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Flame combustion diagnostics is a technique that uses different methods to diagnose the flame combustion process and study its physical 
and chemical basis. As one of the most important parameters of the combustion process, the flame equivalence ratio has a significant 
influence on the entire flame combustion, especially on the combustion efficiency and the emission of pollutants. Therefore, the measurement 
of the flame equivalence ratio has a huge impact on efficient combustion and environment protection. In view of this, several effective 
measuring methods were proposed, which were based on the different characteristics of flames radicals such as spectral properties. With the 
rapid growth of machine learning, more and more scholars applied it in the combustion diagnostics due to the excellent ability to fit 
parameters. This paper presents a review of various measuring techniques of hydrocarbon flame equivalent ratio and the applications of 
machine learning in combustion diagnostics, finally making a brief comparison between different measuring methods. 
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1. INTRODUCTION 

Combustion diagnostics is one of the main challenges the 
combustion industry faces, and thus the improvement of 
combustion diagnostics technology has a huge impact on the 
detection of combustion rates, stability, and the emission of 
the pollutants. The combustion rate, stability depends to a 
large extent on the setting of the combustion conditions. 
Flame equivalence ratio [1] is a parameter which measures 
the degree of mixture of fuel and oxidizer, and the 
equivalence ratio of hydrocarbon flame is defined as (1).  

 Φ =  (𝐴𝐴𝐴𝐴𝐴𝐴/𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
(𝐴𝐴𝐴𝐴𝐴𝐴/𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹)𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

 (1) 

as shown in (1), (Air/Fuel)stio represents the stoichiometric 
ratio of air to fuel. When Φ is 1, it is complete combustion. 
When Φ > 1, it is rich combustion state. When Φ < 1, it is lean 
combustion state. The equivalence ratio is one of the most 
important factors which affect the combustion state and the 
generation of pollutants, among the variables that can be 
monitored throughout the combustion process. The 
relationship between combustion efficiency and flame 
equivalence ratio is inextricably linked. Therefore, the study 
of equivalence ratio helps in enhancing the understanding of 
fuel properties and optimizing burner construction for energy 
saving and pollutant emission reduction, which is meaningful 
and necessary for combustion diagnostics. 

This paper focuses on the measurement of flame 
equivalence ratio from passive and active measuring 
methods, as shown in Fig.1. Flame combustion is a self-
luminous process. The equivalence ratio is generally 
measured by detecting the concentration or 
chemiluminescence intensities of the radicals, such as OH*, 
CH*, and C2

*. As in [2], [3], the flames have the OH* 
chemiluminescence peak near 310 nm, and the peak intensity 
increases with the increasing of the equivalence ratio. Thus 
OH* chemiluminescence intensity can be applied to indicate 
the global equivalence ratio. It was found that the 
chemiluminescence intensity of  CH*and C2

* depended on the 
equivalence ratio non-monotonically in [4]. Clark [5] 
demonstrated that the chemiluminescence intensity of flame 
radicals CH* and C2

* can be applied to indicate the 
equivalence ratio of the flame. Haber [6] also confirmed that 
the CH*/C2

*  chemiluminescence ratio can be used to 
approximate the equivalence ratio. The passive measuring 
method is the use of different methods to detect the 
chemiluminescence intensity of radicals in the combustion 
process, and the equivalence ratio can be indicated according 
to the radical chemiluminescence intensities. The active 
measuring method applies an external excitation, such as 
laser, etc. to excite the atom or molecule in the flame to 
transition to a higher energy level, and the atom or molecule 
releases a corresponding spectral signal when it returns to a 
lower energy level. In that case, the original measurement of 
flame radical spectral intensity is then transformed into a 
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measurement of the spectral signal concentration emitted by 
the particles after excitation. The rapid development of 
machine learning has provided a new technical route for 
combustion diagnostics. Compared with the traditional 
manual construction of models for different flames based on 
a single feature, machine learning has shown the excellent 
classification performance and the generalization ability 
under the condition of high-dimensional features. At this 
stage, machine learning has been widely used in fuel 
identification, combustion efficiency prediction, combustion 
exergy prediction and pollutant emission prediction in 
combustion diagnostics field. This paper presents the 
applications of machine learning in combustion diagnostics. 

 

Fig.1.  Methods of measuring the equivalence ratio. 

In recent decades, scholars have studied the radicals in 
flame combustion from several perspectives and proposed 
many methods of flame equivalence ratio measurement. This 
paper will introduce the different measuring methods of 
flame equivalence ratio and the applications of machine 
learning in combustion diagnostics field, finally providing an 
outlook on the future development. 

2. PASSIVE MEASURING METHODS 
The passive measuring methods mainly include the spectral 

analysis method, the multispectral imaging method, and the 
RGB imaging method. Spectral analysis method applies a 
spectrometer to obtain the radical spectral intensity precisely. 
The spectrometer method can obtain the complete spectral 
information of the radicals, but it lacks the spatial information 
of the radicals, in which case the spatial distribution of 
radicals cannot be analyzed. In addition, the spectrum 
analysis method relies on the flames that are free of 
broadband soot luminescence.  

