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Abstract: This paper presents an error analysis of the estimation of energy meter correction factor (CF) using a remote non-invasive 
technique. A method of the CF estimation based on the comparison of synchronously detected power steps in power consumption profiles 
of meter under test and reference meter is elaborated. The dependence of meter CF estimation uncertainty upon the magnitude of power 
steps, the number of power steps per observation interval, and the number of meters under test monitored by one reference meter is 
approximated. The synthesized consumer active power profiles are used to obtain training data points that are fit by these approximating 
equations.  

Keywords: Energy meter, accuracy, remote and non-invasive observation. 

1. INTRODUCTION 
Energy meter accuracy is critical seeking to avoid risk cost 

for both energy consumers and producers [1]. It is typical that 
metrological precision of meters degrades over time [2]. The 
in-service conformance assessment of energy meters is 
regulated by national rules. Metrological verification period 
(subsequent verification) is country dependent. The cost of 
verification of all meters is very high and therefore full lot 
replacement instead of verification is a common practice. 
Another option is a statistical verification and extension of lot 
service based on the acceptance rules. In both cases, meters’ 
conformance is not monitored until the expiration of the 
verification period. Therefore, techniques enabling to 
monitor the energy meter’s accuracy between verifications 
are in demand [3], [4]. Equipment for in-field verification of 
energy meters like portable meter testers, portable standards, 
on-site calibrators, energy meter test sets, etc. are offered by 
various companies. Disadvantages of in-field verification 
include the need to visit the customer, transportation of 
reference equipment, connection to the meter under test and 
sometimes temporary disconnection of power supply to the 
customer. On the other hand, the massive roll out of smart 
meters in distribution grids [5] stimulates research of 
techniques for the remote metrological maintenance [6]-[12], 
utilizing communication channels between meters [13]-[17]. 
In [6], [7], [12], a method based on additional load switching 
at the meter under inspection is introduced. Another 
technique  described  in  [8]  does  not  require  any additional 

load to estimate the calibration status of energy meters using 
readings of a reference sum meter. However, the method 
suffers from unreliable error estimates if energy is not 
consumed at some meters under monitoring in the grid. The 
further advancement of remote inspection methods based on 
acquired automatic meter reading data can be seen in [9], 
[10]. A non-invasive remote monitoring technique introduced 
in [11] relies on synchronized measurement of power 
fluctuations due to load switching at the meter under test and 
sum (reference) meter. In opposite to methods described in 
[8]-[10], it enables remote inspection of a single meter under 
test despite the presence of non-technical losses in the grid 
and accuracy of the rest of meters.  

In this paper, we seek to further explore a non-invasive 
energy meter inspection technique following preliminary 
findings presented in [11]. The method is adapted to estimate 
the multiplicative correction factor (CF) of meter under test. 
The dependence of estimation error of CF on the number of 
meters under inspection, monitored by a single sum meter, is 
of interest aiming at reducing the number of necessary sum 
meters in the segment of distribution grid.  

The paper is organized as follows: Section 2 introduces the 
CF estimation of the energy meter using a non-invasive 
technique along with two implementation scenarios; 
Section 3 specifies synthesized power profile data used in 
modelling. Results of the investigation are presented in 
Section 4. Finally, the conclusions are presented in Section 5. 
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2. CORRECTION FACTOR ESTIMATION TECHNIQUE 

A. Power steps at reference and meter under monitoring 
In the LV AC grid configuration (Fig.1.), energy meters are 

connected to the different points of the grid in order to 
measure the load energy, power consumption, voltage and 
electrical current. Usually “Total meter” (Fig.1.) measures 
the total power of all meters (“Meter n”), which are connected 
behind it. The typical power profiles acquired by the total 
meter and another three consumer meters are shown in Fig.2. 
The total active power can be expressed as 

 𝑃𝑃𝑇𝑇 = ∑ 𝑘𝑘n ∙ 𝑃𝑃𝑛𝑛
𝑁𝑁𝑚𝑚
𝑛𝑛=1 , (1) 

where 𝑃𝑃𝑇𝑇  is the total active power of all n consumer loads; 𝑃𝑃𝑛𝑛 
is active power of n-th consumer load, 𝑘𝑘𝑛𝑛 is the CF of the n-
th consumer meter, 𝑁𝑁𝑚𝑚 is the number of consumer meter. 

