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Epileptic seizure attack is caused by abnormal brain activity of human subjects. Certain cases will lead to death. The detection and diagnosis 
is therefore an important task. It can be performed either by direct patient activity during seizure or by electroencephalogram (EEG) signal 
analysis by neurologists. EEG signal processing and detection of seizures using machine learning techniques make this task easier than 
manual detection. To overcome this problem related to a neurological disorder, we have proposed the ensemble learning technique for 
improved detection of epilepsy seizures from EEG signals. In the first stage, EEG signal decomposition is done by utilizing empirical wavelet 
transform (EWT) for smooth analysis in terms of sub-bands. Further, features are extracted from each sub. Time and frequency domain 
features are the two categories used to extract the statistical features. These features are used in a stacked ensemble of deep neural network 
(DNN) model along with multilayer Perceptron (MLP) for the detection and classification of ictal, inter-ictal, and pre-ictal (normal) signals. 
The proposed method is verified using two publicly available datasets provided by the University of Bonn (UoB dataset) and Neurology and 
Sleep Center - New Delhi (NSC-ND dataset). The proposed algorithm resulted in 98.93 % and 98 % accuracy for the UoB and NSC-ND 
datasets, respectively. 
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1.  INTRODUCTION 

Epilepsy is considered a neurological disorder that causes 
instant seizures. The occurrence of repeated seizure attacks 
may cause severe damage to the person. The prediction of 
seizure attacks is somehow difficult due to their random 
nature. The cause of epilepsy seizure includes traumatic brain 
injury, central nervous system (CNS) infection, 
cerebrovascular disease, brain tumors, degenerative CNS 
disease, perinatal factors, familial and genetic factors [1]. The 
diagnosis process of epilepsy includes EEG monitoring or 
observing the patient through video. Manual monitoring of 
EEG signals for diagnosis may lead to delay in detection that 
may cause an increase in the risk on a patient’s life. Machine 
learning-based observations have proven to be automatic and 
accurate in comparison to classical detection methods for 
disease diagnosis.  

In recent decades researchers have developed various 
methods in this field of research. Application of classic 
statistical methods like Fourier transform (FT) [2], wavelet 
transform (WT) [3], and principal component analysis (PCA) 
[4], etc., has been developed for epilepsy seizure detection. 
Classic machine learning techniques like the support vector 
machine (SVM) optimized using genetic algorithm and 
trained with features extracted by double density discrete 

wavelet transform (DWT) have shown a competitive 
performance in seizure detection [5]. Other machine learning 
methods like K-nearest neighbor (K-NN), decision tree (DT), 
Random forest, and naive Bayes are also utilized for epilepsy 
detection [6], [7]. Various deep learning-based methods are 
attracting researchers in EEG signal processing for epilepsy 
detection. Recurrent neural networks (RNN) have been used 
for epilepsy detection from EEG signals [8]. Long short-term 
memory-based recurrent models have been proven to be 
better in comparison to simple RNN models for epilepsy 
detection [9]-[11]. Convolutional neural networks have a 
higher attraction in comparison to other deep learning-based 
methods in epilepsy data detection for their automatic feature 
extraction characteristics [12]-[14].  

Different decomposition methods have been utilized for 
sub-band generation from EEG signals in epilepsy detection. 
Empirical mode decomposition (EMD) has been considered 
in recent works for EEG signal decomposition and then for 
further processing by classifiers [15]-[17]. Improved EMD 
methods like ensemble-EMD (EEMD) and complete-EEMD 
(CEEMDAN) have also been applied for epilepsy detection 
from EEG signals [18], [19]. DWT-based EEG signal 
analysis for extracting envelopes is another way of 
decomposition [20]-[23]. EWT as a mode decomposition 
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method with various classifiers has also been chosen for EEG 
signal classification in epilepsy detection [24]-[26].  

