � 1,-.
&.(1. 23'�4��5|%|� � 5'�4��3|%|�6,       (8) 
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Based on the relationship (8), 
 

��� �  ��0� � 1,-.
&	1 .                     (10) 

 

Using a convolution integral combining random signals 

x(t) and y(t) of a linear system with an impulse response 

k(t), the relationship (7b) can be transformed to the 

following form: 
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For % ≥ 0 and the relationships (2), (5): 
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 ���0� � �∙1,-.
&	1 .                        (13) 

 

The calculated error variance (4) for k = 1 equals: 
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         (14) 

 

while the relation between the error variance and the signal 

variance ��� is expressed by the relationship: 
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The relationship between 
∆.����
,-. and 

�
*K is presented in Fig.3. 

 

 
 

Fig.3.  The relationship between 
∆.���
,-. and 

�
*K. 
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3.  MINIMIZING THE VALUE OF THE ROOT MEAN SQUARE 

ERROR 

Frequency characteristics, both concerning the amplitude 

and phase of the inertial system, show that in addition to 

smoothing distortions, the signal y(t)) at the output of the 

inertial system is delayed relative to the input signal x(t). An 

important metrological question is to determine what 

instantaneous values of the input signal x(t) one should refer 

to the instantaneous values y(t) obtained as the output of the 

inertial measurement system, along with processing error 

evaluation in an inertial system. 

The delayed signal y(t) at the output of the inertial system 

can be compared with the value of the signal x(t) by 

calculating the difference: 
 ∆��� � ���� � ��� � %�.                (16) 

 

The root mean square value of the error does not depend 

on the current time t, but on the delay τ: 

 

∆����� ��� � ��� � 2 ���%�.                (17) 

 

In order to determine the minimum condition of 

relationship (17), such a value of % � %LMN. must be found 

for which the function  ���%� is maximum. 

As specified in Section 2, the distributions of real random 

low-band signals passing through inertial systems are 

gradually normalized. It is reasonable to assume the 

normality of processed signals x(t) and y(t).  

For normal distributions, the cross correlation function  ���%� can be expressed using a more easily experimentally 

determined function of the conditional expected value of the 

signal y(t+τ) with the condition that ���� � �M imposed on 

the input signal x(t) [11], [12]. 
 

/ B��� � %�|��N�P�QH � R�|�Q�%� � S-T�*�
,-. �M        (18) 

 

In a similar way one can create the normalized 

autocorrelation functions U��%� and U��%� from the 

relationship for the conditional expected values of individual 

signals x(t) and y(t): 

 

/ B��� � %�|��N�P�QH � �MU��%�,         (19) 

 

/ B��� � %�|��N�P�QH � �MU��%�.         (20) 

 

When using the relationship (18), the equation (17) will 

then take the following form: 

 

  ∆����� ��� � ��� � 2 ,-.
�Q R�|-Q�%� .         (21) 

 

The function R�V-Q  for the graph of x(t) with exponential 

autocorrelation (5) processed in an inertial system with the 

time constant 0 � �
1 , on the basis of (12) and (18), is 

described by the following relationship: 

R�V-Q�%� � ;5�M BCDEF(CDGF
&(1 � CDEF

&	1 H.           (22) 

 

When determining the maximum of the function R�V-Q �%� 

the following condition is arrived at: 
 

*WQX
*K �

I
FK

�( I
FK

 Y# �
I

FK	�  .                    (23) 

 

Values of %LMN calculated from the expression (23) indicate 

that for the minimum root mean square value of the 

processing error in an inertial system, the current values of 

the signal on the input of the system should be related to the 

respective future values of the processed signal at the 

output, shifted by the time %LMN. 

Fig.4. shows the relationship between 
*WQX
*K  and 

�
*K.  

 

 
 

Fig.4.  The relationship between 
*WQX
*K  and 

�
*K. 

