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The paper discusses the derivation of an accurate coordinate measuring system consisting of two, three, or four sensors based on the records
of four fixed laser triangulation sensors done for a gauge block in movement. Three-dimensional case is considered. In the simulations, using
a set of distances quadruplets, parameters of sensors in a local sensors coordinate system are determined through a least squares minimization
process using the Differential Evolution approach. The influence of the measurement and rounding inaccuracy on the identification accuracy
using numerical simulation methods are assessed.
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Fig.1. Three sensors and a gauge block

1. INTRODUCTION

The standard approach to the length measurements in co-
ordinate metrology assumes a moving measuring system and
a fixed workpiece [1]. In the present paper a quantitative
characterization of the movement of a workpiece of inter-
est is given based on records provided by a system of two,
three, or four fixed laser triangulation sensors (LTS) [2, 3]
(see Fig. 1) using the laser triangulation principle described
in [4, 5]. Measurement setups using one LTS were already
presented, e.g., a system for the real-time gauge measure-
ment in a train [6] or a system for the contactless dynamic

displacement measurement [7]. A measuring system for on-
line quality control of car engine block has been presented in
[8]. The measuring unit is considered as a set of several mea-
suring modules where each of them acts like a single bore
gauge and is arranged in four LTSs, which are installed on
different positions and in opposite directions.

To our aim, we assume that the output of a sensor interface
is provided by the distance to the point target along the sensor
laser beam (see Figs. 2 and 3).

The usage of stationary sensor system records asks for the
accurate knowledge of the positions of the sensors and the
corresponding directions of their laser beams. In this paper
we describe a simple method for the identification of sensor
parameters in a fixed sensor coordinate system bound to the
sensors based on a set of measurements done for different
positions of a gauge block [9] – a metal or ceramic block in-
volving two parallel opposing faces the distances w between
which is known with very high accuracy (Figs. 1, 2, and 3).
To our best knowledge such a task has not been considered
before. However, the calibration of four LTSs presented in
[8] is based on a similar idea using the standard engine block,
whose objective parameters have been measured by a high-
accuracy coordinate measuring machine (CMM). The authors
also used the Differential Evolution (DE) method [10] to find
the intrinsic parameters of LTSs. We used a different im-
provement of the DE method described below.
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Fig.2. Sensor distances to the points on a gauge block – case 1
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Fig.3. Sensor distances to the points on a gauge block – case 2
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Fig. 4. Sensors positions and orientations in two local coordinate
systems in 2D case

If three sensors are placed at the same vertical position,
and the corresponding laser beams are all directed “horizon-
tally” as in Fig. 1, the problem could be considered as two-
dimensional (see Figs. 1 and 2 in [11]). In fact, the authors
of [8] were using the assumption of four planar LTSs with
beams lying in a common plane. In [11] a 6 parameters iden-
tification problem for the statement of a local coordinate sys-
tem for three sensors in a plane has been considered. For this
purpose a set of distance triplets (see Fig. 2 in [11]) for dif-
ferent (unknown) positions of a “gauge block” (rectangle in a
plane) has been used.

However, the assumption formulated above is not realistic.
In this paper we consider a solution of the 3D problem. Un-
like the two-dimensional case, in that case the laser beam’s
direction is characterized by two (not one) angles which cor-
respond to the longitude and latitude of a point on a sphere.

The discussion is divided into four parts: the problem for-
mulation (Sec. 2), the problem solution (Sec. 3), numerical
case studies – the results of simulations (Sec. 4), and conclu-
sions (Sec. 5).

2. FORMULATION OF THE PROBLEM

Given the set of four fixed sensors S1, S2, S3, and S4,
with predefined but unknown positions and angular direc-
tions of their laser beams, and a certain position of the
gauge block (like in Figs. 2 and 3), a foursome of distances
(d1;d2;d3;d4) measured along the laser beam from each sen-
sor to the block, is recorded and stored. The N times iter-
ation of the measuring process for different positions of the
rectangular gauge block of width w provides the input of the
problem, (d1i ,d2i ,d3i ,d4i), i = 1, 2, . . . , N.

