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Abstract: We address the problem of linear comparative calibration, a special case of linear calibration where both variables are measured
with errors, and the analysis of the uncertainty of the measurement results obtained with the calibrated instrument. The concept is explained
in detail using the calibration experiment of the pressure transducer and the subsequent analysis of the measurement uncertainties. In
this context, the calibration and the measurements with the calibrated instrument are performed according to ISO Technical Specification
28037:2010 (here referred to as ISO linear calibration), based on the approximate linear calibration model and the application of the law
of propagation of uncertainty (LPU) in this approximate model. Alternatively, estimates of the calibration line parameters, their standard
uncertainties, the coverage intervals and the associated probability distributions are obtained using the Monte Carlo method (MCM) based
on the law of propagation of distributions (LPD). Here we also obtain the probability distributions and the coverage interval for the quantities
measured with the calibrated instrument. Furthermore, motivated by the model structure of this particular example, we conducted a simulation
study that presents the empirical coverage probabilities of the ISO and MCM coverage intervals and investigates the influence of the sample
size, i.e. the number of calibration points in the measurement range, and the different combinations of measurement uncertainties. The
study generally confirms the good properties and validity of the ISO technical specification within the considered (limited) framework of
experimental designs motivated by real-world application, with small uncertainties in relation to the measurement range. We also point out
the potential weaknesses of this method that require increased user attention and emphasise the need for further research in this area.

Keywords: Linear comparative calibration, ISO Technical Specification 28037:2010, Monte Carlo method, measurement uncertainty, cali-
brated instrument, empirical coverage probability.

1. INTRODUCTION

Calibration is at the heart of measurement science and cov-
ers a wide range of industries and services. Calibration is an
essential component of many measurement procedures, the
first step of which is to fit a calibration function that best de-
scribes the relationship between the variables of interest. In
particular, the International vocabulary of metrology (VIM)
[4] specifies that „calibration is defined as an operation that,
under specified conditions, in a first step, establishes a rela-
tion between the quantity values with measurement uncertain-
ties provided by measurement standards and corresponding
indications with associated measurement uncertainties and,
in a second step, uses this information to establish a relation
for obtaining a measurement result from an indication”.

The process of measuring, evaluating and expressing un-
certainties in measurement results is described in detail in ba-
sic metrological documents, see the Guide to the expression of

uncertainty in measurement (GUM) [1] and its supplements
[2] and [3]. For further details see also the International vo-
cabulary of metrology [4] and the other relevant documents,
e.g. [6] and [7].

The main objective of calibration is to describe the theo-
retical relationship between the response variable (dependent
variable) and the stimulus (independent variable), by a cali-
bration function that belongs to a certain class of functions
that can be assumed to best capture this relationship (as the
reviewer notes, this does not exclude situations with multi-
ple stimuli and responses). The simplest, but from a practical
point of view most commonly used type of calibration func-
tion is the linear calibration function.

Comparative calibration, see e.g. [28], is a special type of
calibration in which both variables included in the calibration
experiment are subject to error (including the used measure-
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ment standard). The appropriate modelling approach is for-
mally based on the well-established errors-in-variables (EIV)
modelling and total least squares estimation methods, see e.g.
[10], [13], [15], [21], [22], and [25]. As the reviewer noted,
error-in-variables models are typically used to compare meth-
ods with approximately equal variance (method comparison).
However, this type of calibration is also used to compare two
measuring devices or measurement methods, one of which is
considered more accurate (the gold standard) and the other
less accurate (a cheaper alternative recommended for typical
applications with frequent measurements).

The calibration function expresses the relationship between
the true values of the measured quantities expressed in the
units of the measuring instruments used, e.g. X and Y . An
important goal of the calibration experiment is to express the
true quantity values measured by the measuring instrument Y
(response) as a function of the true quantity values measured
by the measuring instrument X (stimulus). In the first phase
of the calibration experiment, we are primarily interested in
finding the legitimate and correct (in the specific sense, the
best) estimators for the parameters of the calibration func-
tion. Since the measured data are subject to uncertainties,
there are of course also uncertainties in the estimated param-
eters of the calibration function. The estimated parameters
of the calibration function are further used to predict the val-
ues of the unobservable stimuli. These predictions are based
on new readings received from the calibrated measurement
instrument.