Ensemble learning has proven to be a better option for 
obtaining increased performance in comparison to single 
classifiers in various fields of the image as well as in single-
dimensional signal processing [27]-[30]. Ensemble learning 
has also shown its importance in epilepsy seizure detection 
and classification including the combination of various 
statistical machine learning as well as deep learning 
approaches [31]-[33]. Still, research is going on to predict the 
seizure attack by studying the frequency of seizure 
occurrence signals, which can be studied in both the time 
domain and frequency domain by considering features in both 
domains for training purposes [34]. The authors in this work 
have provided details of features that can be used for further 
analysis. This paper mainly focuses on the following few 
points: 
• The proposed classification model is trained directly 

with the EEG dataset to observe the performance. 
• The epilepsy prediction is done using EWT as a feature 

extractor and ensemble of DNNs for classification 
• The decomposed signals generated by EWT with a 

different number of modes (2 to 8) are then processed to 
extract statistical features both in the time domain and 
frequency domain. 

• The frequency-domain features include AM and FM 
bandwidths, spectral entropy, spectral power, and 
spectral centroid, whereas the time domain features 
include skewness, kurtosis, Hjorth activity, Hjorth 
mobility, and Hjorth complexity. These features are 
then divided into two groups to train the classification 
model. 

• The classification results are compared in terms of 
results obtained from the two groups of features. 

• The ensemble of DNNs with MLP as meta classifier is 
used for the classification of ictal, inter-ictal, and normal 
(pre-ictal) epilepsy EEG signals. 

• The DNN is designed with 128, 64, 32, 64, 128 nodes 
activated by the ReLU activation function and at the end 
2 number of nodes are taken for base level classification 
activated by the Softmax activation function. Each 
model of DNN is optimized with Adam optimizer. 
Binary cross entropy is used to calculate the loss. 

• The proposed method is verified on two publicly 
available datasets, i.e. the UoB dataset and the NSC-ND 
dataset. 

The remaining part of the paper is organized as follows: 
Proposed algorithms adopted for EEG signal analysis for 
epilepsy detection are discussed in section 2; section 3 
provides detailed information about the results obtained from 
the proposed method, and the conclusion is drawn in 
section 4. 
 
2.  PROPOSED METHOD 

Instead of directly feeding the EEG signals of various kinds 
like ictal, inter-ictal, and normal (pre-ictal), to the 
classification model, signals from each category are 
decomposed into their corresponding modes using EWT [35]. 

The statistical features are then extracted into two groups to 
train the stacked ensemble model for the detection of epilepsy 
seizures. The workflow diagram of the proposed algorithm is 
summarized in Fig.1. 

 

 
 

Fig.1.  Workflow diagram of the proposed method. 
 

2.1.  Empirical Wavelet Transform (EWT) 
EWT is designed to extract the AM and FM components of 

a signal adaptively using wavelet filter banks. The 
decomposition is possible due to the compact Fourier 
supports of such components following the assumptions: (1) 
the signal is real-valued to maintain the symmetry property, 
and (2) periodic with a period π2 . But the signal analysis is 
performed in the range [0,π ] to satisfy Shannon’s sampling 
criterion. The number of modes (N) to which the signal will 
be decomposed is set before the decomposition that makes 
the method different from the previously developed empirical 
mode decomposition (EMD) designed by Huang et al.[36] in 
1998. 
 
2.2.  Feature extraction 

The proposed ensemble model is trained with 10 statistical 
features extracted from the decomposed signals of each 
model. The features are divided into two groups depending 
upon the signal domain. Frequency domain and time domain 
features are the two main groups each including five different 
features. This work is mainly focusing on epilepsy seizure 
detection as well as the importance of features for this 
purpose.  

 
2.2.1..Frequency domain method 

The features extracted from the decomposed signals under 
this category are AM and FM bandwidths, spectral entropy, 
spectral power, and spectral centroid. AM and FM 
bandwidths are evaluated using the equations (1) and (2) as 
mentioned in [37]. 
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Where A represents the amplitude of the EEG signal, E is 

the energy of the signal and ω represents the central 
frequency corresponding to each mode. 
The third and fourth features are the power and entropy of the 
frequency domain representation of the signal, i.e. spectral 
power ( PowS ) and spectral entropy ( EntS ) are calculated as 
equations (3) and (4). 
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Where, N represents the count of spectral coefficients, and 

XXP is the power spectral density calculated by using 

Welch’s method [38], and XXP  represents the normalized 
power spectral density. 