It can be assumed, that the “Total meter” (Fig.1.) is an 
accurate (calibrated) energy meter (power meter). However, 
the accuracy of consumer load connected energy meters is not 
known. Power steps measured by the “Total meter” and 
“Meter n” can be exploited for the evaluation of the accuracy 
of “Meter n”. Certainly, measurements must be performed 
simultaneously. Two scenarios can be envisaged. The first 
scenario is based on the utilization of only non-overlapping 
power steps while the second scenario relies on the 
application of all power steps (overlapping and non-
overlapping). 

 

Fig.1.  LV distribution grid and energy meter connections. 

The power step can be characterized by its magnitude and 
time moment of edge occurrence. The threshold for power 
step magnitude to be used in the CF estimation procedure has 
to be preset in order to exclude small steps that are buried in 
noise. To detect a step, the maximal edge duration 𝑡𝑡𝑒𝑒 of the 
power step is also set to a chosen value. In this work, 𝑡𝑡𝑒𝑒 is 
assumed to be less than five samples when power profile 
sampling period is 1 second. The minimal speed of the edge 
rise or fall is set to be not less than 10 W per sampling period. 
Moreover, the power consumption fluctuations before and 
after the power step edge are restricted to be less than a 
threshold level by means of not detecting a power step, which 
standard deviation of the power fluctuation before and after 
its edge exceeds by 20 W.  

Fig.2. shows typical power consumption profiles with 
power steps. These power steps can overlap (1-2 in Fig.2.) or 
not overlap (3-8 in Fig.2.). The overlapping power steps are 

such power steps, which appear on two or more consumer 
loads at the same time moment. In addition, we assume the 
power steps are overlapping if the following expression holds 
true: 

 ��|∆𝑃𝑃𝑇𝑇−∆𝑃𝑃𝑛𝑛|
∆𝑃𝑃𝑇𝑇

�� ∙ 100 ≥ 5%, (2) 

where ∆𝑃𝑃𝑇𝑇   is the total active power step magnitude measured 
by the “Total meter”; ∆𝑃𝑃𝑛𝑛 is the active power step magnitude 
of the particular consumer load. 

A comprehensive description of the definition of the power 
step and of non-overlapping and overlapping power steps can 
be found in [11]. 

Fig.2.  Typical power profiles of the total meter (lower) and another 
three consumer meters (upper): 1-2 - overlapping power steps; 
3-8 – non-overlapping power steps. 

B. The first implementation scenario 
Implementation of the first scenario assumes that only non-

overlapping power steps (denote 𝑁𝑁𝑠𝑠∗)  are used for the 
estimation of meter CF. Therefore, CF of the n-th meter 
estimated using i-th power step is defined: 

 𝑘𝑘𝑛𝑛𝑛𝑛∗ = ∆𝑃𝑃𝑇𝑇𝑛𝑛∗ /∆𝑃𝑃𝑛𝑛𝑛𝑛∗ , (3) 

where ∆𝑃𝑃𝑇𝑇𝑛𝑛∗  is the active power of non-overlapping step 
measured by the “Total meter”; ∆𝑃𝑃𝑛𝑛𝑛𝑛∗  is the active power 
magnitude of the i-th non-overlapping step measured by the 
n-th meter.  

Usually, for one consumer load in the given observation 
interval there is more than one step. Therefore, the averaged 
CF of the n-th consumer meter reads: 

 𝑘𝑘�𝑛𝑛∗ = 1
𝑁𝑁𝑠𝑠∗
∑ 𝑘𝑘𝑛𝑛𝑛𝑛∗
𝑁𝑁𝑠𝑠∗
𝑛𝑛=1 , (4) 

where 𝑁𝑁𝑠𝑠∗ is the number of non-overlapping power steps in 
the given observation interval; 𝑘𝑘�𝑛𝑛∗  is the averaged CF of the 
n-th consumer meter. 