In linear comparative calibration based on the EIV mod-
elling approach, it is possible to reverse the traditional roles
of the stimulus variable (which is measured with the more ac-
curate measurement device and usually represented by values
on the x axis) and the response variable (which is measured
with the less accurate measurement device and usually repre-
sented by values on the y axis). In the first stage of the cali-
bration experiment, i.e. when fitting the respective calibration
function by estimating its coefficients and assessing the as-
sociated uncertainties, this change has no negative numerical
impact on the estimated parameters and their uncertainties if
they are based on the first-order linearisation of the original
nonlinear models (as with a linear model, there is a one-to-
one correspondence between the coefficients of the direct and
inverse linear calibration functions). In the second stage of
calibration, this estimation approach allows direct prediction
of the unknown stimulus from the observed response (rather
than indirect prediction as in the traditional method). This
brings some numerical advantages in calculating the associ-
ated uncertainty and the probability distribution of the values
that can reasonably be attributed to the stimulus.

As the reviewer noted, it is quite natural to generalise the
EIV modelling approach to polynomial calibration as in [16].
However, in this paper we focus only on the linear (straight-
line) calibration problem and the comparison of the standard
approach based on ISO Technical Specification 28037:2010
[5] (here referred to as ISO ) with the Monte Carlo method
(here referred to as MCM). By using MCM to propagate the
distributions, see [2] and [3], we can derive a more general
and accurate probability distribution of the values of the cal-

ibration function parameters and the stimulus value based on
the measurement results with a calibrated instrument. Both
approaches are illustrated and compared using an example
with real data, the calibration of a pressure transducer per-
formed at the Slovak Institute of Metrology. In the subse-
quent simulations we also investigate the empirical coverage
probabilities of the ISO and MCM coverage intervals and the
influence of the sample size, i.e. the number of calibration
points in the measurement range, as well as the behaviour of
the results with respect to different combinations of measure-
ment uncertainties.

Another approach to estimating the calibration parameters
and associated uncertainties could be based on the use of the
local best linear unbiased estimator (BLUE) in a properly lin-
earised model (an approximate first-order regression model)
with linear constraints on its parameters, as proposed in [19].
This approach allows the development of criteria for testing
the adequacy of the first-order approximation of the model
near a particular point in parameter space, as proposed in
[20], as well as the development of a generalised estimation
approach based on the locally best linear unbiased estimator
in the second-order approximate regression model. The ad-
vantage of these approaches is that the parameter estimator
can be expressed as a locally linear function of the observed
data, which allows the calculation of the associated (but still
approximate) probability distributions based on the character-
istic function approach (CFA) as described and implemented
in [32], [34], and [36]. A detailed description of the pro-
posed approach for polynomial comparative calibration can
be found in [33] and [35].

The paper is structured as follows. In Section 2 we spec-
ify the linear comparative calibration model under considera-
tion as a nonlinear regression model (in fact, the model could
be represented as a linear regression model with nonlinear
constraints on its parameters) and the approach to estimat-
ing the parameters and associated uncertainties as proposed
in [5]. Formally, however, the measurement model required
by GUM can be defined implicitly as a solution to the gen-
eralised Gauss-Markov regression problem. In Section 3 we
present an example of linear calibration of a pressure trans-
ducer using a pressure standard. Here we specify the mod-
els of direct measurements with both instruments (statistical
models of quantities representing the response of the instru-
ments). Further, we derive estimates of the parameters of the
calibration function and their uncertainties and coverage in-
tervals according to [5]. We also give the estimate of the stim-
ulus corresponding to the new indication observed by the cal-
ibrated instrument, together with the associated standard un-
certainty and the derived coverage interval. Section 4 presents
an alternative approach to determine the distribution of values
that could be attributed to the parameters of the calibration
function obtained by the Monte Carlo method and the dis-
tribution of values that could be attributed to the quantity Y ,
where Y = a+bX given the distribution of X , and compares
the results of the two approaches. Section 5 compares the
empirical coverage probabilities of the ISO and MCM meth-
ods by means of a small simulation study motivated by the
model structure of this particular example. Here we examine
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the influence of the sample size, i.e. the number of calibration
points in the measurement range, and the various combina-
tions of measurement uncertainties of the measured quanti-
ties. Section 6 provides conclusions and recommendations
for practitioners in measurement and metrology.