To obtain the spatial information of the flame, some 
scholars apply the multispectral imaging method to detect the 
flame radicals. Several methods were applied to record the 
image in multispectral imaging: (1) Separation method: 
According to the different refractive indices of light in 
different wavelengths, mapping different parts of the 
spectrum  to  the  top  parts  of  the  CCD  chip  [7].  Mapping 

different parts of spectrum onto CCD chips is one of the more 
accurate among multispectral imaging methods, but again the 
cost is the highest. Also using the principle of refraction of 
light so that different bands of light can be mapped at 
different locations in the same plane, a high precision optical 
lens can be taken into consideration to refract the flame to a 
plane. But the disadvantage of the optical lens is that a lot of 
calibration work needs to be done before imaging the flame, 
and the optical path is difficult to determine. (2) Several 
cameras method: Adding the filters of each part of the 
spectrum to different cameras. The method is most used in 
the multispectral imaging method, in which the advantages 
are that radical images in multiple wavelengths can be 
processed simultaneously to obtain the spatial and spectral 
information of flame radicals at the same moment. However, 
because it involves simultaneous shooting by different 
cameras, it is necessary to ensure that the error in shooting 
time is small, as well as the need for precise matching of 
images of different bands of the same flame at a later stage. 
(3) Consecutive method: Adding the filters of each part of the 
spectrum to a camera and imaging one after one [8]. 
Compared with (1) and (2), the method is the simplest, but 
the error is rather big due to the assumption that the flame 
remains steady. Multispectral imaging method obtains both 
the luminous intensity and two-dimensional spatial 
distribution of radicals, and thus the local equivalence ratio 
can be measured. But the use of narrow-band filters leads to 
some deficiencies in spectral accuracy compared to the 
spectrometer method. For example, if a 430 nm (± 10 nm) 
filter is used, the radical spectral information obtained is the 
integral of the spectral intensity in the band of 420-440. Based 
on this basis, there is a common compromise in which a 
spectrometer is combined with a camera. The spatial 
dimension is resolved by camera, and the other dimension of 
spectrometer resolves the spectrum [9]. The compromise 
method works well if the visualization is limited to a specific 
line, or if the geometry of the flame is essentially 1D. 

RGB imaging method was developed by Huang et al. [10], 
who found that the chemiluminescence intensity of CH* and 
C2* in the methane flame was well matched with the median 
intensity of the B and G channels, and thus the ratio of the 
intensity of the B and G channels could be used to 
approximate the equivalence ratio. Yang et al. [11] improved 
the color-modelled CH* and C2* measurement using a digital 
color camera, in which case the mathematical model for 
detecting the flame equivalence ratio was optimized by 
calibrating the spectral corresponding function of the camera. 
The RGB imaging method is the simplest among the passive 
measuring methods, but it loses a lot of sensitivity to the 
variation of radical chemiluminescence peak. To be precise, 
each pixel in color image is equipped either with a R, G or B 
filter and the color image is interpolated from this 
information, which contains a lot of redundant information. 
Thus, the RGB imaging method is not sensitive to the 
variation of radical chemiluminescence peak. An additional 
drawback is that the OH* chemiluminescence intensity 
cannot be detected by the RGB imaging method, because the 
RGB wavelength does not cover the wavelength where the 
OH* is located. 
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A. Spectral analysis method 
Flames are the product of a violent oxidation reaction 

between a fuel and an oxidant, which can be divided into 
premixed and diffusion flames, depending on whether the 
fuel and oxidant are premixed or not. During the combustion 
of a flame, the light wave signal is continuously radiated from 
it, covering the ultraviolet wavelength and infrared 
wavelength [12]. The spectral signal can be detected by a 
spectrometer which can analyze the whole spectral 
information of the flame detected as shown in Fig.2. The 
setup of the spectrum method for equivalence ratio 
measurement consists of a spectrometer and optical fibers, 
where the optical fibers are used to transmit the spectral 
information of the flame in the burner to the spectrograph. 
For the spectral analysis method, the accuracy depends 
mainly on the range and resolution of the spectrograph. 

 

Fig.2.  The setup of spectrum analysis method for equivalence ratio 
measurement. [9] 

 

Fig.3.  Radiation spectrum of a CH4/O2 flame with 30 % H2 addition. 
[13]. 

The main process of measuring the flame equivalence ratio 
by the spectral analysis method consists of two parts. Firstly, 
the optical fibers are put on the flame area where the 
equivalence ratio needs to be measured. Then, the spectral 
signal transmitted from optical fibers can be analyzed by a 
spectrometer, in which case the entire spectral information of 
the area detected can be obtained. And spectral intensities of 
the different radicals, which can approximate the equivalence 
ratio, can be obtained. According to the reference [5], the 

equivalence ratio of the flame area detected can be indicated 
with the spectral intensities of the specific flame radicals, 
such as OH*, CH*, and C2

*. The radiation spectrum of a 
CH4/O2 flame with 30 % H2 addition is shown as Fig.3. It 
makes clear that the detailed spectral intensity of the specific 
radicals can be obtained. For hydrocarbon fuels, the main 
radicals for their chemiluminescence are OH*, CH*, and C2

*. 
The spectral distribution can be derived clearly from the 
radiation spectrum of the flame. The OH*, CH* and C2

* 
chemiluminescence are emitted at 310 nm, 430 nm, and 
516.5 nm (dominative emissive band peak in the C2

* Swan 
system), respectively, and OH* intensity has a stronger 
chemiluminescence intensity compared with CH* and C2*. In 
general terms, the radicals OH*, CH* and C2* are commonly 
applied to equivalence ratio due to the stronger signal 
intensity compared with others. 

The correlations between the chemiluminescence intensity 
ratios and equivalence ratio in CH4-Air premixed flames are 
shown in Fig.4. Seen in Fig.4., the C2

*/OH* ratio increases 
more sensitively with the increase of the equivalence ratio, 
but it goes down towards the condition (Φ =1.35 - 1.5). 
Compared with C2

*/OH* ratio, OH*/CH* ratio lacks some 
sensitivity, but it goes down linearly to the increase of the 
equivalence ratio. The comparison demonstrated that 
different radical chemiluminescence ratios can be employed, 
according to different requirements. Manuel et al. [14] 
proposed an equivalence ratio measurement technique based 
on the spectrum analysis method for the fluctuations in a lean 
premixed kerosene combustor. To investigate the correlation 
between radical chemiluminescence intensity and 
equivalence ratio, the spectrometer was employed to detect 
the radical chemiluminescence intensity. It was found that 
CH*/C2* ratio varied with equivalence ratio variation, which 
illustrated that CH*/C2* ratio can be applied to indicate the 
equivalence ratio of fluctuations in a lean premixed kerosene 
combustor. 