We have to determine the parameters (positions and the
laser beams directions) of sensors S1, S2, S3, and S4 in some
local coordinate system using the set of distances above.

2.1. Uniqueness of the Solution

Remark 2.1. If one will try to solve the problem using only
gauge block positions with a common vertical axis, then it is
evident that independent vertically shifted sensors will give
the same distances. So, in such case the solution cannot be
unique. For more general but unknown positions of a gauge
block, it will not be possible to determine the block face plane.
Therefore four sensors should be used.

Remark 2.2. Due to the unknown rectangles – “gauge block”
– positions the 2D problem does not have a unique solution –
if one rotate and/or shift the coordinate system, the same set
of distances will correspond to some rectangle’s positions.

Fixing the origin at the sensor S1 and adding an additional
condition, e.g., common x or y coordinate for two sensors (see
Fig. 4) will result in a unique solution. Corresponding results
of least squares minimization for “exact” and “rounded”
triplets data for a case of common y coordinate of sensors
S2 and S3 are presented in [11].

211



MEASUREMENT SCIENCE REVIEW, 20, (2020), No. 5, 210–217

In 3D case we will consider two additional conditions to-
gether with fixed origin at point S1:

1. we will consider the plane z = 0 to be a common plane
for sensors S1, S2, and S3;

2. we will take x2 = 0, so y2 = d > 0, where d will be the
distance between S1 and S2.

Problem formulation. Given a set of N distances foursomes
for unknown gauge block positions, determine 14 unknown
parameters of four sensors in a local coordinate system

S1 = (0;0;0;α1;β1), S2 = (0;y2;0;α2;β2),

S3 = (x3;y3;0;α3;β3), S4 = (x4;y4;z4;α4;β4).
(1)

Remark 2.3. The angles α in (1) represent the azimuthal
angle in the x–y plane of the local spherical coordinate system
(for the x-axis this angle is 0, for the y-axis it is equal to π/2),
the angles β represent the corresponding polar angle which
is equal to −π/2 for the points lying on the negative half
axis z, to π/2 on the positive half axis z, and 0 for points on
the x–y plane. So α and β correspond to the longitude and
latitude of a point on a sphere, respectively. The origin of
the local coordinate system is placed at the sensor S1, the y
axis is determined by sensors S1 and S2, and the coordinate
x–y plane and the z-axis are determined by the sensors S1, S2,
and S3 (see Figs. 2 and 3).

Remark 2.4. Solving the Problem, it is possible to use the
results for the coordinate system statement for cases of only
two or three (like on Fig. 1) sensors. For example, if one
would like to use only two sensors for measurement, he/she
could add temporarily two additional sensors, then measure
distances for different positions of a gauge block, find the pa-
rameters, and in the following measurement use only sensors
S1 and S2.

3. SOLUTION OF THE PROBLEM

We consider two different sensor configurations. Case 1:
sensor S1 is placed on the opposite side of the gauge block as
the other sensors S2, S3, and S4 (see Fig. 2). Case 2: sensors
S1 and S2 are placed on the opposite side as the sensors S3 and
S4 (see Fig. 3). Under the above constraints on the definition
of the coordinate system, the only invariant feature associ-
ated to any position of the gauge block follows from the fact
that the distance from the target T1 to the plane σ(T2,T3,T4)
defined by three other targets for Case 1 (see Fig. 2) and the
distance between two skew straight lines T1T4 and T2T3 for
Case 2 (see Fig. 3) should equate w for all block placements.

In the subsection 3.2 the precision of the target location
under the inaccuracies of the sensor parameters and measured
distances is discussed.

We tried to solve the minimization problems (3) and (4)
formulated below in Sec. 3.1 using “classical” (gradient,
conjugate-gradient, the Newton) methods, however, we did
not succeed. Relevant reasonable solution was achieved us-
ing a variant of the Differential Evolution algorithm, briefly
described in the subsection 3.3 below.