2. LINEAR COMPARATIVE CALIBRATION MODEL

Here we consider a linear calibration function that express-
es the quantity values in units of the more accurate measure-
ment instrument Y (now called stimulus) as a linear function
of the quantity values in units of the less accurate measure-
ment instrument X (now called indication or response). We
consider the following setup of the calibration experiment,
where the measured quantities are represented by a set of m
artefacts with given properties (suitably chosen objects rep-
resenting the measured quantities), say V1, . . . ,Vm, such that
their true values µi, i = 1, . . . ,m, expressed in units of the cal-
ibrated instrument X , span the required calibration range.
The true values of the measured quantities V1, . . . ,Vm, ex-
pressed in units of the standard instrument Y , are denoted
by νi, i = 1, . . . ,m. Each object could be measured repeat-
edly and independently, say n ≥ 1 times, by both measuring
instruments. The j-th measurement of the i-th object is thus
represented by the random variable Xi, j, where i = 1, . . . ,m
and j = 1, . . . ,n. At the same time, each object is also
measured with Y . The j-th measurement of the i-th ob-
ject is represented by the random variable Yi, j, i = 1, . . . ,m,
j = 1, . . . ,n. The calibration experiment is thus based on mea-
surements provided by the measuring devices under consider-
ation and represented by pairs of random variables (Xi, j,Yi, j)
for i = 1, . . . ,m and j = 1, . . . ,n.

Often the calibration experiment is presented in its ag-
gregate form (by appropriately averaging the repeated mea-
surements and combining them with other expert knowledge)
by the pairs of random variables (Xi,Yi) representing mea-
surements of the quantity values µi and νi for i = 1, . . . ,m.
Their joint probability distribution is specified by the assumed
statistical model which reflects knowledge about the quan-
tity values µi and νi, their functional relation, and the ap-
plied measurement process. The information received from
the calibration experiment is given by the observed values
from the direct measurements, denoted by (xi,yi), their as-
sociated uncertainties u(xi) and u(yi), and the covariances
u(xi,x j), u(yi,y j). Technically, it is possible to consider also
non-zero covariances u(xi,y j), but as the reviewer noted, in
a well-designed experiment it is very unlikely that the asso-
ciated measurement errors are correlated, so here we assume
that u(xi,y j) = 0 for i, j = 1, . . . ,m. According to [1], note
3 in subclause 2.2.3, it is understood that the result of the
measurement is the best estimate of the value of the measur-
and, and that all components of uncertainty, including those
arising from systematic effects, such as components associ-
ated with corrections and reference standards, contribute to
the dispersion. In general, this modelling approach provides
a sufficiently flexible tool to incorporate expert knowledge
about the distribution of measurement error and systematic
effects through a set of input variables.

The possible values of the input quantities are fully speci-
fied by the probability distributions based on a detailed uncer-

tainty analysis of the results of the direct measurements. This
allows to combine type A and type B methods of evaluation
of the measurement uncertainties and to include dependency
structures between input variables, e.g. correlated measure-
ments, see [1], subclauses 3.3.4–3.3.6.

Given observed (xi,yi), the preliminary estimates of (µi,νi)
based on the direct measurements (together with their asso-
ciated uncertainties), we are interested in finding the linear
calibration function of the following form,

ν = a+bµ, (1)

where ν is the true (error-free) quantity value expressed in
units of the measuring device Y (the more accurate standard
instrument), µ is the true (error-free) quantity value expressed
in units of the measuring device X (the less accurate cali-
brated instrument), and a and b represent the unknown coeffi-
cients (intercept and slope) of the linear calibration function.
The purpose of a calibration procedure is to determine esti-
mates for the coefficients a and b. Since the measured data
are subject to uncertainties, the estimated coefficient values
of a and b are also subject to uncertainties.