 

With the values of ��, k, α, β, and %LMN assumed and 

known, or designated experimentally, the minimum value of 

the root mean square error variance can be calculated from 

the relationship (21): 
 

∆Z[\�������� ��� ]&	�1
&	1 � �^T|-Q �*WQX�

�Q _.             (24) 

 

4.  EXPERIMENTAL EXAMPLE 

The optimal delay value of the reading τ_opt of the output 

signal in an inertial system processing a random variable 

input signal x(t) with a normal distribution N(x:0,σx) was 

calculated for the time constant of the transducer T = 

1.114 ms and the relation 
�

*K = 10.82. A measurement 

experiment was carried out for the calculation data. The 

results of the calculations and measurements were then 

compared. 

Based on the relationship (23) 
 

%LMN � 0
1 � 0%a

Y# 2
0%a � 1 � 

� �.��b∙�=Dc
�(�=.d� Y# �

�=.d�	� � 201 ∙ 10(efg.          (25) 
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Fig.5. to Fig.8. show the results of the experiment. In the 

inertial system with the time constant t = 1.114 10-6 s, gain 

k = 3 occurred. The parameters used in experimental models 

were: α = 9708 and β = 897. The results of the experiment 

(Fig.6. and Fig.8.) confirm the theoretically calculated 

optimal time delay value of the output reading �= � � �201 ∙ 10e s. At the moment of time t, the signal y(t) is better 

described by the earlier behavior of the original signal x(t-τ). 

Minimizing the root mean square reconstruction error of the 

signal x(t), with the behavior of y(t) recorded in time, one 

must properly account for the behavior values of ��� �%LMN� shifted on the graph in time by 201 ms to the right 

(Fig.8.). 

For �� � 0.5� and %LMN � 201 ∙ 10(efg, ∆Z[\��������
0.42��� � 0.105�� was calculated, which is approximately 

46 % variance of the error calculated from the relationship 

(14). 

 

 
 

Fig.5.  Graphs of the signals: 1-x(t); 2-y(t). 

 

 
 

Fig.6.  Characteristics of conditional mean values: 

1 - characteristics of the conditional expected value R�V-Q �%� 

proportional to U��%�; 

2 - characteristics of the conditional expected value R�V-Q �%� 

proportional to U���%�; %LMN - optimum delay value of the signal 

y(t). 

 
 

Fig.7.  Characteristics of the conditional average value R�VTQ �%� 

proportional to U��%�. 

 

 

 
 

Fig.8.  Graphs of signals: 1 - input signal x(t); 2 - output signal y(t), 

delayed and distorted. 

 

5.  CONCLUSIONS 

1) The white noise which is used in theoretical models of 

low pass filtration and random signal processing is not 

very useful as a model in practical applications. In such 

situations, one may use noises with limited frequency 

bands, such as low-band noises with a virtually 

exponential autocorrelation function and a finite value of 

the autocorrelation function derivative for τ = 0. 

2) In processing of random low-band signal, the processing 

systems are often inertial systems with frequency bands 

which are significantly narrower than the band of the 

processed input noise. 

3) In addition to smoothing distortions, the signal y(t) at the 

output of the inertial system is delayed relative to the 

input signal x(t). Earlier behavior at the time t of the 

original signal x(t) better describes the signal y(t+τ). 

4) Knowing the values of the correlation interval %� of the 

input signal x(t) exponentially correlated, and the time 

constant T of the inertial system, one can determine the 

τopt 

x(t) 

y(t) 
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optimal value %LMN of shifting the reading moments 

recorded in time of the output signal value ��� � %LMN.�. 
5) Signal delays and dynamic errors, which are crucial in 

measurements, depend on the time constant of inertial 

systems, which in practice may vary from several dozen 

ms to a few minutes for temperature sensors. For the 

cited example of an experiment, the optimal delay 

equaled 18 % of the value of the time constant T of the 

inertial system. 
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