 

Fig.4.  The correlations between the chemiluminescence intensity 
ratio and equivalence ratio in CH4-Air premixed flames. [4] 

The spectrum method is also employed in other areas of 
combustion diagnostics. Bedard et al. [15] extracted the 
temporal evolution of chemiluminescent species by analyzing 
the flame emission spectrum with a fiber optic probe, which 
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investigated the relationship between chemiluminescence 
species and heat release rate of the flame, enabling 
chemiluminescence to be a diagnostic parameter in 
combustion instability prediction. 

Spectral analysis method provides precise radical 
chemiluminescence intensity and performs sensitively to the 
radical chemiluminescence variation. A drawback is that 
spatial information of flames is unavailable to the spectral 
analysis method, and thus the flame spatial structure cannot 
be analyzed. Therefore, some scholars proposed the 
multispectral imaging method to obtain the spatial 
information of flame radicals to further study the flame 
structure.  

B. Multispectral imaging method 
The flame radical chemiluminescence is the spontaneous 

spectral radiation over a specific wavelength, and the radicals 
applied commonly to equivalence ratio measurement are 
OH*, CH*, and C2*. The spectrum peaks of OH*, CH* and C2* 
in hydrocarbon flames are nearly at 310 nm, 430 nm, 516 nm. 
Thus, serval multispectral imaging methods can be applied to 
record the radicals at different wavelengths, which provide 
both the spectral and spatial information of radicals. As 
illustrated above, the common methods to record 
multispectral images are the separation method, the several 
cameras method, and the consecutive method. Compared 
with others, separation method is less used in combustion 
diagnostic due to its high requirements for equipment. The 
common multispectral imaging method employed in 
combustion diagnostic is the combination of an ICCD camera 
and a narrow wavelength filter lens.  

 

Fig.5.  The setup of multispectral imaging method for equivalence 
ratio measurement. [9] 

The setup of the multispectral imaging method for 
equivalence ratio measurement is shown in Fig.5. The 
experimental apparatus included a combustion chamber and 
a ICCD camera equipped with an added filter lens. For this 
method, the flame should be assumed to be steady because 
the images are taken one after one. The band-pass filter 
allows only the signal in that band to pass and be imaged by 
the ICCD camera. Thus, the multispectral images contain 
both spectral and spatial information of flame radical, which 
provides the possibility to analyze the spatial structure of 
flames. The accuracy of the radical spectral intensity obtained 
from multispectral image is not precise compared with the 
spectrum analysis method, because the multispectral image is 
the integration of the narrow wavelength employed. Based on 

the advantage of the multispectral imaging method as 
mentioned above, not only the correlation between 
combustion characteristics and radical chemiluminescence, 
but also the correlation between combustion characteristics 
and radical spatial distribution can be analyzed. 

Yang et al. [3] applied the multispectral imaging method in 
investigating the effects of equivalence ratio variation on the 
radical distribution and chemiluminescence intensity of OH* 
and CH* in CH4/O2 diffusion flames. The combustion 
progress in this study was relatively stable, and a mean image 
was obtained by averaging 15 independent images for further 
study. The chemiluminescence intensity and distribution of 
radical are shown in Fig.6. Based on the advantage of 
multispectral imaging that both the spectral and spatial 
information can be analyzed, it was found that both the 
distribution and chemiluminescence intensity of OH* are 
more significant to vary with the variation of equivalence 
ratio compared with CH*, and the peak intensity ratio of OH* 
and CH* decreases linearly with the increase of equivalence 
ratio.  

 

Fig.6.  Multispectral image of OH* and CH*. [3] 

Baumgardner et al. [16] applied the multispectral imaging 
method to detect the equivalence ratio of premixed propane-
air flame from 0.7 to 1.4, and they found that the variation of 
OH*/CH* and C2

*/CH* ratio had a good correlation with the 
increase of equivalence ratio. Based on this, Baumgardner 
further discovered that equivalence ratio of lean flames was 
better correlated with OH*/CH* ratio, and equivalence ratio 
of rich flames was better correlated with C2

*/CH* ratio. The 
comparison of OH*/CH* and C2

*/CH* as they relate to 
equivalence ratio is shown as Fig.7. Inevitably, the 
multispectral imaging method loses a certain amount of 
spectral accuracy because it takes the narrow wavelength 
filter which contains the whole spectral information in this 
wavelength. Benefitting from the ability of multispectral 
imaging method to analyze the spatial information of the 
flame, Song et al. [17] applied high-spatial-resolution UV 
imaging equipment to investigate the OH* characteristic 
emission and structure of impinging reaction region. As in 
[18], He et al. investigated the OH* distribution 
characteristics under different global oxygen-fuel 
equivalence ratio, and OH* chemiluminescence can be 
employed to characterize the combustion condition 
appropriately. Fei et al. [8] also applied the multispectral 
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method in investigating the OH* chemiluminescence 
characteristics in CH4/O2 lifted flames. Fei et al. imaged the 
flame with a CCD camera with a band-pass filter lens added 
and performed the Abel transform [19] on the multispectral 
image to obtain the OH* chemiluminescence distribution 
more precisely. In this study, the differences on lifted flame 
structure between equivalence ratio and plate-to-nozzle 
distance is presented. 