Although the calibration function (1) is linear in parameters
a and b, the corresponding calibration model is expressed as
a nonlinear regression model in the set of all unknown model
parameters a, b and µi, i= 1, . . . ,m, due to errors in both mea-
sured quantities. In particular, the following statistical model
is specified by the expectation and the covariance matrix of
the measurements,

E
(

X
Y

)
=

(
µ

a1+bµ

)
, and Cov

(
X
Y

)
= U, (2)

where X = (X1, . . . ,Xm)
′ and Y = (Y1, . . . ,Ym)

′ represent the
direct measurements, 1 denotes the (m×1)-dimensional col-
umn vector of ones, a, b and µ = (µ1, . . . ,µm)

′ are the model
parameters and U is the known variance-covariance matrix
specified by its blocks Ux, Uy, and Ux,y (here we assume
Ux,y = U′

y,x = 0). Note that E(Y) = ν with ν = a1 + bµ .
Thus, we can represent (2) as a linear regression model with
nonlinear constraints on its parameters.

One possible definition of the measurement model (which
is considered here) can be based on the solution of the gener-
alized Gauss-Markov regression problem, â

b̂
µ̂

= min
a,b,µ

Q(X,Y,a,b,µ), (3)

where

Q(X,Y,a,b,µ) =
(

X−µ

Y−a1−bµ

)′
U−1

(
X−µ

Y−a1−bµ

)
.

(4)

Hence, the measurement model can be expressed as

∂Q(X,Y,a,b,µ)
∂ (a,b,µ ′)′

= 0, (5)
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where X, and Y are the input quantities and a, b, and µ are the
output quantities. The measurement model (5) is nonlinear
and implicit, see [17].

As one reviewer suggested, an alternative choice of mea-
surement model is based on maximising a correctly speci-
fied likelihood function, which in turn allows statistical in-
ference about the parameters of the calibration line, which
is asymptotically optimal and correct for large m. From this
point of view, model (3) is inherently an optimal choice un-
der the assumption of normality of the inputs X and Y, with
the resulting maximum likelihood estimates having known
asymptotic optimality properties, see [16] and [11]. For ex-
ample, if the inputs X and Y are sampled from independent
joint m-dimensional multivariate Student t-distributions with
k and l degrees of freedom, say tk(µ,Ux) and tl(ν ,Uy) where
ν = a1+bµ , see [18], then the suggested optimum measure-
ment model based on maximising properly specified likeli-
hood function would be â

b̂
µ̂

= min
a,b,µ

{
(k+m) log

(
1+

1
k
(X−µ)′U−1

x (X−µ)

)

+(l +m) log

(
1+

1
l
(Y−a1−bµ)′U−1

y (Y−a1−bµ)

)}
.

(6)

Furthermore, if Xi and Yj can be modelled as indepen-
dent random variables with the shifted and scaled Student
t-distributions with ki and l j degrees of freedom, respec-
tively, here denoted as tki

(
µi,u(xi)

2
)

and tl j

(
ν j,u(y j)

2
)
, for

i, j = 1, . . . ,m, then according to [16] the proposed optimal
measurement model based on maximising the correctly spec-
ified likelihood function would be â

b̂
µ̂

=min
a,b,µ

{
m

∑
i=1

(ki +1) log

(
1+

(xi −µi)
2

kiu(xi)2

)

+(li +1) log

(
1+

(yi −a−bµi)
2

liu(yi)2

)}
. (7)

As the reviewer noted, the maximum likelihood approach
immediately provides a large sample approximation to the
standard uncertainties and correlation of the estimated param-
eters via the Hessian of the log-likelihood function, evaluated
at the maximum likelihood estimates.

In more complex situations, and this also applies to the
calibration example discussed in this article, deriving a prop-
erly specified likelihood function can be complicated (as it
requires convolution of multivariate distributions), which we
did not address in this article.

Therefore, in this paper we are concerned with the mea-
surement model (3), despite its potential suboptimality if the
normality assumptions are violated, since such parameter es-
timation is implemented in ISO/TS and we want to investi-
gate its properties in situations that do not fully correspond to
the optimal assumptions. Proper likelihood inference in the
errors-in-variables model is beyond the scope of this paper.
For more details see [16] and [27].

