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Abstract: We address the issue of angular measure, which is a contested issue for the International System of Units (SI).
We provide a mathematically rigorous and axiomatic presentation of angular measure that leads to the traditional way of
measuring a plane angle subtended by a circular arc as the length of the arc divided by the radius of the arc, a scalar quantity.
We distinguish between the angular magnitude, defined in terms of congruence classes of angles, and the (numerical) angular
measure that can be assigned to each congruence class in such a way that, e.g., the right angle has the numerical value π

2 .
We argue that angles are intrinsically different from lengths, as there are angles of special significance (such as the right
angle, or the straight angle), while there is no distinguished length in Euclidean geometry. This is further underlined by the
observation that, while units such as the metre and kilogram have been refined over time due to advances in metrology, no
such refinement of the radian is conceivable. It is a mathematically defined unit, set in stone for eternity. We conclude that
angular measures are numbers, and the current definition in SI should remain unaltered.
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What’s in a name? That which we call a rose,
By any other word would smell as sweet.

– William Shakespeare

1. Background
Our motivation for the present study of a very classical
question is the ongoing discussion in the metrology com-
munity regarding angular measure, and, in particular,
whether one should associate a dimension to the angular
measure.

The current version of SI states that angular measure
is, in the recent parlance of metrology, of dimension num-
ber. (The term dimensionless is still often used instead,
but is deprecated.) A proposal has been raised to add
the radian as an eighth base unit. The purpose of the
present paper and the companion paper [1] is to show
why we disagree with this proposal. We discuss our ap-
proach in the context of the ongoing discourse in the
metrology community in [1]. Here, we go deeper into
the technical side of the argument.

To further explain this setting, we refer to [2]. The set
of measurable physical quantities Q is an abelian group,
with group operation written multiplicatively, contain-
ing a copy (via an embedding ι) of the positive real

numbers R+. (For the present discussion, we ignore the
possibility of negative quantities.) The quotient group
D = Q/R+ is called the group of quantity dimensions.
It is a free abelian group on finitely many generators,
the base dimensions. Currently, the SI has seven base
dimensions: Length L, mass M, time T, electric current
I, thermodynamic temperature Θ, amount of substance
N, and luminous intensity J. The controversy concerns
a suggested eighth base dimension for angles. The quo-
tient map from Q to D is written δ. Thus, we have the
exact sequence

R+ ι
↪→ Q

δ
↠D.

Selecting a coherent set of units yields a subgroup U of
Q so that δ maps U isomorphically onto D. As a re-
sult, we have the isomorphism Q ≃ R+ ×U. To illustrate
these concepts, the acceleration of gravity g has quantity
dimension δ(g) = MT−2, and g ≈ 9.8ms−2 correspond-
ing to the pair (9.8,ms−2) ∈ R+ ×U. Writing Z for the
identity element of D, we have ι(R+) = δ−1(Z). The
quantities in this set correspond to pure numbers. They
are the quantities of dimension number.

Here we argue, from a mathematical point of view,
that angular measure cannot become a base quantity. In
support of this opinion, we carefully revisit the concept
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of angle and angular measure, starting from classical Eu-
clidean geometry as recast in modern form by Hilbert.
We introduce (abstract) angular magnitude as congru-
ence classes of angles, and associate an angular measure
– being a real number – to each angular magnitude.

As is evident from the present mathematical analysis,
the traditional way of measuring a plane angle subtended
by a circular arc, is in the axiomatic approach to take
the supremum of sums of ratios of straight line length
segments of decreasing length. The inevitable conclusion
is that angular measures are pure numbers.

2. Introduction

Our goal here is to offer a detailed presentation of the
mathematicians’ view on the question of angular mea-
sure, with a focus on the mathematical concept of an-
gles rather than their physical manifestation. We have
chosen to pursue the axiomatic approach introduced in
Euclid’s Elements [3] as made rigorous by D. Hilbert
[4]. Using the ingenious method of Archimedes [5], we
finally obtain the traditional way of measuring a plane
angle subtended by a circular arc as the length of the arc
divided by the radius of the arc, a scalar quantity. For
simplicity of presentation, we limit our discussion to pla-
nar geometry throughout the paper. For completeness
we have given a self-contained and axiomatic presenta-
tion, the reward being that all steps are included at the
expense of technical arguments.

