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Numerous studies have shown that the choice of measurement strategy (number and position of measurement points) when measuring form 
error on a coordinate-measuring machine (CMM) depends on the characteristics of the machining process which was used to machine the 
examined surface. The accuracy of form error assessment is the primary goal of verification procedures and accuracy is considered perfect 
only in the case of the ideal verification operator. Since the ideal verification operator in the “point-by-point” measuring mode is almost 
never used in practice, the aim of this study was to examine a relationship which had not been examined in earlier studies, namely how the 
machining process, surface roughness and a reduced number of points in the measurement strategy affect the accuracy of flatness error 
assessment. The research included four most common cutting processes applied to flat surfaces divided into nine different classes of 
roughness. In order to determine functional dependency between the observed input variables and the output, statistical regression models 
and neuro-fuzzy logic (artificial intelligence tool) were used. The analyses confirmed the significance of all three input parameters, with 
surface roughness being the most significant one. Both the statistical regression models and neuro-fuzzy models proved to be adequate, 
matching the experimental results. The use of these models makes it possible to determine flatness error measured on a CMM if input 
variables considered in the paper are known.  
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1.  INTRODUCTION 

Functional requirements of contemporary mechanical 
products are becoming increasingly complex. Consequently, 
manufacturing processes have to satisfy strict criteria 
concerning the permissible deviation of real geometry from 
the nominal (ideal) geometry. Deviations from ideal 
geometry on a geometric primitive can be macrogeometric 
(form) and microgeometric (waviness, roughness) [1]. The 
manufacturing process has to satisfy the specification limits 
of both types of deviations while maintaining maximum 
productivity. For instance, with flat surfaces the requirements 
that often have to be satisfied are those concerning form 
tolerance (flatness) and quality of the machined surface, i.e. 
roughness. Both these requirements need to be considered 
when choosing the machining process and its regimes, tools, 
material of the workpiece, etc. In the machining process, 
those factors that affect macrogeometry usually do not affect 
microgeometry of the workpiece, and vice versa. For 
example, form errors on the surface obtained using traditional 
machining processes are normally due to machine tool guide 

way errors, vibration, and tool flank wear [2], [3]. Roughness 
is mainly a function of cutting tool geometry and it depends 
on cutting conditions (parameters of depth, feed, and speed) 
[4]. This claim cannot be generalized to every machining 
process and type of material that is being machined. On the 
whole, different factors affect form error and roughness. The 
percentage of form deviation within the total deviation from 
ideal geometry is much higher than the percentage of 
waviness and roughness, i.e. lower frequencies with longer 
wavelengths are dominant in the total form deviation. The 
research [5] showed that with the use of Fourier transform 
with 30 workpieces, roughness and waviness frequency 
values do not exceed 15 % of the total form deviation. This 
research confirms the claim that profile deviation is dominant 
with low-order frequencies (longer wavelengths). It should be 
noted that dividing profile deviations into form, waviness and 
roughness is considered conventional and insufficient for 
more detailed engineering analyses of surface topography. It 
is recommended that surfaces should be characterized at 
multiple scales using multiscale analyses [6]. However, such 
analysis is beyond the topic of this paper.  
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Additionally, verification procedures have to perform 
almost ideal measurements because tight tolerances do not 
leave much room for measurement error or measurement 
uncertainty although these two parameters are always present 
in the measurement result [7]. Different types of coordinate 
measuring systems (CMS) are used to measure different 
kinds of deviation although there are measuring instruments, 
too, which can measure both types of deviation, such as the 
micro-coordinate measuring machine (µCMM) by Bruker 
Alicone. The results of these measurements are sets of 
coordinates of points. Numerical values which quantify 
deviations are obtained by means of an independent software 
analysis. By applying the appropriate filter defined by the cut-
off wavelength to a digitalized real surface, deviations are 
classified as form deviation, waviness, and roughness. 
Different types of deviation can be measured on the same 
machine if sampling is appropriately conducted and if the 
software includes appropriate filtering. However, if points are 
sampled on a CMM with a contact probe, the range of 
wavelengths belonging to roughness will be filtered by the 
choice of the stylus tip. Therefore, roughness is most 
commonly measured by the technique of contact profilometry 
and the stylus tip diameter is smaller than 10 µm [8]. Primary 
profile is obtained by the stylus tip sampling the points from 
real geometry in the scanning mode. Appropriate wavelength 
filters (λc) and mathematical formulas are used to obtain the 
profile and roughness parameters. Also, non-contact optical 
methods such as confocal laser scanning microscopy 
(CLSM), coherence scanning interferometry (CSI) and focus 
variation microscopy (FV) are increasingly being used for 
microtopography. 