Thus, given the calibration data x = (x1, . . . ,xm)
′ and y =

(y1, . . . ,ym)
′ together with the associated covariance matrix

U, the WTLS estimates of the coefficients of the linear cal-
ibration function, say â and b̂, are given as a solution to the
generalised Gauss-Markov regression problem by minimising
the weighted total least squares

min
a,b,µ

{(
x−µ

y−ν

)′
U−1

(
x−µ

y−ν

)}
, (8)

where µ = (µ1, . . . ,µm)
′ represents the vector of true values

of the measured quantities in units of the less accurate instru-
ment and ν = (ν1, . . . ,νm)

′ represents the vector of true val-
ues of the measured quantities in units of the more accurate
instrument, such that

ν = a1+bµ. (9)

We would like to emphasise that the model has 2m mea-
surements for m calibration points, x = (x1, . . . ,xm)

′ and
y = (y1, . . . ,ym)

′ with 2 + m parameters, namely a, b and
µ = (µ1, . . . ,µm)

′. If the uncertainties cannot be assumed to
be known, there are of course more parameters that need to
be estimated.

Since the explicit solution is only available for very spe-
cial cases, the parameters of the calibration function are usu-
ally determined by iterative numerical procedures that min-
imise the criterion function (8) based on the total sum of the
weighted squares of the residues.

In recent years, several estimation strategies and efficient
algorithms have been proposed that are suitable for nonlin-
ear regression and calibration models in measurement and
metrology, see e.g. [13], [21], [26], [23], [22], [24], and [9].
The estimated covariance matrix is usually based on the infor-
mation matrices or their observed version based on the calcu-
lated Hessian matrix, although simplifications are possible,
see for example [8] and [17] for a detailed discussion of the
available approaches and comparisons in nonlinear measure-
ment models.

A. Calibration according to the ISO Technical Specification
28037:2010

In metrology, the estimation of parameters a, b and the
evaluation of the associated standard uncertainties and covari-
ances is described in ISO Technical Specification 28037:2010
[5]. Recently, the ISO working group Statistical Methods
to Support the Evaluation of Measurement Uncertainty (ISO
/TC 69/ SC 6/ WG 7) has officially started the development of
the new standard ISO 28037 Determination and Use of Linear
Calibration Functions, which will potentially address known
shortcomings of ISO/TS. In particular, the problem is that the
ISO method does not correctly apply the LPU for the implicit
measurement model according to GUM and its Supplements,
which was recently pointed out in [17]. The ISO approach is
based on a generalised (weighted) least squares estimation as
described in (8)-(9) and on the application of the law of un-
certainty propagation (LPU), albeit approximate, using a first
order linearisation of the associated statistical model. Techni-
cal details on this approach can be found in section 10 of [5].
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Since the ISO method and GUM use different modelling ap-
proaches to the calibration problem (implicit nonlinear mea-
surement model in GUM versus statistical regression model
with nonlinear constraints on the parameters in ISO/TS) and
their subsequent linearisation, the associated uncertainty ma-
trices of the parameter estimates are potentially different.

The numerical calculation of the uncertainty matrices
could be a challenging task, especially the LPU approach,
however, as the reviewer has noted, there are algorithms
that accurately implement the calculation of uncertainties
based on the ISO approach as well as the GUM LPU
approach. The MATLAB version of the ISO algorithm
was developed by the National Physical Laboratory (NPL),
the UK’s National Metrology Institute, as NPL’S SOFT-
WARE TO SUPPORT ISO/TS 28037:2010(E), see [30],
and it is freely available at https://www.npl.co.uk/

resources/software/iso-ts-28037-2010e.
Despite the above-mentioned shortcoming of the ISO

method, it can be considered as a reasonable approxima-
tion method, as it is based on a specific linearised calibra-
tion model, resulting in a simpler calculation of the covari-
ance matrix. Therefore, the main objective of this paper is to
investigate and compare the statistical properties of the ISO
estimators (including the coverage probabilities of the true
parameters and the true values of the stimuli) in the case of
typical calibration experiments.