The axiomatization of planar geometry, as laid out
in Euclid’s Elements, is a pillar in the development of
mathematics. In 1899, David Hilbert gave a modern
axiomatic formulation of Euclidean geometry based on
the two millennia of mathematical progress since Euclid.
See [6] for a historical discussion. We follow the lucid pre-
sentation according to Hartshorne [7], with a few twists
of our own.

Our focus here is to give an axiomatic presentation of
angular measure in the Euclidean plane, leading to the
familiar definition of the measure of a plane angle sub-
tended by a circular arc as the length of the arc divided
by the radius of the arc, a pure number.

Planar Euclidean geometry is well-known; however, an
axiomatic presentation requires a certain care to develop
the tools in a complete and consistent manner. To ease
the task for the reader we give a rather detailed and com-
plete presentation, starting with the undefined notions of
points and lines, based on Hilbert’s axioms as presented
in [7]. These axioms include a notion of betweenness,
allowing us to define a line segment as the set of points
between two points on a line. Furthermore, the axioms
include a notion of congruence between line segments.
Thus, we can define the (abstract, or geometric) length
of a line segment to be the congruence class of that line
segment. We can associate a real number to a pair of
such lengths, which we may think of as their length ra-
tio. We could assign some arbitrary length the role of
unit length, thus allowing to measure any line segment
using real numbers. However, we choose not to do so,

staying with ratios instead.
Before presenting our approach precisely, we provide

an informal preview. An angle is defined as the union
of two (distinct and non-opposite) rays (half-lines with
a direction) originating from a common point (denoted
apex). Note that this excludes the zero angle and the
straight angle. A congruence relation between angles is
introduced axiomatically. We introduce the addition of
(congruence classes of) angles provided their sum is less
than the straight angle (more precisely, if each angle is
less than the supplementary angle of the other). The
extension to angles of arbitrary magnitude is essentially
a book keeping issue.

Next comes the definition of the size of an angle. While
lengths scale indiscriminately, angles are different in the
sense that the right angle and the straight angle are dis-
tinguished no matter how you measure them. Here we
follow the celebrated approach due to Archimedes in his
approximation of the ratio of the circumference of a cir-
cle to its diameter (the symbol π for this ratio was intro-
duced by William Jones in 1706, and later popularised by
Euler). Archimedes’ method consisted in approximating
the circle by inscribed and circumscribed regular poly-
gons of high order. Using a regular 96-sided polygon, he
arrived at the estimates 310

71 < π < 31
7 [5, pp. 93–98].

We define the measure of an angle as the supremum
of the sum of length ratios of the polygonal lines ap-
proximating the circular arc subtending the angle and
the radius. This notion of angle measure is additive and
gives the measure of π

2 for a right angle. We note that
the measure of an angle is a pure number, arising as it
does from sums of length ratios.

We distinguish between the concept of angular magni-
tude defined as a congruence class of angles, and the an-
gular measure, assigned to each congruence class. More
specifically, each congruence class consists of angles char-
acterized in such a way that they are “of the same size”.
As we will argue, this is a function of length ratios, and
thus independent of any length scale. For each angular
magnitude α we associate a numerical value ϑ(α), which
we can write as usual ϑ(α) = s/r, as the ratio between
the arc length and the radius. This will lead to the clas-
sical result that a right angle has the numerical value
π
2 . The radian is defined as the angular magnitude for
which ϑ(rad) = 1.