Averaged CF of all consumer meters that are connected in 
the particular distribution grid can be defined: 

 𝑘𝑘�∗ = 1
𝑁𝑁𝑚𝑚

∑ 𝑘𝑘�𝑛𝑛∗
𝑁𝑁𝑚𝑚
𝑛𝑛=1 . (5) 
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C. The second implementation scenario 
The implementation of the second scenario assumes the 

utilization of all power steps (denote 𝑁𝑁𝑠𝑠). Some of these 
power steps are overlapping. Therefore, CF of the n-th meter 
estimated from the i-th power step is defined: 

 𝑘𝑘𝑛𝑛𝑛𝑛 = ∆𝑃𝑃𝑇𝑇𝑛𝑛/∆𝑃𝑃𝑛𝑛𝑛𝑛,   (6) 

where ∆𝑃𝑃𝑇𝑇𝑛𝑛  is the active power of step measured by the “Total 
meter”; ∆𝑃𝑃𝑛𝑛𝑛𝑛  is the active power magnitude of the i-th step 
measured by the n-th meter. 

In this scenario, the averaged CF of the n-th consumer 
meter can be defined as 

 𝑘𝑘�𝑛𝑛 = 1
𝑁𝑁𝑠𝑠
∑ 𝑘𝑘𝑛𝑛𝑛𝑛
𝑁𝑁𝑠𝑠
𝑛𝑛=1 ,  (7) 

where 𝑁𝑁𝑠𝑠 is the number of all power steps during the period 
of observation, 𝑘𝑘�𝑛𝑛 is the averaged CF of the n-th meter. 

In this case, the average CF of all meters can be defined as 

 𝑘𝑘� = 1
𝑁𝑁𝑚𝑚

∑ 𝑘𝑘�n
𝑁𝑁𝑚𝑚
𝑛𝑛=1 .  (8) 

If all power steps are non-overlapping, the following 
expression holds true: 

 𝑘𝑘�∗ = 𝑘𝑘� . (9) 

3. DATA PREPARATION AND MODELING 
For the CF error analysis, the synthesized power 

consumption profile data of individual households generated 
using the tool LoadProfileGenerator [18], [19] are used. Time 
resolution (power sampling period) of energy consumption is 
1 s. Generated power samples are assigned equal to 
corresponding meter readings by assuming each meter’s CF 
is equal to one (𝑘𝑘�0𝑛𝑛∗ = 1; 𝑘𝑘�0𝑛𝑛 = 1; 𝑘𝑘�0∗ = 1;  𝑘𝑘�0 =  1; where 
n = 1, 2, 3,…). The total load profile is obtained by summing 
up load profiles of all synthesized household consumptions. 
In this preliminary analysis, distribution line losses are 
neglected. 

The corresponding relative errors of the evaluation of the 
CF can be expressed as 

 δ𝑘𝑘�𝑛𝑛∗ = 𝑘𝑘�𝑛𝑛∗ −𝑘𝑘�0𝑛𝑛
∗

𝑘𝑘�0𝑛𝑛
∗ ∙ 100  [%], (10) 

 δ𝑘𝑘�𝑛𝑛 = 𝑘𝑘�𝑛𝑛−𝑘𝑘�0𝑛𝑛
𝑘𝑘�0𝑛𝑛

∙ 100  [%],  (11) 

 𝛿𝛿𝑘𝑘�∗ = 𝑘𝑘� ∗−𝑘𝑘�0
∗

𝑘𝑘�0
∗ ∙ 100  [%], (12) 

 𝛿𝛿𝑘𝑘� = 𝑘𝑘�−𝑘𝑘�0
𝑘𝑘�0

∙ 100  [%],  (13) 

where δ𝑘𝑘�𝑛𝑛∗  is the relative error of the CF estimation of each 
consumer load meter (non-overlapping power steps are used 
in CF estimation); δ𝑘𝑘�𝑛𝑛 is the relative error of the CF 
estimation of each consumer load meter (all power steps are 
used in CF estimation); 𝛿𝛿𝑘𝑘�∗ is the relative error of the 

averaged CF estimation of all consumer meters (non-
overlapping power steps are used for the calculations); 𝛿𝛿𝑘𝑘� is 
the relative error of the estimation of averaged CF of all 
consumer meters (all power steps are used for the 
calculations).  