Measurement of form error on a CMM has been one of the 
most important topics of scientific research in the field of 
coordinate metrology [9], [10]. The most frequently 
investigated problem has been the choice of measurement 
strategy (number and position of points), probe type and 
methods of the evaluation algorithm [11]-[13]. The selected 
sampling strategy should be able to give the most reliable 
digital information about a real surface, i.e. to find any local 
deviation. However, this implies a large number of points, 
which is not economically justified, especially if 
measurements are taken in the “point-by-point” mode. The 
new generation of geometrical product specifications (GPS) 
proposes defining an ideal specification operator from which 
a verification operator is derived according to the duality 
principle. Namely, according to the ideal specification 
operator partition is performed based on the stylus tip 
diameter and the Nyquist criterion [14]. Measurement 
strategy defined this way requires a large number of points 
uniformly distributed across the observed geometric 
primitive and is almost never used in practice. However, the 
ideal verification operator discovers any deviation on the 
examined surface, and flatness assessed this way can be 
considered closest to the real value of flatness. In order to 
satisfy the criterion of accurate flatness error assessment and 
to drastically reduce the number of points, numerous 
alternative measurement strategies have been developed. 
Many of those are based on information about the machining 
process, quality of the machined surface and manufacturing 

signature [15], [16]. These studies used models of machining 
processes with the aim of employing an adequate sampling 
strategy in order to record any significant form deviation 
using a small number of points. In paper [17] a methodology 
was developed for the reduction of the number of points 
according to data obtained from a large set of points of the 
first workpiece. There are also studies that have looked into 
the relationship between roughness and choice of 
measurement strategy when measuring flatness on a CMM. 
Paper [18] examined the selection of a sufficient number of 
points based on the input parameter of surface roughness. The 
results showed that for surfaces with a lower Ra value, the 
sufficient number of points needed for accurate flatness 
assessment is smaller than for surfaces which have greater 
roughness. Paper [19] analyzed the relationship between 
flatness error and roughness of workpieces produced in 
different manufacturing processes. The values of flatness 
error were smaller with the decrease in surface roughness.  

On the whole, it can be concluded that the choice of 
measurement strategy on a CMM is highly determined by the 
quality of the machined surface and type of the machining 
process. Roughness values of the machined surface can be 
identical when different machining operations are used, 
which does not imply that flatness error will be identical. It is 
also necessary to determine a sufficient number of points for 
finding the exact flatness value depending on the machining 
process and the quality of the machined surface. The exact 
flatness value is assessed using the ideal verification operator 
based on the ideal specification operator. 

The aim of this paper is to investigate the dependency 
between the type of the machining process for obtaining flat 
surfaces, roughness of the machined surface and the number 
of points for measuring flatness on a coordinate-measuring 
machine (CMM) on the one hand (independent variables), 
and the value of flatness error (dependent variable) measured 
on the coordinate-measuring machine on the other. To 
achieve this goal, neuro-fuzzy logic (artificial intelligence 
tool) and methods for statistical data processing were used. 
The practical significance of this research is the construction 
of models that predict flatness error for machining processes 
of flat surfaces. The models contain information on the 
quality of the machined surface and the number of sampled 
points on the CMM. Based on these models, the dependency 
between micro- and macrogeometry for a specific machining 
procedure will be determined, as well as the effect of the 
number of points used in CMM measurement on flatness 
error. 
 