3.1. Formulation of the Minimization Problem
Given the sensor parameters S1, S2, S3, and S4 (1) de-

fined in Sec. 2, the values w̃i = w̃i(S1,S2,S3,S4) (which de-
note the calculated distances from T1 to the plane σ(T2,T3,T4)
for Case 1 and the distance between two skew straight lines
T1T4 and T2T3 for Case 2) calculated for the input foursomes
(d1i ,d2i ,d3i ,d4i), i = 1, 2, . . . , N, will be different from the
true distance w and will depend on the accuracy of measure-
ment of these foursomes.

So the deviations

ri = w̃i(S1,S2,S3,S4)−w, i = 1,2, . . . ,N, (2)

are introduced, and the problem solution is considered as the
solution of the nonlinear least squares problem

(S∗1,S
∗
2,S
∗
3,S4∗) = argmin min

(S1,S2,S3,S4)

N

∑
i=1

r2
i , (3)

or the min-max problem:

(S∗1,S
∗
2,S
∗
3,S4∗) = argmin min

(S1,S2,S3,S4)
max

i=1, ...,N
|ri|. (4)

Remark 3.1. If the sensor parameters are wrong, corre-
sponding to the false sensors system, then significant non-
zero deviations are expected. If the number N of the measure-
ments is large enough, the best approximating values of the
14 parameters should be close to the “true” parameters of
the original sensors system.

3.2. Accuracy Issues
Let us consider a sensor S̄ with the true parameters, and its

approximation Ŝ:

S̄ = [x̄S, ȳS, z̄S, ᾱ, β̄ ] and Ŝ = [x̂S, ŷS, ẑS, α̂, β̂ ]. (5)

If one knows the true distance d̄ to the target point

T̄ = [x̄T , ȳT , z̄T ], (6)

then considering three coordinate functions X(x,d,α,β ),
Y (y,d,α,β ), and Z(z,d,β ), the target coordinates are the fol-
lowing

x̄T = X(x̄S, d̄, ᾱ, β̄ ) = x̄S + d̄ · cos β̄ · cos ᾱ,

ȳT = Y (ȳS, d̄, ᾱ, β̄ ) = ȳS + d̄ · cos β̄ · sin ᾱ,

z̄T = Z(z̄S, d̄, β̄ ) = z̄S + d̄ · sin β̄ ,

(7)

and similar formulae define the coordinates of the approxi-
mate target T̂ given for the approximate sensor Ŝ from (5)
and the distance d̂.

Using the Lagrange theorem for the function X we have

x̂T = X(x̂S, d̂, α̂, β̂ )
L
= X(x̄S, d̄, ᾱ, β̄ )+
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+
∂X
∂x

∣∣∣∣
[x̃S,d̃,α̃,β̃ ]

· (x̂S− x̄S)+
∂X
∂d

∣∣∣∣
[x̃S,d̃,α̃,β̃ ]

· (d̂− d̄)+

+
∂X
∂α

∣∣∣∣
[x̃S,d̃,α̃,β̃ ]

· (α̂− ᾱ)+
∂X
∂β

∣∣∣∣
[x̃S,d̃,α̃,β̃ ]

· (β̂ − β̄ ) = (8)

= x̄T +(x̂S− x̄S)+ cos α̃ cos β̃ (d̂− d̄)−

−d̃ sin α̃ cos β̃ (α̂− ᾱ)− d̃ cos α̃ sin β̃ (β̂ − β̄ ).

For the y coordinate we get

ŷT = Y (ŷS, d̂, α̂, β̂ )
L
=

L
= ȳT +(ŷS− ȳS)+ sin α̃ cos β̃ (d̂− d̄)+ (9)

+d̃ cos α̃ cos β̃ (α̂− ᾱ)− d̃ sin α̃ sin β̃ (β̂ − β̄ ).