As specified in [5], subclause 10.2.3 paragraph v), if the in-
put quantities X and Y are random variables characterised by
a multivariate normal distribution, then the probability distri-
butions of the values that can be attributed to the parameters
of the calibration function can be approximated by a (mul-
tivariate) normal distribution specified by the estimates and
the associated uncertainties (uncertainty matrix), however, we
remind that even in this case it is necessary to verify the ad-
equacy of this approximation. In such cases, we can use ap-
proximate ISO 95% coverage intervals based on the use of the
normal distribution approximation. However, in this paper we
want to investigate the statistical properties of such intervals
even in the presence of weak violations of the normality as-
sumptions, as is the case in our calibration experiment.

It is recommended that assumptions about the normality of
the distribution of input values and/or estimated parameters
be checked (through formal statistical residual tests). This
is in line with the reviewer’s comment that the examination
of residuals is an important means of validating a model and
determining whether it is appropriate for the observed data.
There are two types of residuals in the regression of errors in
variables: horizontal residuals and vertical residuals. For a
discussion of these residuals, see [12]. In case of a serious
violation of the assumption about the normality of the dis-
tribution of the estimated parameters, it is recommended to
use the alternative methods described in [1] or [2] and [3] to
determine appropriate coverage intervals. By using a normal
distribution approximation, the ISO approximate 95% cover-
age interval of values that could reasonably be attributed to
the parameter a is given by

CI(ISO)
a,0.95 =

〈
â−1.96×u(â); â+1.96×u(â)

〉
, (10)

the approximate 95% coverage interval of values that could

reasonably be attributed to the parameter b is given by

CI(ISO)
b,0.95 =

〈
b̂−1.96×u(b̂); b̂+1.96×u(b̂)

〉
. (11)

The joint 95% coverage region of values that could reason-
ably be attributed to the vector of parameter (a,b) is given as
an elliptical region such that the area under the joint PDF is
equal to p = 0.95, see [3], clause 6.5.2.3.,

CR(ISO)
(a,b)
0.95

=

{(
a
b

)
:
(

â−a
b̂−b

)′
U−1

â,b̂

(
â−a
b̂−b

)
≤ χ

2
2,0.95

}
.

(12)
Here, â and b̂ are the estimates of the coefficients of the

linear calibration function with the uncertainty matrix Uâ,b̂

with its elements u2(â), u2(b̂), and u(â, b̂) estimated by the
ISO method [5], and χ2

2,0.95 is the 0.95-quantile of the chi-
squared distribution with 2 degrees of freedom. In particular,
we get χ2

2,0.95 = 2.45.
The information about the parameters of the calibration

function is further used in the second calibration step to es-
tablish a relationship that allows the measurement result to be
obtained from a new indication (by using the calibrated in-
strument). In doing so, we assume that x0 is the estimate of
the true (unknown) quantity value µ0 measured and expressed
in units of the calibrated instrument (less accurate instrument
X ), with the associated uncertainty u(x0). In general, we as-
sume that the uncertainty budget for this measurement result
provides complete information in the form of a probability
distribution.

According to [5], using direct prediction, we determine the
estimate ν̂0 of the true (unknown) stimulus ν0 to be

ν̂0 = â+ b̂µ̂0, (13)

where we use µ̂0 = x0 with u(µ̂0) = u(x0). By applying LPU
we set the associated (squared) uncertainty as

u2(ν̂0) = u2(â)+ µ̂
2
0 u2(b̂)+2µ̂0u(â, b̂)+ b̂2u2(µ̂0). (14)

Using the normal distribution approximation we specify
the 95% coverage interval for the values that can be attributed
to the (unknown) stimulus ν0 based on the new measurement
obtained by using the calibrated instrument as follows,

CI(ISO)
ν0,0.95 =

〈
ν̂0 −1.96×u(ν̂0); ν̂0 +1.96×u(ν̂0)

〉
. (15)

3. CALIBRATION OF THE PRESSURE TRANSDUCER US-
ING A PRESSURE STANDARD ACCORDING TO THE ISO
TECHNICAL SPECIFICATION 28037:2010

The present example focuses on the linear calibration of a
pressure transducer (MERET TSZ) using a reference device
as a pressure standard (YOKOGAWA 2655 electronic pres-
sure gauge) with measurements at different pressure points.
For each pressure point a measurement result of the standard
is available together with a measurement result of the cali-
brated pressure transducer. The uncertainties in the calibra-
tion due to variations in the measurement data were deter-
mined by four repeated measurements with the standard and
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Table 1. Measuring conditions, measuring devices and measured values in the calibration experiment of the pressure transducer carried out
at the Slovak Institute of Metrology.