 

Fig.7.  The comparison of OH*/CH* and C2*/CH* as they relate to 
equivalence ratio. [16] 

As mentioned above, the multispectral imaging method has 
a great advantage of obtaining both chemiluminescence 
intensity and spatial distribution of radicals. This helps in 
studying the association of flame structure and radical 
chemiluminescence intensities. But the drawback of the 
multispectral imaging method is also obvious compared with 
the spectrum analysis method, that accuracy of the spectral 
intensity is insufficient because the spectral intensity of the 
flame is the result of wavelength integration of the filter used. 
Thus, based on this, some scholars applied both spectrum 
analysis method and multispectral imaging method in 
combustion diagnostics. Then, spatial dimension is resolved 
with multispectral image, and the other dimension of 
spectrometer resolves for spectrum, providing both spatial 
and spectral high-resolution. As in [9], Navakas et al. 
employed both spectrum analysis method and multispectral 
imaging method to obtain the flame radical emission 
spectroscopy, in which case the flame chemiluminescence 
intensity profiles were more precise compared with the single 
multispectral imaging method. Meanwhile, the radical 
concentration distribution was obtained, which contributes to 
investigate the effect of equivalence ratio variation on flame 
structure. 

C. RGB imaging method 
Light is an electromagnetic wave with properties as 

amplitude, wavelength, and frequency. Color is the result of 
the perception of visible light by the human visual system. 
The perceived color is determined by the wavelength of the 
light, which is measured in nanometers. The light with the 
wavelength in range of 400 nm to 760 nm can be perceived 
by the human visual system. Huang et al. [10] investigated 

that the average intensity of B and G channel is well 
approximate to the radical chemiluminescence intensity of 
CH* and C2

*. To be precise, each pixel of flame image is 
equipped either with R, G or B filter and the color image is 
interpolated from this information. The filters are chosen to 
reproduce human color vision, and how well they suit the 
radical spectral intensity ratio is purely coincidental. Due to 
R, G and B filters, the color camera is blind to OH* 
chemiluminescence, which is sensitive to the equivalence 
ratio variation. An additional drawback is that the RGB 
imaging method loses a lot of sensitivity compared with 
monochrome cameras. 

The setup of the RGB imaging method for equivalence ratio 
is shown as Fig.8. The RGB imaging system applies the RGB 
camera to image the flame in the combustion chamber. The 
setup of the RGB imaging method is simpler compared with 
the spectrum analysis method and the multispectral imaging 
method. However, the accuracy of the equivalence ratio 
measurement is lowest compared with the spectrum method 
and the multispectral imaging method. The RGB image is the 
integration of the spectral signal on the broad wavelength 
which covers several hundred nanometers. But the flame 
structure is most complete by the RGB imaging method 
compared with other measuring methods. 

 

Fig.8.  The setup of the RGB imaging method for equivalence ratio 
measurement. 

For RGB pictures imaged by color cameras, the RGB triplet 
of each pixel reflects the intensity of the spectrum at the 
corresponding wavelength. The RGB picture of flames under 
different equivalence ratios is shown in Fig.9. (upper). Based 
on the thesis proposed by Huang et al. [10], Yang et al. [11] 
improved the equivalence ratio measuring method based on 
the color model that established an improved model that 
pivoted the relationship between flame chemiluminescence 
and image. The improved corresponding color-modelled 
CH*/C2

* maps at condition (Φ=0.93 – 1.53) are plotted in Fig.9 
(lower). 

 

Fig.9.  The RGB images of flames under different equivalence ratios 
(upper) and the corresponding color-modelled CH*/C2* maps. [11] 



MEASUREMENT SCIENCE REVIEW, 22, (2022), No. 3, 122-135 

127 

 

Fig.10.  The correlation between radical chemiluminescence and 
equivalence ratio: a) The chemiluminescence intensity of C2

*, and 
the average of G channel with different equivalence. [10]. b) The 
chemiluminescence intensity of CH* and the average of B channel 
with different equivalence. 

 
Huang et al. [10] found that each flame has a distinct spatial 

distribution in its respective color space, based on which 
Huang et al. further investigated that the average intensity of 
the B and G channels in the RGB model can be well 
approximated to the radical chemiluminescence intensity of 
CH* and C2

*. The relationship between the color and 
chemiluminescence intensity is shown in Fig.10. On this 
basis, Huang [20] analyzed the flame characterization based 
on the RGB imaging method, obtaining the flame 
chemiluminescence properties through the filtering structure 
inherent in digital flame images and comparing it with 
spectrum and laser methods. In this study, Huang et al. 
investigate that the digitized primary color output is 
comparable to the radicals in the flame of CH4 + Air and C2H4 
+ Air. This unique radiation signature makes it possible for 
the RGB imaging method to be widely applied in combustion 
diagnostics. Huang et al. [21] applied this method in 
investigating the dynamic properties of flame to use the 
Fourier transform to extract the oscillation frequencies from 
high-speed image of flames, in which case they found that 
bilateral frequency can be analyzed to assess the different 
emission state according to the features of diffusion flame and 
premixed flame. Huang et al. [22] conducted an experimental 
study of the emission characteristics of flames during the 
ignition-propagation process of the flame, conducting the 
ignition tests on an atmospheric burner and an industrial gas 
turbine burner, respectively, and approximating the high-
speed camera as a hyperspectral imaging system to analyze 

the features of the flame throughout the ignition process. 
Eventually, Huang et al. found that the beginning of the 
combustion process started with a normally unobservable 
color feature which demonstrated the great potential of 
image-based combustion diagnostics. Yang et al. [23] applied 
the RGB imaging method in investigating the oscillating 
flames in an open pipe to detect the chemiluminescence 
intensity of CH* and C2

*, which is produced in the process of 
propane flame burning, to monitor the fluctuations of the 
flame and its effects on the chemiluminescence intensity of 
radicals. It was found that a self-induced fluctuation came 
into being when the flame passed through an open channel at 
both ends. It was also found that the fluctuations of the flame 
increased as the flame propagated after photographing the 
fluctuations of a propane rich flame in a quartz tube with the 
equivalence ratio at 1.1 – 1.4. The ratio of the 
chemiluminescence intensity of CH* and C2

* decreased when 
the flame was pulled back into combustion mixture, and it 
increased when the flame progressed. 