Finally, for the z coordinate we have

ẑT
L
= z̄T +(ẑS− z̄S)+ sin β̃ (d̂− d̄)+ d̃ cos β̃ (β̂ − β̄ ). (10)

The values d̃, α̃ , and β̃ in (8), (9), and (10) are, in general,
different. We will use these equations in the next section,
when we discuss the precision of the numerical solution.

3.3. Brief Description of the Asynchronous Differential
Evolution Method

Differential Evolution (DE) — is an efficient method to
solve global optimization problems [10, 12, 13]. The method
uses a population of Np vectors ~si, which represents candi-
date solutions in the search domain Ω. A steady-state DE
variant — Asynchronous Differential Evolution with Adap-
tive Correlation Matrix (ADE-ACM) [14] is used in this work
to iteratively improve a candidate solution by applying evolu-
tionary operations of mutation, crossover and selection over
population members.

In steady-state strategy one can pick-up a random mem-
ber from the population as a target vector ~si [15]. A mutant
vector~vi is formed by simple arithmetic combination of three
randomly selected distinct population members (rand/1 DE-
strategy):

~vi =~sr +F(~sp−~sq), (11)

where a scale factor F is sampled for each iteration from a
Cauchy distribution CF(µF ,γF = 0.1). The location param-
eter µF is updated according to values of the scale factor,
which results in a population’s improvement.

Canonical Differential evolution [12] uses uniform
crossover: a trial vector ~ui is created from the target vec-
tor ~si by replacing several of its coordinates by correspond-
ing coordinates from a mutant vector (11). An average num-
ber of replaced coordinates (CrNp) depends on crossover rate
Cr ∈ [0,1]. At least one coordinate is replaced. Optimal
value of crossover rate depends on the problem: Cr→ 0 leads
to faster convergence for separable problems, while Cr → 1
should be used for non-separable objective functions.

ADE-ACM [14] uses a different approach to perform
crossover: the crossover operator is modified to take into ac-
count pairwise dependencies between the variables. The cur-

rent population is used to calculate a sample correlation ma-
trix C :

C jk =
q jk√q j jqkk

; q jk =
1

Np−1

Np−1

∑
i=0

(si j−〈s〉 j)(sik−〈s〉k),

(12)
where 〈s〉 j denotes the population averaging of the j-th vari-
able of population vectors ~si, i = 0,1, . . .Np − 1. The ap-
proximation of the correlation matrix is cumulatively adapted
through successful evolutionary steps:

C 7→(1− l)C+ lC , l = 0.01. (13)

Based on the acquired adaptive correlation matrix, groups
of dependent variables can be identified and crossover is ap-
plied in the corresponding subspace of the original domain Ω.
Thanks to this crossover scheme, the ADE-ACM compet-
itively solves a wide range of global optimization prob-
lems, both separable and non-separable [16]. For partially-
separable problems ADE-ACM shows both better conver-
gence probability and faster convergence rate than DE vari-
ants with uniform crossover.

A greedy algorithm is used for selection: a trial vector ~ui
replaces the target vector~si, if it results in improvement of the
objective function value.

During successive operations ADE controls spreads of
population members in each coordinate and in the function
values. If any spread is less than a small predefined value, an
independent restart is initiated [17]. The ADE is started with
Np = 20, at each restart the size of population is doubled.

Minimization is performed until the predefined maximal
number of function evaluations is reached. To ensure conver-
gence to the global minimum, 10 independent trials are used.
The 7 best results are used to estimate uncertainty in the value
of the found minimum. If the precision is not sufficient, the
procedure is repeated with a larger budget of maximal num-
ber of function evaluations.