2.  MATERIALS AND METHODS 

In order to analyze the effect of surface roughness, 
machining process and the number of points in the 
measurement strategy on flatness error measured on a CMM, 
Rugotest was used (Fig.1.). It is assumed that roughness 
values of this workpiece are uniform across the whole surface 
for a given quality and type of the machining process. It can 
be seen that it consists of eighteen different surfaces which 
were machined using the four most frequent machining 
operations for flat surfaces. Three surfaces were machined by 
side milling, five by face milling, six by grinding, and four by 
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lapping. The size of the sampled surface was 20x10 mm. 
Also, the flat surfaces were grouped according to the quality 
of the machined surface from N10 to N2. It can be seen that 
certain qualities can be obtained with different operations, 
such as, for example, grinding and lapping or grinding and 
face milling. Each “N” corresponds to a certain Ra value 
expressed in μm ("N" is mentioned because it is on Rugotest)) 
[20]. The plates are mechanically joined to the bottom flat 
plate. This enables measurement of the eighteen plates with 
one fixation of the workpiece, thus excluding certain CMM 
uncertainty factors because measurements are taken under the 
same experimental conditions. 
 

 
 

Fig.1.  Rugotest used in the experiment. 
 

The  flat  surfaces  were  measured  on the Carl Zeiss 
Contura g2 RDS coordinate-measuring machine 
(MPEE=1.9+L/330 μm, L expressed in mm) in the discrete 
sampling mode. To ensure CMM repeatability (the sampling 
system), each plate was measured five times using the 
identical measurement strategy and the mean value was taken 
as flatness error. The number of points and their position on 
the examined surface have a strong effect on the assessment 
of flatness error measured on a CMM [21], particularly if the 
least squares method is used for the assessment of flatness 
error. In order to examine the influence of the number of 
points on flatness error, each plate was measured with five 
randomly chosen samples, i.e., 10, 20, 40 and 60 points and 
one measurement strategy was derived from the ideal 
specification operator (1508). For defining the ideal 
specification operator, it is necessary to define information 
concerning the passband boundaries (upper and lower cut-off 
wavelength), filter and associative criterion to be used. The 
lower cut-off wavelength value is 2.5 mm, whereas the upper 
cut-off wavelength is infinite according to the definition of 
form deviation. Thus, the stylus tip has to be smaller than 
1.5 mm, and according to the ISO/TS 12780-2 sampling 
density and the Nyquist criterion, grid strategy needs to be 
adopted where the distance between neighboring points must 
be smaller than 0.357 mm. Accordingly, the ideal 
specification operator has a total of 1508 points. The 
application of filtering to the sampled points is negligible in 
the discrete sampling mode of the CMM. 
 
2.1.  Flatness error assessment 

Flatness error was assessed using the non-commercial 
software for obtaining flatness error according to the 
minimum zone (MZ) criterion - One Point Plane Bundle 
Method (OPPBM). The minimum zone OPPBM algorithm 

was written in MATLAB. The software solution is presented 
in Fig.2. and the program starts running by importing 
coordinates of points (x, y, z) from the CMM in .txt format. 
Studies [22], [23] have shown that the OPPBM is a very 
reliable method when accuracy is concerned (compared to 
commercial CMM software) and also very fast. It can be seen 
in Fig.2. that this software also provides flatness error based 
on the least squares (LS) method and equations of planes, 
which hardly any commercial software does. 
 

 
 

Fig.2.  Flatness error assessment using the MZ method in non-
commercial software. 

 
2.2.  Statistical analysis 

Multiple regression analysis was used in order to examine 
the effect of the type of the machining process, surface 
roughness and the number of points in the measurement 
strategy, as independent input variables, on flatness error 
measured on a CMM, as a dependent output variable. This 
statistical analysis can determine the relationship between the 
variables by constructing an adequate model. It can also 
determine the effect of the input values and their interactions 
on the observed output [24]. Recently, a paper has been 
published where regression analysis was used for 
investigating the connection between the number of points in 
the measurement strategy and flatness error measured on a 
CMM [25]. The equation of the multiple linear regression 
model can be represented as (1): 
 