4. RESULTS 
As it can be seen from Fig.3., the non-overlapping power 

steps (denoted by 𝑁𝑁𝑠𝑠∗) comprise only a small fraction of all 
power steps. It is obvious that the number of power steps is 
linearly proportional to the observation period in the 
synthesized power profiles that were used in the following 
analysis.  

 

Fig.3.  Relationship between time interval of power profile and sum 
of power steps (∆𝑃𝑃𝑛𝑛 ≥100 W, the number of grid meters is 30). 

 

Fig.4.  The scatter diagram of the number of power steps at each 
meter (different dot color denotes different meter). The time interval 
of power profile is 744 hours = 31 days = 1 month, only power steps 
with the magnitude not less than 100 W are detected. 

The distribution of all power steps 𝑁𝑁𝑠𝑠 among every meter 
is presented in Fig.4. Each point in Fig.4. shows how many 
steps were detected at the n-th meter in the grid. It can be seen 
that the number of steps detected by each meter is strongly 
scattered. Fig.5. shows a distribution of non-overlapping 
power steps at every meter. If the number of meters in the grid 
increases, the number of non-overlapping power steps 
considerably decreases. 
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From the results presented in Table 1. it is evident that 
smaller power loads switching dominates in the power 
consumption profile. Analysis of power steps (Table 1.) 
shows that a large part of the small magnitude power steps is 
overlapping. Therefore, in order to detect non-overlapping 
power steps, it is advisable to employ the range of higher 
magnitude power steps. 

 

Fig.5.  The scatter diagram of non-overlapping power steps at each 
meter. The time interval of power profile is 744 hours, only power 
steps with the magnitude not less than 100 W are detected. 

The estimation error of the CF of each consumer meter 
depends on the number of grid meters, on the number of 
power steps, and on the magnitude of power steps. The 
statistical analysis reveals that using only non-overlapping 
power steps yields lower errors. Fig.6. shows the distribution 
of the estimation error of the CF per meter. 

The statistical analysis also reveals that using all power 
steps instead of only non-overlapping steps, yields higher 
estimation error of the CF per meter. The increasing number 
of grid meters causes the higher level of overlapping. The 
distribution of the estimation error of the CF of each meter 
when all power steps are used for the evaluation is presented 
in Fig.7. 

The averaged parameters 𝛿𝛿𝑘𝑘�∗, 𝛿𝛿𝑘𝑘� and their standard errors 
𝑆𝑆𝑆𝑆𝛿𝛿𝑘𝑘� ∗ , 𝑆𝑆𝑆𝑆δ𝑘𝑘�  of grid meters are used for the comparison. 
Table 2. shows that using only non-overlapping power steps 
the obtained estimation error of the averaged CF of all meters 
almost does not depend upon the number of meters (or 
consumer loads) in the grid. However, utilizing all power 

steps results in the obvious relationship between the number 
of meters in the grid and estimation error of the meter’s CF. 
Standard errors are significant for the estimation error of the 
averaged CF when using all power steps.  

The number of detected power steps also influences the 
estimation error of the averaged CF (see Table 3.). The strong 
influence can be observed if all power steps are used. Note 
that the variation of the values of standard error of the 
estimation error of the averaged CF (𝑆𝑆𝑆𝑆𝛿𝛿𝑘𝑘� ∗) is much less 
when non-overlapping power steps are used. 

 

Fig.6.  The distribution of the estimation error of the CF of each (n) 
meter (only non-overlapping power steps are used, the time interval 
of power profile is 744 hours, ∆𝑃𝑃n ≥ 300 W). 