4. NUMERICAL CASE STUDIES

In this section we present the results of numerical simula-
tions. Two sensor systems S1 (14) and S2 (15) for Case 1
and one system S3 (16) for Case 2 have been considered:

S1 =
(
0;0;0; π

3 ; π

4

)
, S2 =

(
0;50;0; 5π

3 ;0
)
,

S3 =
(
20;50;0; 3π

2 ;0
)
, S4 =

(
−20;50;20; 3π

2 ;0
)
,

(14)

S1 =
(
0;0;0; π

3 ; π

4

)
, S2 =

(
0;50;0; 5π

3 ; π

6

)
,

S3 =
(
40;45;0; 5π

4 ; π

6

)
, S4 =

(
20;50;30; 3π

2 ;−π

6

)
,

(15)

S1 =
(
0;0;0; π

2 ;0
)
, S2 =

(
0;50;0; 3π

2 ;0
)
,

S3 =
(
20;50;0; 3π

2 ;0
)
, S4 =

(
20;0;10; π

2 ;0
)
.

(16)

The first three coordinates are in millimeters (mm), two an-
gular coordinates are in radians.

We used randomly modified parameters using the uniform
distribution (within radius of 1 mm for the first three coordi-
nates and 0.0175 radian ≈ 1 degree for angular coordinates)
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to model the inaccuracy of parameter determination. The pa-
rameters of three systems which we considered as “original”
are listed below (here and in the following text the values are
rounded to fit the text width). Parameters of particular sensors
are presented in the columns.

S1 S2 S3 S4
0 0 19.98883825 -19.99255062
0 49.95691998 49.95906517 50.05072563
0 0 0 19.91418540
1.57832969 4.70825814 4.70321121 4.71034922

-0.00177239 0.00936077 0.00670605 -0.00376562

S1 S2 S3 S4
0 0 40.06409233 19.91224330
0 50.05905562 44.92675448 50.08682815
0 0 0 29.95563246
1.03162095 5.24669058 3.93927376 4.69646645
0.78408640 0.51227262 0.52808819 -0.53736586

S1 S2 S3 S4
0 0 20.05295680 19.97718986
0 49.97694430 49.93759188 -0.04898805
0 0 0 9.94829850
1.57834019 4.70170318 4.70150254 1.58741101
-0.01258636 -0.00769893 -0.01512428 -0.00716478

4.1. Simulation Data Generation
In our numerical experiments we used the data sets with

different number N of a “gauge block” position. To identify
14 parameters it is evident that N cannot be a small number.
For N = 27 the results were unsatisfactory, good results were
obtained, e.g., for N = 135. Below in Sec. 4.3 the results for
N = 54 will be presented.

For distance generation and also for some estimates of
the resulting precision we used GNU Octave [18] – an open
source alternative to the proprietary programming language
MATLAB [19]. Our scripts and functions could be, of course,
used in MATLAB as well. For the minimization this program
was too slow, and we prepared a C++ package briefly pre-
sented below in Sec. 4.4.

For this purpose we generated data for a “gauge block” po-
sition using the next Octave code:

% 54 distances foursomes generation
for k=1:3, % 3 alpha

for m=1:3, % 3 beta
for l=1:3, % 3 x,y,z

nd=nd+1; % distances counter
alpha=pi/2+pi/12*(2-k);
beta=pi/12*(2-m);
cpoint=[0;20;0]+(2-l)*[0;15;0];
... distances foursame calculation
alpha=pi/2+pi/12*(2-k);
beta=pi/6*(2-m);
cpoint=[15;18;0]+(2-l)*[0;8;0];
... distances foursame calculation

end
end

end

A “gauge block“ is placed in 6 positions (using 2 basic po-
sitions and two shifts of each one) and in each position it is
rotated around the center in two angular directions – for each
direction 3 different angles are used.

Using the same principle, several data sets have been con-
sidered. For each position of the “gauge block” all 4 dis-
tances to the sensors are calculated, rounded (see Sec. 4.3),
and stored.

4.2. Double Precision Distances Data
In this section only one result for the system S1 will be

presented. N = 54 “gauge block” positions have been used for
generation of foursomes of distances. The distances stored in
the double precision (further considering as exact) have been
used to determine the parameters of the sensor system. The
system (14) is considered as “ideal”, and its perturbed system
above as “original”.