The RGB imaging method is simple to measure the 
equivalence ratio of the flame, but the accuracy of the method 
is not so good because the RGB image is the result of 
integration of the spectral signal over three broad 
wavelengths. The spectral intensity of the specific radical is 
difficult to decouple. The drawbacks of the RGB imaging 
method are that it is blind to OH* chemiluminescence and 
lacks lots of sensitivity, which makes it difficult to be 
employed in sites with high accuracy requirements. 

3. ACTIVE MEASURING METHODS 
Lasers are widely used in combustion diagnostics. The 

active measuring methods include Laser-Induced 
Fluorescence (LIF) [24], Planar Laser-Induced Fluorescence 
(PLIF) [25], Laser-Induced Breakdown Spectroscopy (LIBS) 
[26], Laser Raman Scattering (LRS) [27], etc. This paper 
focus on LIF, PLIF, LIBS, and LRS. Compared with the 
passive measuring method of equivalence, active measuring 
method has higher accuracy, sensitivity, and spatial 
resolution, which helps in studying the structure and the 
concentration of components of flame. A drawback of LIF is 
that not only a powerful laser source, but also a wavelength 
is needed to excite fluorescence, and often a frequency-
quadrupled Nd: YAG at 266 nm is used. Several complex 
issues also need to be considered for LIF, since the particles 
in the excited state are subject to many collisions before they 
radiate photons. The collisions cause the excited particles to 
return to the ground state without radiative leap, i.e. 
quenching, which reduces the efficiency of fluorescence 
production. Issues such as these further complicate the 
fluorescence spectrum. Similarly, the lifetime of LIBS signal 
is very short after the laser excitation. The plasma cools down 
rapidly, and the atoms recombine to molecules, which leads 
to a different spectrum and the luminescence ceases finally.  

A. Laser-induced breakdown spectroscopy method 
Over the past few years, the LIBS method has been widely 

applied to combustion diagnostic. The equivalence ratio can 
be measured by detecting the atomic species concentrations 
in flames. The setup of laser-induced breakdown 
spectroscopy method for flame equivalence ratio 
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measurement is shown in Fig.11. 

 

Fig.11.  The setup of the LIBS method for flame equivalence ratio 
measurement. 

The basic of LIBS is to apply an optical system to focus the 
pulsed laser on the surface of the target material and interact 
with it. The atoms, molecules, etc. within the focused laser 
spot area absorb the laser energy and undergo multiphoton 
ionization to produce plasma. Thereafter, the atoms and ions 
of plasma release the light at specific wavelength and form 
the corresponding atomic and ion characteristic emission 
spectra while the atoms and ions in the excited state leap from 
high energy level to low energy level. However, the lifetime 
of the LIBS signal is short after excitation.  The plasma cools 
down rapidly, and the atoms recombine to molecules which 
leads to a different spectrum. Finally, the luminescence 
ceases.  

Based on the wavelength of the characteristic emission 
spectra and the quantitative relationship between the 
concentration of the elements and the intensity of the 
characteristic emission spectra, the qualitative and 
quantitative information of the elements can be obtained. The 
intensity of the emission spectra [28] is defined as: 

 𝐼𝐼ij = hc
4πλij

 Ns Aij  gj

U s(T)
 exp (-Ej/kBT) (2) 

Here the 𝐼𝐼ij denotes the intensity of the emission spectra, h 
denoting the Planck constant (eVs), c denoting the light speed 
(m ∙ s-1), λij and Aij denoting the wavelength (nm) and 
transition probability ( s-1), Ns and U s(T) denoting the 
particle density and the partition function of particle s, Ej 
denoting the energy level of the characteristic emission 
spectra (eV), gj denoting the statistical weight, kB denoting 
the Boltzmann constant (eV ∙ K-1), and T denoting the 
temperature of plasma. 

Cremers et al. [29] applied laser-induced breakdown 
spectroscopy (LIBS) in analyzing the elements in soil firstly 
and then LIBS was widely used in analyzing the elements of 
various materials. For the measuring of the equivalence ratio, 
Michalakou et al. [30] applied LIBS in measuring the partial 
equivalence ratio of methane, ethylene, and propane 
combustion with air. As shown in Fig.12., Michalakou took a 
spectrometer and an ICCD detector into measuring the 
spectrum of the plasmas in the flames. In this study, 
Michalakou found that the emission spectra of C, H and O 
could be used to determine the partial equivalence ratio 
accurately and a good linear correlation was found between 

the intensity ratio of the element features. 

 

Fig.12.  LIBS spectrum of rich laminar premixed: a)  and  
b): methane-air flame (Φ=1.26). c) and d): ethylene-air flame 
(Φ=1.4). [30] 

Due to the limitation of spectrometer, the LIBS spectrum 
obtained by spectrometers is a one-dimensional signal which 
does not contain the spatial informational of the flame. Based 
on the drawbacks, some scholars applied the ICCD camera 
into imaging the plasma, in which case both the LIBS 
spectrum and atoms species concentration distribution can be 
obtained. In [31], Badawy et al. applied LIBS in measuring 
the lean partially premixed turbulent flame equivalence ratio. 
And Badawy et al. utilized LIBS to characterize and quantify 
the impact of changing the disk slit diameter on the 
distribution profiles of equivalence ratio for the flame. 
Consequently, as shown in Fig.13., they studied the 
relationship between the elemental intensity ratio of H/N, 
H/O and C/N+O, and the equivalence ratio for the premixed 
NG/air mixture. The accuracy of the LIBS for flame 
equivalence ratio measurement is relatively high and the 
spatial information can be analyzed too. 