The common conflation of identifying ϑ(α) and α ap-
pears to be the main source of much confusion regarding
angular measure. In practical computations and mea-
surement, this does not cause any problems, but they
are conceptually different. In the present paper, we
are only concerned with the theoretical aspects of an-
gular measures, not with the considerable challenges as-
sociated with practical, accurate measurement of angles.
Our goal is to participate, from a mathematical point of
view, in the ongoing discussion regarding a base unit for
angular measures. In light of our findings, we argue that
it is neither desirable nor reasonable to add the radian
as a base unit in the SI.
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Let us end this introduction with a non-technical de-
scription of the paper. In Section 3 we establish the
basic properties of the undefined terms denoted points
and lines. Two distinct points define a unique line (ax-
ioms I1–I3), and there exist three points that are not
on a common line (implying that we are not on a one-
dimensional line). Given two points on a line, we can
axiomatize what it means that a point is between the
two given points (axioms B1–B3), and finally Pasch’s
axiom secures that we are working in a two-dimensional
plane (axiom B4). Having defined line segments as a set
of points between two given points, we can define a con-
gruence relation between segments of “equal length” (ax-
ioms C1–C3). The axioms of Archimedes and Dedekind
(axioms A and D) are of more technical nature, and can
be skipped on first reading. We describe a unique way
to define a real number to each ratio of two (congru-
ence classes) of linear segments. We also define rays as
“half-lines”. In Section 4 we define angles as the union of
two distinct rays emanating from a common point. Next
we introduce an equivalence relation between angles of
“same magnitude” (axioms C4–C6). In Section 5, we de-
fine triangles in terms of three points not on a common
line. Axiom SAS states that for congruence of two trian-
gles, meaning congruence of all corresponding sides and
angles, only requires the congruence of two sides and the
angle between them. The SAS axiom and the closely
related Theorem SSS give the main connection between
angles and lengths, showing that angular measures and
length measures are intrinsically connected. Section 6 on
the parallel postulate can be skipped on the first read-
ing. In Section 7 we introduce angular measures using
Archimedes’s method, the crux of the paper. Consider
linear segments that can be inscribed in a circle inside an
angle, and next compute the sum of the ratios of these
segments with that of the fixed radius of the circle, a real
number. Taking the supremum of these sums, we obtain
the angular measure.

3. Points, lines, and linear segments
Like all axiomatic systems, geometry is based on a num-
ber of undefined terms. In our case, we begin with a set
whose elements are called points and another set whose
elements are called lines. As we restrict our attention
to planar geometry, we do not need the extra concept
of a plane. We will introduce, step by step, a system of
axioms that the points and lines have to satisfy. Of par-
ticular importance are the notions of incidence, which is
a relation between a point and a line, betweenness, which
is a relation between three collinear points, and congru-
ence ∼=, which is an equivalence relation1 between line
segments or between angles (to be defined later).

The incidence axioms are:
1An equivalence relation ∼= between two objects a and b is a

relation that is reflexive (a ∼= a), symmetric (if a ∼= b, then b ∼= a),
and transitive (if a ∼= b and b ∼= c, then a ∼= c). The equivalence
class of an object a is the set of all objects that are equivalent
to a.

I1. Any two distinct points are incident with exactly
one line.

I2. Every line is incident with at least two distinct
points.

I3. There exist three noncollinear points.

A

B

C

It follows from I1 and I2 that any
line is given by the set of points
incident with it. Thus we can, and
shall, identify a line with its set of
incident points. Rather than the cumbersome “incident
with” we use commonly understood terms such as points
lying on a line, a line passing through a point, etc. We
shall write AB for the unique line through distinct points
A, B.

A
B

C

D

E
DE

For the betweenness axioms B1–B4, we
need some notation and a definition.
The betweenness relation “B is between
A and C” is written A∗B ∗C. The line
segment between two distinct points D
and E is the set consisting of D, E, and
all points between them, and is denoted by DE .

B1. If A∗B ∗C then A, B, C are distinct points on a
line, and also C ∗B ∗A.

B2. For any two distinct points A and B, there exists
a point C such that A∗B ∗C.

B3. Given three distinct points on a line, exactly one
of them is between the other two.

B4. Pasch’s axiom:2 If A, B, C be three non-collinear
points and a line l contains none of them, but l
contains a point in AB, then l contains a point in
AC ∪BC .

A

B

C

l

Pasch’s axiom

While axiom I3 makes our ge-
ometry at least two-dimensional,
Pasch’s axiom B4 in effect makes
it at most two-dimensional. One
aspect of this is that the set of
points not on l is divided into two
nonempty disjoint subsets, so that
a line segment between two points
in one subset does not intersect l, while a line segment
between a point in one subset and a point in the other
does intersect l. The two sets are called the two sides (or
half planes) of l, and we are thus allowed to use phrases
like “A and B lie on the same side of l” or “A and B lie
on opposite sides of l”.