Three matrices are presented below. The first is the dif-
ference between the “original” and “ideal” system S1 (let us
recall that the first three lines are in mm). The second matrix
is the result of the calculations. Indeed, the average of the 7
from 10 best solutions is used and presented here. This ma-
trix could be compared with the “original” system S1 above.
Finally, the third matrix represents the difference between the
resulting matrix and the “original”. For the x, y, and z co-
ordinates the worst case is 0.0000217 mm ≈ 22 nm for the y
coordinate of the sensor S4. The maximum angular difference
0.00000044 rad ≈ 0.000025 degree.

Sensors differences ideal-original
0.00000000 0.00000000 0.01116175 -0.00744938
0.00000000 0.04308002 0.04093483 -0.05072563
0.00000000 0.00000000 0.00000000 0.08581460
-0.00753336 0.00413084 0.00917777 0.00203976
0.00177239 -0.00936077 -0.00670605 0.00376562

Averaged optimal sensors
0.00000000 0.00000000 19.98884170 -19.99255112
0.00000000 49.95692049 49.95908683 50.05074732
0.00000000 0.00000000 0.00000000 19.91419721
1.57832953 4.70825807 4.70321122 4.71034925
-0.00177224 0.00936059 0.00670571 -0.00376606

Sensors differences optimal-original
0.00000000 0.00000000 0.00000345 -0.00000050
0.00000000 0.00000051 0.00002166 0.00002170
0.00000000 0.00000000 0.00000000 0.00001181
-0.00000016 -0.00000007 0.00000001 0.00000003
0.00000015 -0.00000018 -0.00000034 -0.00000044

4.3. Distances Data Rounded to 0.1 µm
In this subsection we will present the results of numeri-

cal simulations using distance foursomes rounded to 0.1 µm.
Only results for selected data sets of size N = 54 will be
shown.

At first let us present the result for one simulation concern-
ing the system S1.

Averaged optimal sensors
0.00000000 0.00000000 19.98862833 -19.99080958
0.00000000 49.95700254 49.96434449 50.05016400
0.00000000 0.00000000 0.00000000 19.92080476
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Table 1. Upper bounds in mm for target inaccuracies for system S1

S1 S2 S3 S4

∆xT 0.0009661 0.0011004 0.0086499 0.0044867
∆yT 0.0000620 0.0001490 0.0053898 0.0025396
∆zT 0.0000078 0.0000060 0.0000695 0.0066510

Table 2. Upper bounds in mm for target inaccuracies for system S2

S1 S2 S3 S4

∆xT 0.0023199 0.0018423 0.0065804 0.0028651
∆yT 0.0026404 0.0026216 0.0088654 0.0035003
∆zT 0.0017003 0.0008761 0.0012513 0.0018348

Table 3. Upper bounds in mm for target inaccuracies for system S3

S1 S2 S3 S4

∆xT 0.0003852 0.0003079 0.0059452 0.0024507
∆yT 0.0000699 0.0001060 0.0015320 0.0012659
∆zT 0.0000091 0.0000142 0.0001895 0.0084260

1.57831038 4.70823615 4.70322171 4.71036112
-0.00175725 0.00933902 0.00656800 -0.00397468

Sensors differences optimal-original
0.00000000 0.00000000 -0.00020992 0.00174103
0.00000000 0.00008256 0.00527933 -0.00056163
0.00000000 0.00000000 0.00000000 0.00661936
-0.00001931 -0.00002200 0.00001049 0.00001190
0.00001514 -0.00002176 -0.00013805 -0.00020906

The solution presented in the matrix above could be com-
pared with the parameters of the “original” system. The dif-
ferences presented in the bottom matrix show a very good pre-
cision for the second sensor S2, the worst precision is about
5.3 µm for the y coordinate of the sensor S3.