 

Fig.13.  The correlation between the elemental intensity ratio of 
H/N, H/O and C/N+O, and the equivalence ratio for the premixed 
NG/air mixture. [31] 
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B. Planar laser-induced fluorescence method 
LIF applies the specific wavelength of laser to excite the 

components generated in the combustion process. The 
components are excited to high energy levels after absorbing 
the energy of laser photons, while the particles emit LIF 
signals with spectral characteristics when they return to low 
energy level. The precise information of flame such as 
components concentration, spectral intensity, etc. can be 
obtained with the analysis of LIF signals. The laser single 
pulse fluorescence signal SF measured in the LIF experiment 
is formed as:   

 SF=BIL𝛤𝛤τLNfBΦFf1
Ω
4π εηV (3) 

where B is the Einstein absorption coefficient divided by the 
speed of light, IL is the laser power spectral density per unit 
area divided by the laser bandwidth, Γ is the convolution 
between the excitation and absorption linewidths, τL is the 
laser pulse width, N is the number of molecules in the ground 
state of the electrons, fB is the fluorescence quantum that 
yields the excited state, and Ffl is the share of fluorescence 
collected in the detector band width. The remaining terms, Ω, 
are the steric angle of the fluorescence collected by the 
detector, ε and η are the transmission and photoelectric 
efficiency of the detector, respectively, and V is the volume 
of the action zone. It should be noted that this equation only 
applies to the linear region, i.e. when the BILΓ is small 
enough, only a small fraction of the particles in the ground 
state are excited. For LIF, fluorescence quantum yield usually 
depends strongly on temperature. 

 

Fig.14.  The setup of the PLIF system. [32] 

LIF can be applied in measuring the important characteristic 
parameters in combustion diagnostic due to its advantages of 
high resolution, high sensitivity, etc. On the other hand, LIF 
can provide the detailed excitation spectrum which lacks the 
spatial resolution. Based on it and the limitation of LIF itself, 
some scholars proposed planar laser-induced fluorescence 
(PLIF), which is based on LIF, in order to obtain the two-
dimensional image of LIF. Scholars use optical lens sets to 
turn laser beam into light sheet, which is applied to construct 
PLIF. Miao et al. [33] applied PLIF in investigating the 
distribution and concentration of OH* in flame which made 
use of the PLIF property of spatial information analysis. The 
experimental setup of the study is shown in Fig.14. In 
practical terms, a drawback of LIF is that a powerful laser 

source must be employed to illuminate a plane or even a 
volume, but also a wavelength is needed to excite the 
fluorescence. Quite often, a frequency-quadrupled Nd: YAG 
at 266 nm is used. 

Compared with LIF, PLIF can image flame structure, fuel 
distribution and flame temperature with high spatial and 
temporal resolution. The PLIF method based on molecular 
tracer is mainly used to obtain the spatial distribution of 
mixed gas by adding tracer fractions (ketones, benzene, etc.) 
into the mixed gas. The component concentration, local 
equivalence ratio, temperature, etc. can be obtained after 
experimental calibration and data processing [34]. Vandel et 
al. [35] applied planar laser-induced fluorescence on a tracer 
(toluene) to study the local equivalence ratio. The local 
equivalence ratio of the burner is shown in Fig.15., which 
shows the equivalence ratio distribution from two 
dimensions. 

 

Fig.15.  The local equivalence ratio of the burner. [35] 

As in [37], for PLIF measurement of equivalence ratio, an 
aromatic fluorescent tracer (methoxybenzene or anisole) is 
added to the fuel to mark the field of equivalence ratio. Due 
to high oxygen quenching, the fluorescent signal of anisole is 
directly proportional to the equivalence ratio which 
demonstrates the association of fluorescent signal and 
equivalence. Peterson et al. [37] also applied the combination 
of biacetyl planar induced-laser fluorescence and planar 
particle image velocimetry in measuring the equivalence ratio 
within the tumble plane of an optical engine. The measuring 
method proposed by Peterson obtained the fuel number 
density according to homogeneous fuel fluorescence images 
which normalized the stratified-fuel fluorescence signal. And 
the equivalence ratio was calculated from the oxygen 
concentration and the trapped mass density. Based on the 
advantage that both radical concentration and distribution can 
be analyzed, Versailles [38] applied PLIF to measure the 
concentration of CH* in the different flames and investigated 
the correlation between equivalence ratio and CH profile 
thickness (δCH), as shown in Fig.16. 

Compared with LIF, the PLIF method can both measure the 
equivalence ratio and obtain the equivalence ratio distribution 
which helps in further investigating the correlation between 
the equivalence ratio and other elements of flames. 
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Fig.16.  The correlation between equivalence ratio and CH profile 
thickness. [38] 

C. Laser Raman Scattering method 
One of the main measurement methods for component 

concentrations is LRS. When a laser is employed to act on a 
molecule, it produces Rayleigh scattering and weaker Raman 
scattering. The Raman spectrum of all components can be 
obtained with one laser excitation theoretically, which 
provides the information and Raman spectral intensity of 
components, and the mole fraction of each component can be 
calculated. The Raman scattering signal intensity is formed 
as: 

 S( v, J ) ∝ n E 
g (2J + 1) (v + 1) v s

 4 P i,j
Q rot

 Q vib
exp �

[-G0(v) - Fv(J)] h c
k T

� (4) 

where V denotes the vibrational quantum number, J denotes 
the rotational quantum number. T represents the temperature, 
n represents the molecular concentration, and E is the energy 
of laser. In addition, G0(V) and Fv(J) are the vibration and 
rotation energy spectral terms, respectively, and Qvib, Qrot are 
the partition functions of the vibrational and rotational energy 
levels of the molecule, respectively. The g denotes the nuclear 
spin weight factor of the molecule, and Pi,j denotes scattering 
coefficient of initial and final rotation energy level i and j. 
The component concentration can be calculated by measuring 
the Raman scattering signal intensity of the molecule in 
combustion progress. Wehr [39] employed a 1D-Raman 
system to measure the major species concentrations, mixture 
fraction, and temperature in flames. The 1D-Raman 
experimental setup in [39] is plotted in Fig.17. 