Measurement conditions: Ambient temperature (20 ± 2) ◦C;
Atmospheric pressure (100 ± 5) kPa;

Measurement devices: Calibrated instrument X : Pressure transducer MERET TSZ (production number
6526F06) with unified output (4 – 20) mA, measuring range (0 – 60) kPa;
Reference instrument Y : Electronic pressure gauge YOKOGAWA 2655 (production
number 4DJ1019) with standard uncertainty of 0.006 kPa (in the range (0 – 60) kPa)
which is linked to the Slovak national pressure standard (standard pressure gauge SMU
PTV-06, production number 045, certificate number 115/220/17/04);
Digital multimeter connected to the calibrated device: standard uncertainty 0.0014 mA,
(measuring range 20 mA);

Measured values: Table 2. shows the measured values of the properties µi of the artefacts Vi obtained by
direct measurements with the calibrated instrument X and the measured values of the
properties νi of the artefacts Vi obtained by direct measurements with the reference
instrument Y .

the calibrated pressure transducer at a single pressure point
(30 kPa) and are considered as known values for simplicity.
As the reviewers noted, this is an oversimplified approach that
can lead to underestimating the uncertainties of the output
quantities. This simplification may be approximately true if
there is indeed long experience with this particular transducer,
and this experience supports the assumption that such uncer-
tainty is constant across the whole range of relevant pressures.
A correct alternative approach (not considered here) would be
to consider the squares of the estimated measurement uncer-
tainties (at each of the calibration points considered) as reali-
sations of random variables whose distribution is proportional
to the chi-squared distribution with three degrees of freedom.

The calibration of the pressure transducer was done by di-
rectly comparing the output data of the calibrated pressure
transducer and the output data of the reference pressure trans-
ducer at the time when both instruments to be compared are
subjected to a sufficiently constant equilibrium pressure.

Calibration of the pressure transducer was performed at
seven pressure points by gradually increasing the pressure and
then at six points by gradually decreasing the pressure. The
pressure points were evenly distributed over the entire mea-
surement range, including the lower and upper limits of the
measurement range. At each pressure point, the measured
pressure was kept at a constant value.

A. Measurement data and specifications

The details of the measurement conditions, the measur-
ing instruments and the measured values can be found in Ta-
ble 1. and Table 2. Based on an expert assessment of the influ-
encing factors, we consider the following statistical model for
the responses of the measuring instrument X (the calibrated
device):

Xi = µi + εX ,i +∆X , i = 1,2, . . . ,13, (16)

where

• εX ,i ∼ N(0,u2
x), for i = 1,2, . . . ,13, are the random vari-

ables representing our knowledge about the measure-
ment errors (data fluctuation) in measurements Xi, hav-
ing independent normal distributions with zero-mean
and known dispersion u2

x = 0.00001444(mA)2 (i.e. ux =
0.0038 mA).

• ∆X is the random variable representing our knowledge
about the systematic error of the multimeter (when mea-
suring with the calibrated device), with zero-mean dis-
tribution; ∆X ∼ R(0,u∆X ), where R(0,u∆X ) means rect-
angular distribution with mean 0 and standard deviation
u∆X = 0.0014 mA (i.e. rectangular distribution over the
interval ⟨−

√
3u∆X ;

√
3u∆X ⟩= ⟨−0.002424;0.002424⟩),

• εX and ∆X are mutually independent random variables.

Similarly, the considered model of the responses of the
measuring instrument Y (the standard) is given by

Yi = νi + εY,i +∆Y , i = 1,2, . . . ,13, (17)

where

• εY,i ∼ N(0,u2
y), for i = 1,2, . . . ,13, are the random vari-

ables representing our knowledge about the measure-
ment errors (data fluctuation) in measurements Yi, hav-
ing independent normal distributions with zero-mean
and known dispersion u2

y = 0.000036(kPa)2, (i.e. uy =
0.006 kPa).