It is important to have the upper bounds of the inaccuracies
by the determination of a target point T for some sensor S
and corresponding measured distance d between S and T . For
example, using (8), for the inaccuracy of the x coordinate of
the target T

|x̂T − x̄T | ≤ |∆xS|+ |cos α̃ cos β̃ | · |∆d|+ d̃|sin α̃ cos β̃ | · |∆α|

+d̃|cos α̃ sin β̃ | · |∆β |.
Using, in this case, |∆d| ≤ 0.00005, and

|cos α̃| ≤ 0.01, |sin α̃| ≤ 1, |cos β̃ | ≤ 1, |sin α̃| ≤ 0.003

for the first sensor S1 we get the upper bound

|x̂T − x̄T |< 0.00097 mm = 0.97 µm.

In Table 1 the upper bounds for all three coordinate inaccu-
racies for target T at distance d < 50 mm from each of sensors
S1 – S4 are given. These upper bounds are taken as the worst
cases from results calculated for 3 different data sets of size
N = 54.

These results could be improved if we consider distances
d smaller then 50 mm, and also using more accurate upper
bounds for sin and cos function values.

We would like to note that the target location precision for
the first two sensors S1 and S2 is much better than the results
for the sensors S3 and S4. The same applies to the accuracy
of the sensor S1 and S2 parameters themselves.

For the next two cases we will give the corresponding re-
sults without the detailed description in the text.

Now, let us present the results for the sensor system S2.

Sensors differences ideal-original
0.00000000 0.00000000 -0.06409233 0.08775670
0.00000000 -0.05905562 0.07324552 -0.08682815
0.00000000 0.00000000 0.00000000 0.04436754
0.01557660 -0.01070282 -0.01228295 0.01592253
0.00131176 0.01132616 -0.00448941 0.01376709

Original sensors
0.00000000 0.00000000 40.06409233 19.91224330
0.00000000 50.05905562 44.92675448 50.08682815
0.00000000 0.00000000 0.00000000 29.95563246
1.03162095 5.24669058 3.93927376 4.69646645
0.78408640 0.51227262 0.52808819 -0.53736586

Averaged optimal sensors
0.00000000 0.00000000 40.06564663 19.91403358
0.00000000 50.05960123 44.92786857 50.08810241
0.00000000 0.00000000 0.00000000 29.95386548
1.03159297 5.24672452 3.93927302 4.69644309
0.78403271 0.51224814 0.52806036 -0.53732810

Sensors differences optimal-original
0.00000000 0.00000000 0.00155430 0.00179028
0.00000000 0.00054561 0.00111409 0.00127426
0.00000000 0.00000000 0.00000000 -0.00176698
-0.00002798 0.00003394 -0.00000075 -0.00002336
-0.00005369 -0.00002448 -0.00002783 0.00003776

In Table 2 the upper bounds for all three coordinate inac-
curacies for a target T from each of the sensors S1 – S4 are
given.

Finally, Case 2 sensor system S3 will be considered.

Sensors differences ideal-original
0.00000000 0.00000000 -0.05295680 0.02281014
0.00000000 0.02305570 0.06240812 0.04898805
0.00000000 0.00000000 0.00000000 0.05170151
-0.00754386 0.01068580 0.01088644 -0.01661468
0.01258636 0.00769893 0.01512428 0.00716478

Original sensors
0.00000000 0.00000000 20.05295680 19.97718986
0.00000000 49.97694430 49.93759188 -0.04898805
0.00000000 0.00000000 0.00000000 9.94829849
1.57834019 4.70170318 4.70150254 1.58741101
-0.01258636 -0.00769893 -0.01512428 -0.00716478

Averaged optimal sensors
0.00000000 0.00000000 20.05163295 19.97772896
0.00000000 49.97690208 49.93893530 -0.05003985
0.00000000 0.00000000 0.00000000 9.95560399
1.57833250 4.70169704 4.70155845 1.58744917
-0.01260239 -0.00768075 -0.01502769 -0.00741663