 

Fig.7.  The distribution of the estimation error of the CF of each (n) 
meter (all power steps are used, the time interval of power profile is 
744 hours, ∆𝑃𝑃n ≥ 300 W). 

Table 1.  The relationship between number of power steps and the magnitude of power steps (the observation interval is 240 hours (10 days)). 

Number of meters ΔPn=(100÷300) [W] ΔPn=(300÷500) [W] ΔPn=(500÷1000) [W] ΔPn≥1000 [W] 
 Ns Ns

* Ns Ns
* Ns Ns

* Ns Ns
* 

2 208 145 54 48 168 148 74 71 
5 618 159 132 47 427 223 178 133 
10 1088 167 186 57 602 201 255 135 
15 1669 162 321 72 759 139 387 128 
20 2441 166 409 48 836 116 478 119 
25 3047 208 478 47 964 121 610 152 
30 3418 185 537 44 1184 122 684 143 
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Table 2.  The relationship between the estimation error of the 
averaged CF of all meters and the number of meters (∆𝑃𝑃n ≥ 300W, 
the observation interval is 240 hours). 

𝑁𝑁𝑚𝑚 |𝛿𝛿𝑘𝑘�∗|,[%] 𝑆𝑆𝑆𝑆𝛿𝛿𝑘𝑘� ∗,[%] |𝛿𝛿𝑘𝑘� |,[%] 𝑆𝑆𝑆𝑆𝛿𝛿𝑘𝑘� ,[%] 
2 0.059 0.805 0.043 0.309 
5 0.104 1.039 1.246 0.897 
10 0.434 0.801 5.792 3.300 
15 0.002 0.690 5.744 2.829 
20 0.255 0.613 19.801 7.685 
25 0.020 0.569 20.862 7.633 
30 0.073 0.516 30.807 9.553 
 
When solving a problem of selection of number of meters 

and a number of steps to acquire in order to achieve the best 
accuracy of the CF estimate, the uncertainty should be 
considered the target. The uncertainty of the CF estimate 
includes both averaged error (absolute shift) and its standard 
error: 

 𝑢𝑢�δ𝑘𝑘�� = ��δ𝑘𝑘��2 + (𝑆𝑆𝑆𝑆δ𝑘𝑘� )2. (14) 

To derive mathematical approximation of the uncertainty 
relationship to the number of power steps 𝑁𝑁𝑠𝑠 and different 
number of meters 𝑁𝑁𝑚𝑚, the following steps are completed: 

1. Synthesizing of power consumption profiles of different 
consumers are performed using the open source tool 
LoadProfileGenerator [18]. These profiles are accepted 
as readings of a corresponding customer load meter by 
setting the CF equal to 1.0. 

2. Estimations of the CF of each meter according to (10) or 
(11) are made using the proposed detection of power 
steps in power consumption profiles.  

3. The averaging of CFs ((12), (13)) and the calculations of 
the uncertainties of the estimations of CF of each meter 
is conducted according to (14).  

4. Data points consisting of three coordinates (uncertainty, 
number of meters, and number of steps) are 
approximated in order to model the function (see 
Table 4.) 

 𝑢𝑢�δ𝑘𝑘�� = 𝑢𝑢� = 𝐹𝐹(𝑁𝑁𝑚𝑚 ,𝑁𝑁𝑠𝑠) (15) 

by applying Matlab function of Curve Fitting Tool.  
It is found that linear approximation fits the obtained data 

representing samples of (15) well, according to the R-square  
(the coefficient of multiple determination) shown in Fig.8.-
Fig.10.  

Analytical relationships (Table 4., Fig.8.-Fig.10.) may be 
used to choose the combination of uncertainty, number of 
grid meters and number of power steps required to complete 
the CF estimation procedure. A good fit to linear 
approximation of the function (15)  indicates that in the range 
of explored 𝑁𝑁𝑚𝑚 and 𝑁𝑁𝑠𝑠 their optimal values do not exist. 
Indeed, the larger is the number of power steps 𝑁𝑁𝑠𝑠, the less is 
uncertainty due to more averaged items. Also, the larger is the 
number of meters 𝑁𝑁𝑚𝑚 in the grid, the uncertainty tends to 
increase because of negative influence of larger number of 
overlapping power steps. 