Y=β0+β1x1+β2x2+ε                              (1) 
 
where Y represents the dependent output variable (flatness 
error), x1 and x2 represent influencing factors (surface 
roughness and number of points in measurement strategy), β0, 
β1, β2 represent regression coefficients and ε represents 
random error. Since the type of the machining process is the 
categorical factor, the number of the regression models 
obtained will be the same as the number of different types of 
machining, which is four in our case. The adequacy of the 
presented model obtained using (1) is tested via the 
coefficient of determination R2 (R-sq in Minitab). In order to 
test the significance of particular input variables, analysis of 
variance (ANOVA) was performed with the significance 
threshold of α = 0.05. For adequate ANOVA analysis, it is 
necessary to check the normality of the output variable using 
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specific tests such as the Anderson-Darling test, with the 
significance threshold of α = 0.05. In our case, the normality 
check showed the value of p = 0.061. Since this value is 
greater than the set significance threshold, measurement data 
belong to normal distribution. 
 
2.3.  Adaptive neuro-fuzzy inference system (ANFIS) 

The fuzzy set theory proposed by Zadeh [26] is based on 
sets where boundaries are not precisely defined. A fuzzy set 
is characterized by a form of membership function in which 
the truth values of the variables can be any real number 
between 0 and 1 inclusive. Construction of a complex fuzzy 
system requires significant time to find the valid membership 
function and rules to obtain a reliable solution. The main 
problem with fuzzy logic is determining membership 
functions and fuzzy rules which cannot be directly derived 
from the complex system. By combining neural network with 
fuzzy logic it is possible to avoid the complexity of defining 
functions and rules. In this case, a neural network is used to 
adjust the membership functions of the fuzzy system [27]. An 
adaptive neuro-fuzzy inference system integrates the 
advantages of fuzzy logic and neural networks. It is one of the 
hybrid systems, known as ‘neuro fuzzy networks’ [28]. 

ANFIS is based on a Takagi–Sugeno-type fuzzy inference 
system [29]. The structure of the ANFIS consists of five 
different adaptive layers, with nodes and connections as 
depicted in Fig.3.  
 

 
 

Fig.3.  The first order Sugeno fuzzy reasoning. 
 

For the case of determining the flatness of one of the four 
types of machining, the universal principle of modelling with 
the ANFIS system was used. For example, the first-order 
Sugeno fuzzy reasoning system with two inputs x1 (sample 
size) and x2 (surface roughness), one output f (flatness) is 
shown in Fig.3. and consists of four fuzzy sets SZ1, SZ2, 
SR1, SR2 and two IF -THEN rules: 

 
Rule 1 :IF x1 is A1 and x2 is B1 THEN f1=p1·x1+q1·x2+r1

Rule 2 :IF x1 is A2 and x2 is B2 THEN f2=p2·x1+q2·x2+r2.(2) 
 

The layers of the first order Sugeno fuzzy reasoning system 
are: 

1.  Layer 1 is the fuzzification layer which uses membership 
functions in order to obtain fuzzy value from inputs. Each 
node in this layer implies inputs, such as sampling size and 
surface roughness, and it forwards external signals to layer 2. 

The degrees of membership from layer 1 are shown with μA 
and μB, as given in equation (3): 
 

Oi
1=μAi(x2) for i=1, 2

Oi
1=μBi(x2) for i=3, 4 

………………………… (3) 

 
2.  Layer 2 is the rule layer. This layer computes firing 

strengths wi, using membership degree values from layer 1. 
In other words, based on the chosen membership function, 
which in this case is Gaussian, the inputs from layer 1 are 
converted into the degree of membership function. The output 
from layer 2 is the product according to equation (4) 
 

Oi
2=wi=μAi(x1)μBi(x2),  i=1, 2…   ……. (4) 

 
3.  Layer 3 is the normalization layer. It generates 

normalized firing strengths for each rule through equation 
(5): 

Oi
3=w� i=

wi
∑ wii

, i=1,2                              (5) 
 

4.  Layer 4 is known as the defuzzification layer. It 
generates the individual output values y from the previously 
defined rule base. Every node in this layer calculates the 
normalized firing strength of a rule. Each node of this layer is 
adaptive in nature and given by equation (6): 
 

Oi
4=w� i·fi=w� i�pi·x1+qi·x2+ri�, i=1,2                 (6) 