Axioms B1–B3 imply that the set of points on any line
l can be given a total order ≺ so that for any distinct
A, B, C on l, A ∗B ∗C if and only if either A ≺ B ≺

2Strictly speaking, Pasch stated the axiom for three-
dimensional geometry, with the added assumption that l lies on
the plane containing A, B, and C. The present version, in con-
trast, restricts the dimensions to two.
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C or C ≺ B ≺ A. Moreover, the order is unique up to
reversal. For this reason, the axiomatic system given by
the incidence axioms I1–I3 and the betweenness axioms
B1–B4 is known as ordered geometry.

A BThe ray −→AB consists of all
points C ∈ AB so that C ∗A∗B
is not true. We say the ray originates at A, or that A is
the origin of the ray.

The congruence axioms for line segments are:

C1. Given a line segment AB and a ray r originating
at C, there is a unique D ∈ r so that AB ∼= CD.

C2. Congruence is an equivalence relation on line seg-
ments.

C3. If A∗B ∗C and D∗E ∗F and AB ∼= DE and BC ∼=
EF , then AC ∼= DF .

A B

C

r
D

Axiom C1

As we like to think of line segments be-
ing congruent if and only if they have
the same length, thanks to C2 we can
turn this into a definition, and define
the length ⟨AB⟩ of a segment AB to be
its congruence class. Then axiom C1
states that the points on a ray (except for the origin of
the ray) are in one-to-one correspondence with the set
of lengths. It follows from the axioms that no line seg-
ment is congruent to a proper subsegment. Thus, we
can define a total order on the set of lengths, so that the
length of a line segment is greater than that of any of its
subsegments, and the sum of two lengths is greater than
either summand.

A B C

D
E

F

Axiom C3

We can add lengths by saying ⟨AB⟩+
⟨BC ⟩ = ⟨AC ⟩ whenever A ∗B ∗C; ax-
iom C3 states that this is indeed well
defined. Thus, the set of lengths of
line segments becomes an abelian semi-
group.3 In particular, we can define any
positive integer multiple of a length by
repeated addition. So far, we can only
add lengths, but we cannot define a ratio of lengths, ex-
cept for special cases where the ratio will be a rational
number: If m and n are natural numbers with m⟨AB⟩ =
n⟨CD⟩, it makes sense to say that ⟨AB⟩/⟨CD⟩ = n/m.

This is a good place to introduce the axioms of
Archimedes and Dedekind. Here we should note that
the former does in fact follow from the latter. However,
we include it due to its importance in the discussion be-
low.

A. (Archimedes’ axiom) Given two line segments,
some integer multiple of the first segment is greater
than the second.

D. (Dedekind’s axiom) If a line is a disjoint union of
two nonempty sets A and B, and no point in B

3This semigroup lacks a neutral element – a zero, since we do
not include degenerate “line segments” consisting of a single point.
This is easily remedied if desired.

lies between two points of A and vice versa, there
exists a point P so that {P} ∪A and {P} ∪B are
opposite rays originating at P .

A B

C

D

E
Archimedes’ axiom is essential for
avoiding the existence of infinites-
imal or infinite lengths, whereas
Dedekind’s axiom guards against the
existence of “point-sized holes” in a
line. Related is the fact that there is
no smallest length; i.e., between any
given distinct points A and B another
point can be found. (A proof is briefly indicated in the
figure. C is any point not on the line AB, then D and
E are picked by B2, and Pasch’s axiom (B4) is used to
show that EC must intersect AB.)

Given two lengths x and y, we can define their ratio
x/y ∈ (0,∞) by

x/y = sup{a/b |a,b ∈ N,ay ≤ bx}.

Archimedes’ axiom guarantees that this ratio is posi-
tive and finite, whereas Dedekind’s axiom (together with
the non-existence of any smallest length) implies that
every positive real number is a ratio of lengths as de-
fined above. Relations like (x+ y)/z = x/z+ y/z and
x/z < y/z ⇔ x < y are easy to show.