Spectral centroid (SC) is determined using equation (5). 
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Where f represents the frequency segment of the original 

signal. )( fω and )( fM  are the central frequency and 
magnitude of PSD of the segment f , respectively. 
 
2.2.2.  Time-domain method 

For time-domain feature extraction, we have considered the 
skewness, kurtosis, and Hjorth parameters. 
Skewness and Kurtosis calculation are done as per equations 
(6) and (7). 
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Where, σ  and µ represent the standard deviation and 

mean of the signal )(tf . 

Hjorth parameters include activity, mobility, and 
complexity. These parameters are calculated using equations 
(8)-(10). 
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Where var() is the variance of the signal. 
These features are well studied by providing them to the 

classification model and the results obtained from these two 
groups are discussed in the results section. 
 
2.3.  Classification 

Once the features are extracted, these features are dived into 
two groups as described above, depending upon the time and 
frequency domain representation. The classification model 
proposed in this work is a stacked ensemble model. The 
ensemble part consists of four DNN models with the same 
number of layers and nodes in each model. We have analyzed 
the number of base learners by varying it from 2 to 4. 
Considering the two numbers of base learners is not advisable 
as their results may bias the final decision when both the base 
classifiers will provide results opposite to each other. So, we 
have not considered two numbers of DNNs. The training 
accuracy obtained with three and four numbers of DNNs are 
96.54 % and 100 %, respectively. The number of base 
classifiers also increased to five. The result obtained with five 
base classifiers was deteriorating due to overfitting of the data 
and provided less accuracy than that of four-DNNs model. 
Therefore, the proposed model is designed with four DNNs 
as base learners. The prediction outcomes of each base model 
are combined to form the metadata that is passed to the meta 
classifier MLP for training and final classification. The MLP 
model has 8 nodes in the input layer to accept the 8 outcomes 
from the four base models. The hidden layer consists of 32 
numbers of nodes activated using the ReLU activation 
function and the final output layer again consists of two nodes 
activated by the Softmax activation function for two-class 
classification, i.e. for ictal versus pre-ictal (normal) and ictal 
versus inter-ictal classification. Algorithm 1 is used for model 
training, and classification. The meta classifier is the final 
classifier that performs the linear stacking on the 
classification results by base learners. The outputs of base 
learners, i.e. nBLBLBL ..., 21 are linearly combined with 
weights niWi ....1, ∈  , learned by the MLP, which is given 
by equation (11). 
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Algorithm 1: The proposed method 
 

1. Input: Dataset 𝐷𝐷𝐷𝐷 = {𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖}𝑖𝑖=1𝑚𝑚  
2. Output: Class 
3. Step 1: Train the Base Learners 
4. For 𝑛𝑛 = 1 𝑡𝑡𝑡𝑡 4 

        Train 𝐵𝐵𝐵𝐵𝑛𝑛 with 𝐷𝐷𝐷𝐷 
5. End for 
6. Step 2: generate the input for Meta Learner 
7. for 𝑖𝑖 = 1 𝑡𝑡𝑡𝑡 𝑛𝑛 
               𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚={𝑥𝑥𝑖𝑖′ ,𝑦𝑦𝑖𝑖},  

Where 𝑥𝑥𝑖𝑖′={𝐵𝐵𝐵𝐵1 (𝑥𝑥𝑖𝑖), 𝐵𝐵𝐵𝐵2(𝑥𝑥𝑖𝑖),…, 𝐵𝐵𝐵𝐵𝑛𝑛(𝑥𝑥𝑖𝑖)} 
8. end for 
9. Step 3: Train Meta Learner(𝑀𝑀𝐵𝐵) 
10. Train 𝑀𝑀𝐵𝐵 with 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 
11. Return Class 

 
Where 𝑥𝑥𝑖𝑖: features, 𝑦𝑦𝑖𝑖: Labels of features, m: number of 

features, n: number of base learners 
 

3.  RESULTS 
The proposed method was implemented in Python 3.7 on 

the Google Collaboratory platform utilizing the online GPU 
provided by Google. The dataset and the results obtained 
using the proposed method are discussed in this section. A 
comparative analysis is also done based on the two types of 
features in the time and frequency domain. 