 
5.  Layer 5 is the output layer. In this layer, known as the 

defuzzification layer, the output is obtained using equation 
(7). Parameters in this layer are referred to as consequent 
parameters: 
 

Oi
5=f(x1,x2)=∑ w�i·fii =w�i·f1+w�i·f2=

∑ wi·fii
∑ wii

…… (7) 
 

The principle described above is used to adapt the rules of 
the fuzzy system using a five-layer neural network. In this 
way, a fuzzy model is obtained that can predict the flatness of 
a machining process as a function of sample size and surface 
roughness. Several studies can be found in the literature in 
which the flatness of the machined surface is predicted [30], 
[31]. Research is mainly done on the basis of modeling each 
machining operation [32]. 

However, hardly any system has been developed that 
includes multiple machining models to determine the 
flatness. For this very reason, the main contribution of this 
paper is a system that includes intelligent models of the four 
most common machining types in mechanical engineering. 
 
3.  RESULTS AND DISCUSSION 
3.1.  Statistical analysis 

The effect of the number of points in the measurement 
strategy, surface roughness and cutting process on flatness 
error measured on a CMM is given in Fig.4. (x scale is log 
scale). 
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Fig.4.  The effect of the number of points in the measurement 
strategy, surface roughness and the applied cutting process on 

flatness error measured on a CMM. 
 

The figure shows the following facts: 
1.  With the increase in the number of points in the 

measurement strategy, flatness error generally increases. This 
increase is more conspicuous in processes with a higher Ra 
value. 

2.  Flatness error generally increases as the quality of the 
machined surface decreases. 

3.  With finishing, the type of the cutting process used for 
achieving the same surface quality had a negligible effect on 
flatness error, whereas with roughing (Ra = 6.30 and 
12.50 µm), the cutting process was of great significance. 

4.  If flatness error is considered accurate when the number 
of 1508 points is used, the reduced number of points in the 
measurement will give flatness results that are very close to 
the accurate value when finishing. When roughing, however, 
the measurement error could be almost twice as big if, for 
example, the results with 60 and 1508 points are compared 
(with side milling Ra = 12.5 µm).  

5.  Ground surfaces have a constant flatness error (the effect 
of quality of the machined surface is almost negligible), 
whereas with lapped surfaces, the quality of the machined 
surface has only a slight effect. However, with milled 
surfaces the quality of the machined surface has a strong 
effect on flatness error. This can be seen in Fig.5.; x scale is 
log scale. 
 

 
 

Fig.5.  The effect of the cutting process and quality of the 
machined surface on flatness error. 

Minitab 17 statistical software was used for the statistical 
analysis of the experimental data. Multiple linear regression 
was used for establishing functional dependency between the 
input and the output. With the type of the cutting process 
being categorical input and the number of points and 
roughness being continuous input, linear regression models 
for each cutting process were developed and shown in 
Table 1. 
 
Table 1.  Linear regression models for output depending on input. 

 
Cutting 
process Regression Equation 

Face milling Flatness = -0.00056 + 0.000008 
Sampling size + 0.003858 Ra 

Grinding Flatness = 0.00131 + 0.000008 Sampling 
size + 0.003858 Ra 

Lapping Flatness = 0.00342 + 0.000008 Sampling 
size + 0.003858 Ra 

Side milling Flatness = 0.00933 + 0.000008 Sampling 
size + 0.003858 Ra 

 
The analysis of variance (ANOVA) showed that all three 

input variables are statistically significant (p < α; α = 0.05). 
The most significant factor is the quality of the machined 
surface (F = 227.14), then sampling size (F = 42.74), and 
finally the cutting process (F = 6.76). The statistical analysis 
also showed a high degree of adequacy of the model (R-sq > 
85 %). 

The effect of the number of points in the measurement 
strategy can be described as scaling the function depending 
on roughness and type of the cutting process, which can be 
seen in Fig.6. 
 

 
 

Fig.6.  The effect of roughness and type of the cutting process on 
flatness error with different numbers of points. 