Meier et al. [27] employed LRS in concentration 
measurement in fuel-rich flames, and the emission spectrum 
was recorded at different equivalence ratios for an excitation 
as shown in Fig.18. In [40], LRC was applied to investigate 
the flame behavior and its cyclic variations for the 
simultaneous determination of the major species 
concentration and mixture fraction. The experimental setup 
of LRC is simple and Raman scattering us virtually 
unaffected by factors such as fluctuations in laser energy. 
Also, LRS allows simultaneous single-pulse measurements of 
the major species concentration with high spatial resolution. 

 

Fig.17.  The 1D-Raman experimental setup. [39] 

 

Fig.18.  Emission spectra for λexc = 489 nm. [27] 

4. APPLICATIONS OF MACHINE LEARNING 
The rapid development of machine learning offers a 

completely new technological route in the field of 
combustion diagnostic. Machine learning is widely used in 
solving various classification, regression, and clustering 
problems due to its excellent features learning capabilities. 
The construction of machine learning models generally 
includes data acquisition, data pre-processing, feature 
engineering and model training. This paper focuses on the 
construction of features engineering for the spectral 
properties of flame radicals and the classifiers which were 
usually applied in combustion diagnostic. 

Feature is a significant factor affecting the accuracy of the 
model for machine learning and suitable selection of features 
has contributed to constructing the model accuracy. The 
spectral characteristics of the flame radicals can be obtained 
after data acquisition and pre-processing of the flame has 
been completed, such as one-dimensional spectral signal 
intensity and two-dimensional multispectral images. From 
the above, the spectral characteristics of different flame 
radicals differs from each other, based on which, the feature 
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engineering can be constructed based on the different radical 
spectral characteristics. 

In general terms, feature is the characteristic variable in a 
system, which has different values under different conditions. 
For equivalence ratio measurement based on the spectrum 
analysis method, the major features, which contribute to 
indicate the equivalence ratio, are radical chemiluminescence 
intensity of OH*, CH*, and C2*. The traditional modelling 
approach is that Ordinary Least Square (OLS) is applied to fit 
the correlation between equivalence ratio and a single 
variable. In fact, the chemiluminescence intensity of multiple 
flame radicals changes with the variation of equivalence ratio. 
Thus, the radical chemiluminescence intensities, which 
change significantly with the variation of equivalence ratio, 
should be considered concurrently to construct the model. 
Different machine learning algorithms such as Multiple 
Linear Regression (MLR), Random Forest Regression 
(RFR), Support Vector Regression (SVR), etc. can be applied 
to construct the model. In reference [41], Vilsen et al. 
extracted average voltage, standard deviation of voltage, etc. 
parameters as the features, and MLR was applied to construct 
the model to predict the battery state-of-health. The 
fundamental MLR algorithm is formed as (5), where Xn is the 
feature n (radical chemiluminescence intensity) which is an 
independent variable and Y is the equivalence ratio. The β0 is 
a common intercept and βn denotes the regression coefficient 
of feature n. However, the limitation of MLR is that MLR 
requires the correlation between equivalence ratio and each 
feature to be approximately linear. However, the limitation of 
MLR is multiple: (1) The correlation between Y and Xn 
requires to be approximately linear. (2) The dependent 
variable should be subject to Gaussian distribution. Thus, the 
more nonlinear regression models are used in practical 
application.  

 Y = β0
+ ∑  βn Xn

 N
n=1

+ ε (4a) 

The one-dimensional spectral signal intensity is the result 
of the integration of the spectral signal of the target flame 
region. Thus, the spectral intensity of radicals, ratio of the 
spectral intensity of different radicals, mean value of spectral 
intensity, etc. are the identifiable features for feature 
engineering. Ge et al. [42] analyzed the spectrum of biomass 
flame over the spectral wavelength from 200 nm to 1200 nm 
and extracted the spectral intensities of OH* (310.85 nm), 
CN* (390.00 nm), CH* (430.57 nm) and C2

* (515.23 nm, 
545.59 nm) as the features of biomass flame. After the feature 
extraction, Ge constructed the identification model including 
decision tree [43], random forest [44], etc. and enabled the 
identification for types of biomass fuel. Zhou et al. [45] 
applied laser-induced breakdown spectroscopy and machine 
learning algorithms in monitoring the carbon concentration 
and combustion degree. In this study, the spectral variations 
of C, O, N, etc. were extracted as the features of kerosene 
combustion, and the spectral change rule of C in kerosene is 
plotted in Fig.19.a). The Radial Basis Function (RBF) was 
employed to perform the combustion degree based on the 
spectral information, which is suited for nonlinear 
relationship. The RBF used is a Gaussian kernel function and 
the distance used was Euclidean distance [46]-[47]. The x 

denotes the input spectral data, c denotes the center of the 
kernel function, σ denotes the width parameter of the function 
which controls the radial range of action of the function. The 
core idea is that the kernel is applied as hidden unit base to 
form the implicit layer space, and the input vector is mapped 
to hidden space directly. The mapping from input to output is 
nonlinear, and the network output is linear with the adjustable 
parameters. Based on it, the network weight can be solved 
from the linear system of equations. 