Having defined ratios, we can now define real multiples
of lengths: If a is a positive real number and u is a
length, we can define au to be the unique length x so
that x/u = a. We could also fix such a length u, call
it the unit length, and assign the real number x/u to
any length x. This is customarily done in elementary
geometry, but it is by no means necessary. One could
also assign special names to several such lengths, and
use multiples of the resulting “units” to specify lengths,
as one does when referring to physical space.

4. Angles
We now turn to the study and measure of angles. In
this section, we take ordered geometry (incidence and
betweenness axioms) as given, along with the congruence
axioms C1–C3. Axioms A and D are not needed for now.

A B

C

An angle is the union of two distinct and
non-opposite rays, called the legs of the
angle, originating from a common point
(the apex of the angle). In other words,
the two rays are not part of the same line;
hence, the zero and straight “angles” are
excluded from consideration. Given two
such rays r and s, we may write ∠rs for
the corresponding angle (r∪s), but the notation ∠BAC
is more commonly employed, where the two rays are −→AB
and −→AC . Note that ∠BAC = ∠CAB: Angles (like lines
and segments) do not have a specific orientation. They
do, however, have an inside and an outside: A point not
on either leg of ∠BAC is said to be inside ∠BAC if it
lies on the same side of AB as C, and on the same side of
AC as B. Otherwise, it is outside the angle. Note that
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this definition excludes the straight “angle”, for which
no meaningful definition of “inside” can be given.

The congruence axioms for angles are exact analogues of
the congruence axioms C1–C3 for segments. We list all
three as axioms, although C3 is an easy consequence of
axiom SAS, to be introduced in the next section.

C4. Given an angle ∠BAC and a ray −→DF , there exists
a unique ray −→DE on a given side of DF such that
∠BAC ∼= ∠EDF .

C5. Congruence is an equivalence relation on angles.

C6. If C is point inside ∠BAD, and G is a point in-
side ∠FEH with ∠BAC ∼= ∠FEG and ∠CAD ∼=
∠GEH, then ∠BAD ∼= ∠FEH.

A B

C

D

E

FGH

5. Connecting angles and lengths

A B

C

SAS

We now arrive at a crucial point, namely,
the connection between angles and lengths.
This is achieved by a single axiom.

The triangle ABC , with A, B, C non-
collinear, is the union AB ∪ BC ∪ CA to-
gether with the given order of the corners
A, B, C. Thus, ABC and BAC are not con-
sidered to be the same triangle, although
as points sets they are identical. Triangles ABC and
DEF are called congruent if corresponding sides and an-
gles are congruent, i.e., AB ∼= DE , BC ∼= EF , CA ∼= FD,
∠BAC ∼= ∠EDF , ∠CBA ∼= ∠FED, and ∠ACB ∼= ∠DFE .

SAS. (“Side–angle–side.”) Triangles ABC and DEF are
congruent, provided AB ∼= DE , ∠BAC ∼= ∠EDF ,
and AC ∼= DF .

Here we pause to emphasize that SAS is the main bridge
connecting the notion of lengths to the notion of an-
gles. To be specific, consider an angle ∠BAC . Then
SAS states, among other things, that ⟨BC ⟩ is uniquely
determined by ⟨AB⟩, ⟨AC ⟩, and the congruence class
of ∠BAC . In the opposite direction we find that ⟨AB⟩,
⟨AC ⟩, and ⟨BC ⟩ uniquely determine the congruence class
of ∠BAC . This is a consequence of the “Three Sides”
congruence theorem:

SSS. Theorem. Given triangles ABC and DEF , if AB ∼=
DE , BC ∼= EF , and CA ∼= FD, then the two trian-
gles are congruent.

These results show that angular measures and length
measures are inextricably tied together, a point we shall
revisit later.

Remark. The incidence (I1–I3) and betweenness (B1–B4)
axioms, along with the congruence axioms C1–C5 and
SAS, constitute an axiomatic system known as absolute
geometry. Any model of absolute geometry, i.e., a set
of lines and points with the requisite relations satisfying
the axioms, is called a Hilbert plane. We call a Hilbert
plane real if it satisfies the axioms of Archimedes (A)
and Dedekind (D) in addition. Here, “real” refers to the
real numbers, as these two axioms serve to ensure that
length ratios correspond to real numbers.