Sensors differences optimal-original
0.00000000 0.00000000 -0.00132385 0.00053911
0.00000000 -0.00004222 0.00134342 -0.00105180
0.00000000 0.00000000 0.00000000 0.00730549
-0.00000769 -0.00000614 0.00005590 0.00003816
-0.00001603 0.00001818 0.00009659 -0.00025184

215



MEASUREMENT SCIENCE REVIEW, 20, (2020), No. 5, 210–217

α1 β1 y2 α2 β2 x3 y3 α3 β3 x4 y4 z4 α4 β4

α1

β1

y2

α2

β2

x3

y3

α3

β3

x4

y4

z4

α4

β4

1.0

0.8

0.6

0.4

0.2

0.0

−0.2

−0.4

−0.6

−0.8

−1.0

Fig.5. Adaptive correlation matrix (13) near the global minimum

In Table 3 the upper bounds for all three coordinate inac-
curacies for target T from each of the sensors S1 – S4 are
given. In this case, similar to both systems considered before,
the difference between the inaccuracies, upper bounds for the
first two sensors S1 and S2 and the sensors S3 and S4 is even
more pronounced.

4.4. C++ Program Description, Implementation, and Per-
formance

The C++ implementation of the ADE-ACM method was
used to find out positions of the sensors. For efficient load
of multicore processors, two parallel variants were tested:
OpenMP (Open Multi-Processing) and MPI (Message Pass-
ing Interface). The program implements asymmetric Pri-
mary/Secondary model: multiple secondary processes are
used to evaluate objective function values (each candidate
solution by a separate process), while the primary process
implements the ADE-ACM algorithm, issues candidate so-
lutions and collects results from secondary processes.

Three tasks of size N = 54 for which the results were pre-
sented above were solved on the 2C/4T Intel(R) Core(TM)
i5-420M CPU @ 2.50Ghz system

S1: nfe 300000, OMP_NUM_THREADS=1 – 10 s,
OMP_NUM_THREADS=2 – 7 s, mpirun -np 2 – 12 s.

S2: nfe 2300000, OMP_NUM_THREADS=1 – 68 s,
OMP_NUM_THREADS=2 – 51 s, mpirun -np 2 – 91 s.

S3: nfe 300000, OMP_NUM_THREADS=1 – 11 s,
OMP_NUM_THREADS=2 – 7 s, mpirun -np 2 – 14 s.

The main difficulty of the minimization process arises from
correlation (or anti-correlation) between parameters (Fig. 5).

In addition to the already described elements of the pro-
gram, we have implemented a simple (and also another
slightly more complicated) test that proves that for the re-
sulting “optimal” sensor system with specified parameters for

each rounded distance foursome, there is a position of the
“gauge block” for which the exact distances after rounding
match the specified ones. The principle of the tests is to check
whether within the specified distance precision exist two dis-
tance foursomes for which the resulting values ri (2) are both
negative and positive. All 9 resulting systems presented above
did pass the simpler test successfully.

5. DISCUSSION / CONCLUSIONS

Presented results show the possibility of using the pro-
posed method to solve the sensor parameters identification
tasks. Of course, only simulation results were discussed. In
case of interest, real measurements can be used instead of
simulated distance data sets. In such a situation, further study
of the gauge block positions will be necessary.

From the point of view of accuracy, the case of identifying
the parameters of the system of two sensors by temporarily
supplementing the other two sensors is particularly interest-
ing. For less precise distances measured, corresponding, e.g.,
to rounding to 1 µm instead of 0.1 µm considered above, evi-
dently using larger values N will be necessary. “Nowadays, it
is possible to find LTS with resolution up to 0.01 µm. How-
ever, the need of higher resolution comes into conflict with
the measuring range of the transducer.” – state the authors
of [7].

The computation time is not long, if we take into account
that the task would be solved once in identifying the parame-
ters of the installed sensor system.

Finally, let us recall that for the measured distance four-
somes it is not necessary to determine and coordinate the po-
sitions of the gauge block in the local coordination system.
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