 
3.1.  Dataset 

The proposed stacked ensemble model is verified using two 
publicly available datasets: (i) the UoB dataset, provided by 
the University of Bonn [39], and (ii) the NSC-ND dataset 
provided by Neurology and Sleep Center, Hauz Khas, New 
Delhi [40]. The UoB dataset has five subfolders with names 
F, N, O, S, and Z. Each subfolder contains 100 numbers of 
EEG data sampled at 173.6 Hz for the duration of 23.6 
seconds. The signals under F and N categories are the EEG 
signals taken within the seizure intervals by applying 
electrodes on the epileptogenic zone and just opposite to 
hippocampus. The EEG signals under the category S are 
taken during the seizure attack. O and Z are the normal EEG 
signals taken from five healthy subjects with eyes closed and 
open. There are a total of 500 signals in the dataset with 100 
numbers of signals in each category. 

The NSC-ND dataset contains three different types of EEG 
signals sampled at 200 Hz for the duration of 5.12 seconds. 
The dataset contains three folders named as ictal, inter-ictal, 
and pre-ictal. Each category of these folders contains 50 
signals. The datasets were divided subject wise. EEG data 
from each subject are divided to training and testing sets with 
80:20 ratios. The test data is used as validation set for 
hyperparameter estimation. 

The samples of decomposed signals obtained from the 
NSC-ND dataset for ictal, pre-ictal, and inter-ictal signal with 
N = 4, are provided in Fig.2. to Fig.4. 

 
 

Fig.2.  EWT MRAs of an ictal signal with N = 4. 

 

 
 

Fig.3.  EWT MRAs of a pre-ictal signal with N = 4. 

 

 
 

Fig.4.  EWT MRAs of an inter-ictal signal with N = 4. 
 
3.2.  Classification results 

The performance of the proposed classification model is 
verified first by directly providing the EEG signals from the 
dataset without any decomposition and statistical feature 
extraction. The DNN models have extracted the features 
automatically for training. The performance of the proposed 
classification model is tested by applying the decomposition 
method and statistical features prior to training. It is observed 
that the performance is better in statistical feature-based 
training approach in comparison to direct use of datasets. The 
comparative analysis is provided in Table 1. 
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Table 1.  Results analysis with and without statistical features. 
 

Dataset Classification 

Accuracy (%) 
Without 

EWT and 
statistical 
features 

With EWT and 
Statistical features 
Time-

Domain 
Frequenc
y-Domain 

NSC-
ND 

dataset 

Ictal vs pre-
ictal (Normal) 94.73 0.9600 0.9800 

Ictalvs inter-
ictal 95.16 0.9600 0.9700 

UoB 
dataset 

Ictalvs pre-
ictal (Normal) 94.43 0.9702 0.9782 

Ictalvs inter-
ictal 95.01 0.965 0.9893 

 

 
 
Fig.5.  Accuracy comparison of the proposed model in comparison 
to base models. 
 
Table 2.  Validation results obtained for Ictal vs pre-ictal (Normal). 
 

 

Time Domain 
Features 

Frequency Domain 
Features 

UoB 
Dataset 

NSC-ND 
dataset 

UoB 
Dataset 

NSC-ND 
dataset 

Accuracy 0.9702 0.9600 0.9782 0.9800 
Precision 1.0000 0.9500 0.9800 0.9700 

Recall 0.9300 0.9600 0.9600 1.0000 
F1-Score 0.9600 0.9549 0.9598 0.9800 

Sensitivity 0.9238 0.9000 0.9442 0.9286 
Specificity 0.9721 0.9300 0.9834 1.0000 

 
Table 3.  Validation results obtained for ictal vs inter-ictal. 