6. The parallel postulate
To complete our discussion of the axioms of geometry,
we introduce the parallel postulate according to Playfair
(Euclid’s formulation was rather different).

Two lines are said to be parallel if they have no point
in common, or else are the same line.

P. (Playfair’s axiom.) Given a line and a point, there
is exactly one line through the given point parallel
to the given line.

Euclidean geometry is absolute geometry with Playfair’s
axiom added. A Euclidean plane is a model of Euclidean
geometry, i.e., a Hilbert plane satisfying axiom P. Fi-
nally, a real Euclidean plane is a Euclidean plane satis-
fying axioms A and P.

From now on, we shall assume all the axioms of a
real Euclidean plane. Non-Euclidean geometries have a
number of peculiarities that do not concern us here.

A side remark: Similar triangles in a non-Euclidean ge-
ometry are congruent. In a Euclidean setting, on the other
hand, even without axioms A and D we can define the ratio
of lengths by an appeal to similar triangles. The resulting
ratios are positive members of a Pythagorean ordered field,
for example the real part of the algebraic closure of Q, or
some non-standard model of R.

7. Angular magnitudes
In the same way that C2 allows the definition of lengths
of intervals as congruence classes, we use C5 to define the
angular magnitude of an angle as its congruence class,
denoting by ⟨∠BAC ⟩ the angular magnitude of ∠BAC .

A B

C

D

D′

E

Just as C3 with the help of
C1 lets us add arbitrary lengths,
we can use C6 with the help of
C4 to define the sum of angular
magnitudes, with the caveat that
we cannot add angles if the sum
would be “too large”. To make
this more clear, first note that we
can order angles. To do this, first move one of them
(by which we mean, replace it by a congruent angle)
so that the two angles to be compared have one leg
in common, with the other two legs on the same side
of the common leg. Unless the angles are congruent,
one will have its second leg inside the other angle, and
will be said to be smaller. In the picture, C is in-
side ∠BAD. Hence ∠BAC is smaller than ∠BAD, and
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we write ⟨∠BAC ⟩ < ⟨∠BAD⟩. The same picture serves
also to define addition: So long as C is inside ∠BAD,
⟨∠BAC ⟩ + ⟨∠CAD⟩ = ⟨∠BAD⟩. But clearly, two arbi-
trary angles cannot always be arranged in this fashion,
so their sum might not exist.

To be more precise, we can add angles if and only if
each angle is less than the supplementary angle of the
other. In the image, ⟨∠BAC ⟩ + ⟨∠CAD⟩ = ⟨∠BAD⟩.
The supplementary angle of ∠BAC is ∠CAE, which
is greater than ∠CAD. It is, however, smaller than
∠CAD′, and so the sum ⟨∠BAC ⟩ + ⟨∠CAD′⟩ is not de-
fined.

To deal with the problem of adding “too large” an-
gles, the idea is to add (for the time being) a “fic-
tional” angular magnitude ϖ (highly nonstandard no-
tation) corresponding to the straight “angle” defined by
opposite rays. Technically, things become easier if we
also adjoin a zero to the set of angular magnitudes.
Then a generalized angular magnitude would be a for-
mal sum aϖ+ φ, where a ≥ 0 is an integer counting
half turns, and φ is a proper angular magnitude (or
zero). The sum of aϖ+φ and bϖ+ψ would be one of
(a+ b)ϖ+ (φ+ψ) or (a+ b+ 1)ϖ+ (φ+ψ−ϖ), where
we just have to give meaning to the term φ+ ψ−ϖ
when φ and ψ cannot be properly added. In the pic-
ture, ⟨∠BAC ⟩ + ⟨∠CAD′⟩ −ϖ = ⟨∠EAD′⟩. As a special
case, the sum of an angular magnitude and its supple-
ment will be ϖ. For future reference, note that a right
angle is an angle congruent with its own supplement. Its
angular magnitude is ϖ/2.

It is a trivial, albeit quite tedious, book keeping exer-
cise to show that the set of generalized angular magni-
tudes becomes an ordered additive semigroup (in fact, a
monoid, since we include the magnitude of the zero “an-
gle”) in analogy with the semigroup of length measures.
We can define the ratio of angles in analogy with how
we defined ratios of lengths.