 
Bearing in mind the significance of the number of points 

and observing Fig.6., it is clear that this effect is generally 
scaled depending on roughness and type of the cutting 
process. Apart from these models, another interesting thing 
was examining the effect of roughness on the mean value of 
flatness error where the effect of the cutting process and the 
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number of points was neglected. When the mean values of 
flatness error depend only on roughness, the resulting 
function shown in Fig.7. is obtained, with x axis presented in 
log scale. It can be seen in Fig.7. that this resulting function 
is an approximation of the four functions shown in Fig.5. 
 

 
 

Fig.7.  Resulting function. 
 

A cubic regression model was designed using the Box-Cox 
transformation method. The shape of its function is presented 
in (8): 
 

Mean of Flatness error= 
0.005827+0.00798 log10 (Ra)+ 

0.02134 log10(Ra)2+0.01162 log10(Ra)3 
 

(8) 

The adequacy of the model can be seen in Fig.7. where R-
sq > 95 %. The presented model, which takes only roughness 
into account, almost ideally coincides with the experimental 
values. However, the number of points in the measurement 
strategy and the type of the machining process should always 
be considered  
 
3.2.  Analysis employing Adaptive neuro-fuzzy inference 
system 

This concept of the neuro-fuzzy network was used to 
develop the ANFIS models for the prediction of flatness in 
various machining processes such as side milling, grinding, 
face milling, and lapping. Four ANFIS models were 
developed using two input parameters such as sampling size 
(SZ) and surface roughness (SR), and the output parameter of 
flatness (FS), by using 80 % and 20 % of training and testing 
data, respectively. The already existing algorithm in 
MATLAB was used to achieve the favorable training and test 
of data. The initial parameters of all ANFIS models for 
prediction of flatness are presented in Table 2. 

The hybrid algorithm was used to generate ANFIS models. 
There are several shapes of membership functions, like 
triangular, trapezoidal, Gaussian, etc. [33]. In the presented 
study, the gaussmf MFs (Gaussian membership functions) 
displayed the smallest test error and the lesser value of mean 

absolute percentage error, in relation to other MFs. An 
example of ANFIS training is shown for side milling. Out of 
a total of 15 face milling data, 12 were taken for training and 
3 for system testing. The training of the ANFIS model was 
carried out using 100 epochs. As shown in Fig.8., the obtained 
value of training error was 9.09∙10-3. With the previous model 
training, the root mean square error did not change 
significantly after 60 epochs. The values of ANFIS output 
were compared with test data (experimental values). The 
comparison between the predicted and the experimental data 
is illustrated in Fig.9. The obtained value of training RMSE 
error was 8.85∙10-3. 
 

Table 2.  Initial parameters for the ANFIS model. 
 

Method 
of 

training 

MFs 
(membership 

functions) 

Number 
of MFs 

Number 
of 

Epochs 

Output 
function 

Hybrid gaussmf 2 2 2 100 Constant 
 

In Fig.10., ANFIS structure has two inputs and one output 
and it consists of two membership functions and four rules. 
All four generated models have the same network setup 
parameters. In addition to the presented model for 
determining the flatness of face milling in a similar way, other 
models were obtained. In face milling, 20 experimental points 
were used to train the network, while 5 experimental points 
were used for testing. In that case, the training error was 
4.35∙10-3 and the testing error was 6.35∙10-3. Out of a total of 
30 experimental points, 24 were used for training and 6 for 
testing the network during grinding. RMSE errors were 
6.37∙10-3 and 8.31∙10-3 for training and testing, respectively. 
Finally, for network training and determination of flatness in 
the lapping process, 16 data for training and 4 for testing were 
used. RMSE errors were 8.15∙10-3 for training and 8.55∙10-3 
for network testing. By comparing the obtained errors with 
the current literature [34], [35], it can be concluded that the 
models are well generated. 
 

 
 

Fig.8.  Comparison between the testing and FIS output data of 
flatness. 
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Fig.9.  Comparison between the predicted and the experimental 
data. 

 

 
 

Fig.10.  The ANFIS structure that has two inputs and one output. 
 

The influence of the sampling size and surface roughness 
on the output response, namely flatness, was conducted based 
on the generated ANFIS models of various types of cutting 
process. Fig.11. illustrates the influence of sampling size and 
surface roughness on flatness in the side milling operation. It 
can be seen that surface roughness and sampling size of the 
side milling operation have a strong influence on flatness 
error. This is explained by the fact that the tool makes a trace 
on the machined surface. A larger sample size is required to 
estimate adequate flatness. 