 

 

Time Domain 
Features 

Frequency Domain 
Features 

UoB 
Dataset 

NSC-ND 
dataset 

UoB 
Dataset 

NSC-ND 
dataset 

Accuracy 0.9600 0.965 0.9893 0.9700 
Precision 0.9710 0.9500 1.0000 0.9900 

Recall 0.9600 0.9632 0.9800 0.9500 
F1-Score 0.9649 0.9565 0.9899 0.9695 

Sensitivity 0.9738 0.9502 0.9950 0.9286 
Specificity 0.9424 0.9730 0.9720 1.0000 
 
From Table 1. it is observed that the classification model is 

providing better results while trained with statistical features 

extracted from decomposed EWT signals in comparison to 
direct training on EEG datasets. 

The proposed model is trained with time-domain features as 
well as frequency-domain features. The results are evaluated 
in terms of accuracy, sensitivity, specificity, precision, recall, 
and F1 score. The accuracy plots for comparison purposes to 
show the improvement in results by stacked ensemble 
learning are given in Fig.5. for ictal versus inter-ictal 
classification using the UoB dataset. The validation results 
obtained by the proposed method are provided in Table 2. and 
Table 3. for ictal versus pre-ictal (normal) and ictal versus 
inter-ictal signal, respectively. 

A comparative analysis with respect to related works is 
provided in Table 4. 
 

Table 4.  Comparative analysis with respect to related works. 
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[2] DNN - 95 - - 
[3] DWT 88 - - - 

[4] 

FT  
+ 

 Sparse 
Denoising 

Autoencoder 

93.82 96.05 - - 

[8] RNN 85 - - - 
[9] LSTM - - - 99.86 

[10] LSTM 97.78 - - 98.85 
[11] CNN+LSTM 98.89%  98.33 99.16 
[12] WT+DNN 97.5 -  - 
[13] CNN - - 87.8 - 
[14] CNN 97.5 - - - 

[15] EMD-DWT  
+ KNN 89.4 - - - 

[18] 

EEMD 
+ 

K-means  
Clustering 

98% - - - 

[19] CEEMD 98.67 - 98.67 98.72 

[20] 
DWT 

+ 
Ensemble-NN 

98.78 - - - 

This 
work 

EWT + 
Stacked 

ensemble-
based 

DNN model 

98.93 98.99 99.5 100 

 
3.3.  Discussion 

From Fig.5. it can be observed that the ensemble of four 
DNNs with stacked MLP performs better in comparison to 
single DNN models. The statistical features extracted from 
each mode are sufficient to train the model to obtain the 
objective of the work. From Table 1. and Table 2. it can be 
observed that the proposed model is performing better in the 
case of frequency domain features in comparison to time-
domain features. The accuracy in epilepsy seizure detection 
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reached the highest value of 98.93 in ictal versus inter-ictal 
classification with frequency-domain features that is 
competitive with the state-of-the-art methods. The proposed 
model is also providing a promising result of 98 % accuracy 
in ictal versus pre-ictal classification. 

 
4.  CONCLUSIONS 

The remarkable characteristics of ensemble learning are 
verified with epilepsy seizure detection by preprocessing the 
EEG datasets using empirical wavelet transform. The 
decomposition of EEG signals provides detailed information 
hidden in the multi-resolution arrays of each signal.  The time 
domain and frequency domain analysis of signal are well 
studied by training the classification model in two different 
steps. A comparative analysis is provided along with 
improved seizure detection. The accuracy obtained in 
epilepsy seizure detection is 98.93 % for ictal versus inter-
ictal classification with frequency-domain features that are 
competitive with state-of-the-art methods. In the future, the 
work is planned to be carried out with other decomposition 
models with improved accuracy for detection and 
classification. 
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