A
B

CWe now proceed to the construc-
tion of angular measure. We begin
very naïvely, relying on SAS and SSS
and, more generally, the standard re-
sults on similar triangles, which hold
in Euclidean geometry – but not in non-Euclidean ge-
ometries – and define
σ(⟨∠BAC ⟩) = ⟨BC ⟩/⟨AB⟩ provided AB ∼= AC .

In Euclidean geometry (i.e., satisfying P) this ratio is
well defined. Moreover, it also makes intuitive sense: An
object of size ⟨BC ⟩ seen at a distance ⟨AB⟩ subtends an
angle measured by the ratio of the two lengths involved.

A
B

C
D

Indeed, σ is an increasing func-
tion of the angular magnitude as
we have defined it. However, it
is not additive. Rather, a simple
application of the triangle inequal-
ity reveals that it is subadditive:

σ(α+β)< σ(α)+σ(β), as indicated in the picture, with
α= ⟨∠BAC ⟩ and β = ⟨∠CAD⟩. We can remedy that by
defining instead

ϑ(α) = sup
{ n∑

i=1
σ(βi)

∣∣∣∣ n∑
i=1

βi = α

}
.

This is easily shown to be additive4. Briefly, first note
that if

∑
iβi = α and

∑
j β

′
j = α′, then

∑
iβi +

∑
j β

′
j =

α+ α′, and so
∑

iσ(βi) +
∑

iσ(β′
i) ≤ ϑ(α+ α′), from

which we get ϑ(α) + ϑ(α) ≤ ϑ(α+α′). For the oppo-
site inequality, if

∑
iβi = α+α′, we may (if necessary)

replace one of the βi by two angular magnitudes, so that
the angular magnitudes may be divided into two sets
summing to α and α′, respectively. Using the subad-
ditivity of σ, we find that this procedure increases the
value of

∑
iσ(βi), and we get

∑
iσ(βi) ≤ ϑ(α) +ϑ(α′),

so that ϑ(α+α′) ≤ ϑ(α)+ϑ(α′).

O
A

B

We can state our definition
of ϑ(α) in more geometric lan-
guage as follows: Given an an-
gular magnitude α and angular
magnitudes βi with

∑n
i=1βi =

α, create an angle ∠AOB with
⟨∠AOB⟩ =α, pick a radius r, and
points P0 = A, P1, . . . , Pn = B along the circular arc
from A to B with ⟨∠Pi−1 OPi⟩ = βi for i = 1, . . . , n.
Then

n∑
i=1

σ(βi) =
n∑

i=1

⟨PiPi−1 ⟩
r

= 1
r

n∑
i=1

⟨PiPi−1 ⟩

in which the sum on the right-hand side is simply the
length of the piecewise linear curve passing from A via
Pi to B. In the Cartesian plane R2, the length of a curve
is defined to be the supremum of the lengths of broken
lines formed by joining successive points along the curve.
We can employ the same definition in our more abstract
setting, concluding that ϑ(α) = ℓ/r, where ℓ is the length
measure of the circular arc from A to B:

ℓ= sup
n∑

i=1
⟨PiPi−1 ⟩,

where the supremum is taken over all choices of points Pi

picked successively along the arc. The existence of the
supremum in the set of length measures is guaranteed by
Dedekind’s axiom (D). In this approach, the reader may
recognize Archimedes’ computation of the circumference
of a circle. He used regular polygons, approximating the
circle both from the inside and the outside, thus getting
both a lower and an upper estimate. But the idea is
essentially the same.

4There are other, non-additive ways to measure angles, e.g.,
“cosine similarity”, but they will not be discussed here.
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O

P
Q

P ′Q′The one thing missing from
the above discussion is the
fact that ϑ(α) (equivalently, the
length of the circular arc) will in
fact be finite. The crucial obser-
vation here is that in the picture,
⟨PQ⟩ ≤ ⟨P ′Q′⟩ (so long as P ′Q′ lies outside the circle).
Applying this to the segments of a broken line, and using
each of the three indicated sides of the rectangle circum-
scribing the semicircle, we quickly conclude that ϑ(α)< 4
for any angular magnitude α.