Fig.12. shows the influence of sampling size and surface 
roughness on flatness in the face milling operation. A similar 
effect was observed as with side milling. It clearly shows that 
the value of flatness decreased depending on the sampling 
size. For example, in rough face milling when surface 
roughness is 12.5 µm at 60 points, it gives an error of flatness 
almost twice as large as at 1508 points. 

 
Fig.11.  Influence of sampling size and surface roughness on 

flatness in side milling operation. 

 

 
Fig.12.  Influence of sampling size and surface roughness on 

flatness in face milling operation. 
 

The influence of surface roughness and sampling size on 
flatness in the grinding operation is shown in Fig.13. Here 
flatness values are less dependent on surface roughness 
because this is the final machining. A surface machined this 
way does not require a large number of sampling points. 
 

 
Fig.13.  Influence of surface roughness and sampling size on 

flatness in grinding operation. 
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Fig.14.  Influence of surface roughness and sampling size on  
flatness in grinding operation. 

 

 
 

Fig.15.  Comparison of experimental results and results obtained 
using ANFIS. 

 
Similar influence of input parameters on the output was 

obtained in the lapping process. Fig.14. demonstrates the 
surface view for flatness of the lapping process in relation to 

change of sampling size and surface roughness. It shows no 
impact on the value of flatness for any number of samples and 
surface roughness from 0.1 to 0.3 µm. 

Regression graphs were plotted to compare the values 
obtained from both the experimental and ANFIS prediction 
data of flatness, as shown in Fig.15. The graphs show good 
agreement with experimental data. The fit of values R2 for all 
models was from 0.8560 to 0.9289. 

It can be said that the models created using linear 
regression (Table 1.) and ANFIS are in close agreement and 
they match the experimental results. ANFIS did not include 
the model of the effect of only roughness on flatness as it has 
been shown using the cubic regression model (8), although 
close agreement of the cubic regression model with ANFIS 
would have probably been achieved. 

In the final analysis, it can be concluded that if the type of 
the machining process, machined surface roughness and the 
number of points in the measurement strategy are known, the 
error can be successfully modeled and this has been shown 
using these two methods. On the basis of modeling, it can be 
concluded that with the finishing operation a small number of 
points is sufficient for accurate flatness assessment, whereas 
with roughing, the number of points has to approach the 
number of points in the ideal verification operator. However, 
this is not so if the selection of points is not random. 

The analysis of experimental results by means of multiple 
regression analysis and ANFIS provided good models. 
However, the quality parameters of CMM, as well as the use 
of different machines, tools, equipment and other factors that 
affect the machining procedure and the measured Ra value 
should also be taken into account. 
 
4.  CONCLUSIONS 

The aim of this study was to model (mathematically 
formulate) the effect of the type of the machining process, 
surface roughness and number of points in the sampling 
strategy on the assessment of flatness error on a CMM. The 
study was conducted on workpieces which were machined 
applying four most common machining processes for flat 
surfaces (side milling, face milling, grinding, and lapping). 
The experiments were performed using a surface roughness 
comparator. Using the statistical analysis and ANFIS, the 
following conclusions can be drawn: 

1.  All three parameters have a significant effect on the 
observed output and surface roughness has the strongest 
effect of all.  

2.  The adequacy of the models with both types of modeling 
is more than 85 %.  

3.  Furthermore, a cubic regression model was constructed 
and it modeled the experimental results using only roughness 
as an input variable. This points to the fact that flatness 
measured on a CMM can be predicted on the basis of 
roughness of the machined surface and the type of the 
machining process.  

4.  The general conclusion is that when flatness is assessed 
in roughing operations, the number of points needs to 
approach the number of points in the ideal verification 
operator, or adaptive sampling strategies need to be 
employed, which would require further research.  
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Additionally, it would be interesting to examine the effect 
of 3D parameters of roughness on flatness error in future 
investigations, or to focus on spacing parameters instead of 
Ra. 
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