 

Fig.19.  The model accuracy under different wavelength range 
centered on the carbon spectral peak. [48] 

In addition, the influence of different radii of wavelength on 
prediction accuracy of combustion degree was investigated. 
Zhou et al. employed the different wavelength range centered 
on the carbon spectral peak as features and constructed the 
model based on it, and it indicated that the wavelength range 
centered on the carbon spectral peak with a radius of 0.64 nm 
performed best, as shown in Fig.19.b). Thus, it indicates that 
the quality of feature engineering has a direct impact on the 
accuracy of the machine learning model. Lee et al. [48] 
applied laser-induced plasma spectroscopy in analyzing the 
emission intensity of flame and then normalized the target 
emission intensity and total spectral intensity. The selected 
normalized emission intensities were extracted as the features 
of the flame, and they were trained for the machine learning 
algorithm as input. It was successful to develop a model 
which predicted the equivalence ratio. Compared with 
traditional univariate analysis of the flame features, the 
method mentioned above fits the multivariate and 
demonstrates high precision. 

Extracting the spectral intensity of flame directly is a simple 
process and the accuracy of the features extracted is 
appreciable. But the disadvantage of it is also obvious. The 
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spectral feature extracted is only the one-dimension data, 
which lacks the spatial features. Based on it, some scholars 
extract the features of flame images which include both 
spectral and spatial information. The spatial features mainly 
include flame area, height, etc., and the spectral features 
mainly contain gray value, spectral intensity, etc. Among the 
features mentioned above, color features can characterize the 
rich color information of a flame, which is usually 
constructed with the color moments. The area of target flame 
in the images is defined as: 

 A = ∑ ∑ 1, G (i, j)>valuej∈Rfi∈Rf
 (5) 

where A is the value of the area, Rf is the target area of the 
flame, and G (i,j) is the gray value of the point (i,j). The 
brightness of the flame is usually expressed as the normalized 
average gray value defined as: 

 B = 1
K
∑ ∑ 1

255 G (i, j)j∈Rfi∈Rf
 (6) 

where B is the brightness of the target flame, K is the sum 
pixel of the target flame, Rf is the target area of the flame, and 
G (i,j) is the gray value of the point (i,j). 

 

Fig.20.  The variation trend of gas fire feature parameters under 
decreasing equivalence ratio (5 frams/s). a) Total flame area, 
b) Area ratio, c) Connectivity, d) Rectangular fullness, e) Standard 
deviation of grayscale, f) Mean value of B channel. [49] 

Wang et al. [49] analyzed the difference of gas fire feature 
parameters under decreasing equivalence ratios, such as total 
area, gray value, mean value of B channel, etc. Fig.20. shows 
a combustion process of approximately one minute, where the 
variation trend of the feature parameters under decreasing 

equivalence ratio is presented. The steady combustion of gas-
fired flame lasts for 40 s, and then the combustion state turns 
into unsteady state for about 14 s. And five frames were 
recorded per second, which represents that the frames 0 – 200 
are normal combustion and the rest are abnormal combustion. 
After extracting the image features of gas fire, Wang et al. 
used the fuzzy pattern recognition algorithm to distinguish 
the flame burning state. The fuzzy pattern recognition is a 
classification algorithm based on fuzzy rules which solve the 
problems with fuzzy properties. The flame burning state 
recognition method proposed presents a good performance in 
distinguishing the burning state of flame, and the accuracy of 
the method is ensured because several feature parameters of 
flame, which vary with the decreasing of equivalence ratio, 
are taken into consideration.  

For combustion diagnostic, machine learning solves the 
drawback that traditional data analysis method can only fit 
the linear relationship, and the multiple features cannot be 
taken into consideration simultaneously. The accuracy of the 
machine learning model depends on the quality of feature 
engineering, and thus the prior knowledge of the 
characteristic parameters with a sensitive response to the 
dependent variable is essential. 

5. CONCLUSION 
The aim of the paper is to provide an overview of the 

existing equivalence ratio measurement method and the 
applications of machine learning in combustion diagnostic, 
and a comparison among different equivalence ratio 
measurement methods. The existing equivalence ratio 
measurement methods have been summarized into two main 
categories: passive measuring methods and active measuring 
methods. The mechanism, applications, advantages, and 
limitation have been discussed in detail, which offer a 
detailed guidance for the suitable selection of a equivalence 
ratio measuring method. 

Among the measuring methods mentioned, spectrum 
method and laser-induced breakdown spectrum method 
analyze the spectral information, and thus the accuracy of 
these measuring methods is ensured. But spectrum method 
lacks the spatial information of the flame, in which case the 
structure of flames is difficult to analyze, and LIBS can 
analyze the concertation distribution of radicals with a CCD 
camera which is used to image the LIBS signal in 
combustion. Compared with the measurement method above, 
planar laser-induced fluorescence provides high spatial 
resolution as well as high precision. A drawback of LIF is that 
not only a powerful laser source, but also a wavelength is 
needed to excite fluorescence, and often a frequency-
quadrupled Nd: YAG at 266 nm is used. Multispectral 
imaging method and RGB imaging method image the spectral 
signal over narrow wavelength and wide wavelength, both of 
which are simple to measure the equivalence ratio, but a 
certain amount of spectrum accuracy is lost. Machine 
learning can analyze the high-dimensional features, in which 
case the different features affecting the combustion can be 
taken into consideration, which solves the problem that the 
traditional methods of data analysis can only fit a single 
feature. Thus, machine learning shows a great potential in 
combustion diagnostic. 
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