The ratio π between the arc length of a semicircle and
its radius will be π = supαϑ(α), the supremum taken
over all proper angular magnitudes α. Thus we arrive at
ϑ(ϖ) = π. If we perform the calculation in the standard
Cartesian plane R2, we end up with the usual value for π,

π =
∫ 1

−1

dx√
1−x2

.

8. Conclusion

Let us repeat and look at the previous discussion from a
general point of view. Nobody will question that points
and lines are geometric objects. Angles, being the union
of two rays with a common apex, are geometric objects
as well. There is a practical need to associate numerical
measures with geometric objects. For lines, the natural
way is to define a length unit (such as metre) with which,
for every line, the length of a line segment can be mea-
sured. For angles, no matter how they are placed in the
plane, the natural way is to identify those angles that are
“of the same size” and define a measure that gives the
same value to all angles of the same size. We have cap-
tured this idea by the definition of congruence of angles
and have introduced the concept of angular magnitude
in Euclidean plane geometry as a congruence class of
angles. We have shown that the very notion of congru-
ence of angles, and hence the angular magnitudes, relies
crucially on the concept of length. However, since length
units have no influence on angles, we must conclude that
angular measure must be considered a function of length
ratios.

Among the angular magnitudes we find ϖ, corre-
sponding to the straight angle, ϖ/2, corresponding to
a right angle, and the degree ◦ = ϖ/180. To each an-
gular magnitude α we have assigned an angular measure
ϑ(α), for which we can write in the conventional manner
ϑ(α) = s/r. In particular, ϑ(ϖ) = π and ϑ(1◦) = π/180.
We can also define the radian as the angular magnitude
for which ϑ(rad) = 1. We now have ϖ = π rad = 180◦; in
particular, we no longer need the temporary notation ϖ.

Note that the conventional notation α= s/r is, strictly
speaking, a category error, since a angular magnitude is
not a number. It is, however, quite common to conflate
the two concepts, i.e., not to distinguish between α and
ϑ(α). In the vast majority of cases this is harmless.

If we do conflate angular magnitudes with their nu-
merical representation, however, the equation ϑ(rad) = 1

becomes rad = 1, which is the source of much confu-
sion, such as considering the radian to be a derived unit
which is equal to the number one. Unfortunately, this
statement also appears in the current SI brochure, where
moreover ‘rad’ is expressed by the quotient m/m, in or-
der to emphasize that it is a derived unit in the SI. But
these statements are not justified at all.

If any value associated with a magnitude is specified,
both the numerical value and the corresponding unit
must always be stated. Angles are no exception. In
case of a semicircle, for example, the value associated
with the angular magnitude shall be stated as π rad, al-
though π would be sufficient from a mathematical point
of view, i.e., the “rad” shall be added for clarification.
On the other hand, c= πr must be written for the arc of
a semicircle with radius r, i.e., in this case it is necessary
to omit the “rad”, because the angular measure has to
be used here, which is a pure number.

We introduced the notion of angular magnitude and
the conversion function ϑ only for the purpose of the
present discussion. However, requiring scientists and en-
gineers to maintain the distinction between angular mag-
nitudes and their measure in radians would impose an
undue and totally unnecessary burden on them. In par-
ticular, we do not propose the general use of our function
ϑ, by whatever name one would choose to give it.

At this point, we wish to make a point regarding the
fundamental nature of angles versus lengths and other
physical quantities. Since the metre was introduced in
1793, improvements in the science of metrology have
vastly increased the ability to measure lengths accu-
rately, in turn leading to the need to refine the very
definition of the metre in order to keep up with the tech-
nology. No such claim can be made for angles. In fact,
even though we can certainly measure angles much more
accurately today than we could three centuries ago, no
conceivable technological advance can lead to a need to
refine the definition of the radian, or a right angle. This
simple observation supports the notion that angle is a
mathematical concept more than a topic of the physical
sciences. Mathematical objects do not require units for
their measure, as opposed to physical objects, which do.

Although the discussion here has been confined to the
angles of planar Euclidean geometry, all conclusions ap-
ply equally to the concepts of “angle of rotation” and
“phase angle”, which have not been discussed here in
order to concentrate on the essential points.
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