 

Fig.8.  a) Approximation of the relationship 𝑢𝑢� = 𝐹𝐹(𝑁𝑁𝑚𝑚,𝑁𝑁𝑠𝑠)(∆𝑃𝑃n ≥100 W); b) Residuals plot, where 𝑟𝑟 = 𝑢𝑢 − 𝑢𝑢� , 𝑢𝑢� – predicted value of u. 

Table 3.  The relationship between the estimation error of the averaged CF of 10 meters and the number of power steps (∆𝑃𝑃𝑛𝑛 ≥ 500 W). 

Observation interval, h |𝛿𝛿𝑘𝑘�∗|,[%] 𝑆𝑆𝑆𝑆𝛿𝛿𝑘𝑘� ∗, [%] |𝛿𝛿𝑘𝑘� |,[%] 𝑆𝑆𝑆𝑆𝛿𝛿𝑘𝑘� ,[%] Ns
* Ns 

24 0.53 0.81 6.83 1.70 40 95 
48 0.37 0.85 2.30 1.89 73 183 
120 0.29 0.83 1.88 1.38 171 456 
480 0.11 0.80 1.38 0.63 691 1698 
744 0.16 0.79 1.30 0.56 1148 2708 
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Fig.9.  a) Approximation of the relationship 𝑢𝑢� = 𝐹𝐹(𝑁𝑁𝑚𝑚,𝑁𝑁𝑠𝑠)(∆𝑃𝑃n ≥300 W); b) Residuals plot, where 𝑟𝑟 = 𝑢𝑢 − 𝑢𝑢� , 𝑢𝑢� – predicted value of u. 

 

Fig.10.  a) Approximation of the relationship 𝑢𝑢� = 𝐹𝐹(𝑁𝑁𝑚𝑚,𝑁𝑁𝑠𝑠)(∆𝑃𝑃n ≥500 W); b) Residuals plot, where 𝑟𝑟 = 𝑢𝑢 − 𝑢𝑢� , 𝑢𝑢� – predicted value of u. 

Table 4.  Approximations of the uncertainty of averaged CF estimation (the observation interval is 744 hours). 

ΔPn threshold û=F(Nm, Ns) Fig. 
≥100W û=-10.43+3.688·Nm-0.001793·Ns [%] 8 
≥300W û=14.61+13.61·Nm-1.876·Ns [%] 9 
≥500W û=7.209+5.826·Nm-1.512·Ns [%] 10 

5. CONCLUSIONS 
Uncertainty analysis of energy meter correction factor 

estimation using the introduced remote non-invasive 
technique is performed utilizing synthesized power 
consumption profiles. 

It is found that the uncertainty can be reduced by acquiring 
more power samples (negative linear coefficient in the 
approximating equation) and by attributing a sum meter to 
monitor less meters under inspection (positive linear 
coefficient in the approximating equation). In opposite to the 
initial expectations, any optimal number of meters 
minimizing the correction factor uncertainty was not 
identified. When the number of meters inspected using a 
single  sum reference meter increases, the larger percentage 
of occurrence moments of all power steps taking place in the 

grid due to customer loads switching tends to overlap. More 
overlapping power steps seem to cause the growth of 
uncertainty despite the expectation that different overlapping 
directions (up and down steps) will suppress each other’s 
influence in the averaging process. Considering up to 30 
meters grouped with a sum meter, the obtained results did not 
reveal anything but linear growth of the uncertainty in 
response to the increase of number of meters. Nevertheless, 
the approximated empirical relationship between the 
correction factor uncertainty and both numbers of detected 
steps and meters monitored by a sum meter, provides means 
to select combinations of the number of steps to acquire and 
the number of meters seeking to meet requirements for the 
estimation uncertainty. 
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