• ∆Y is the random variable representing our knowledge
about the systematic error of the reference device, with
zero-mean distribution; ∆Y ∼ N(0,u2

δY
), where u2

δY
=

0.000036(kPa)2, (i.e. uδY = 0.006 kPa),

• εY and ∆Y are mutually independent random variables.
Moreover, we shall also assume that εX , ∆X , εY , and ∆Y
are mutually independent.
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Table 2. Measured values observed during the calibration experiment of the pressure transducer.

Calibration point i xi (mA) (calibrated device) yi (kPa) (reference device)
1 4.0030 0.0000
2 6.7160 10.191
3 9.3710 20.102
4 12.053 30.170
5 15.266 42.230
6 17.351 50.050
7 20.036 60.070
8 17.369 50.080
9 14.718 40.115

10 12.039 30.089
11 9.3760 20.095
12 6.6970 10.070
13 4.0080 0.0000

Based on the reviewers’ comments, we also present the fol-
lowing possible alternative specifications for measurement er-
rors, which we did not consider further for our analysis:

If u2
x is the same for all xi and is considered to be the

realisation of a random variable with a probability distri-
bution proportional to a chi-squared random variable with
k = 3 degrees of freedom, then we should adjust our knowl-
edge of measurement error by assuming that approximately
εX = (εX ,1, . . . ,εX ,13)

′ ∼ tk(0,u2
xI) (has a multivariate Student

t-distribution with k = 3 degrees of freedom).
If u(xi)

2 are possibly different estimates, considered as re-
alisations of independent random variables proportional to
chi-squared distributions with ki = 3 degrees of freedom, then
we should adjust our knowledge of measurement error by
assuming that approximately εX ,i ∼ tki(0,u(xi)

2) (Student t-
distributions with ki = 3 degrees of freedom),

Similarly, if u2
y is the same for all yi and is considered to

be the realisation of a random variable with a probability dis-
tribution proportional to a chi-squared random variable with
l = 3 degrees of freedom, then we should adjust our knowl-
edge of measurement error by assuming that approximately
εY = (εY,1, . . . ,εY,13)

′ ∼ tl(0,u2
yI).

If u(yi)
2 are possibly different estimates, considered as re-

alisations of independent random variables proportional to
chi-squared distributions with li = 3 degrees of freedom, then
we should adjust our knowledge of measurement error by as-
suming that approximately εY,i ∼ tli(0,u(xi)

2),

B. The calibration model

The calibration model in a matrix form is specified as

X = µ + εX +∆X 1, (18)
Y = ν + εY +∆Y 1, (19)
ν = a1+bµ, (20)

where εX = (εX ,1,εX ,2, . . . ,εX ,13)
′, εY = (εY,1,εY,2, . . . ,εY,13)

′,
and 1 denotes the (13 × 1)-dimensional column vector of
ones.

The expectation (mean vector) is specified by

E
(

X
Y

)
=

(
µ

ν

)
, (21)

and the blocks of the joint covariance matrix U are specified
by

Cov(X) = Ux = u2
xI+u2

∆X
J

= 0.00001444× I+0.00000196×J,

Cov(Y) = Uy = u2
yI+u2

∆Y
J

= 0.000036× I+0.000036×J,
Cov(X,Y) = Ux,y = 0,

where I denotes the (13 × 13)-dimensional identity matrix
and J= 11′ denotes the (13×13)-dimensional matrix of ones.

Thus,

Cov
(

X
Y

)
=

(
Ux 0
0′ Uy

)
= U. (22)

The realizations of X and Y, say x = (x1, . . . ,xm)
′ and

y = (y1, . . . ,ym)
′ specified in Table 2., represent the estimates

of the properties µ = (µ1, . . . ,µm)
′ (based on direct measure-

ments with the calibrated device X ) and the estimates of the
properties ν = (ν1, . . . ,νm)

′ (based on direct measurements
with the reference device Y ).

C. Estimation of the linear calibration function parameters
and evaluation of the measurements with the calibrated
device

Given the calibration model (18)-(20), the measurement
data represented by the estimates x and y, specified in Ta-
ble 2., and the uncertainty matrix U associated with the mea-
surement data, specified in (22), then the estimates of the co-
efficients of the linear calibration function, say â and b̂, and
the associated approximate uncertainty matrix Uâ,b̂, with its
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Fig.1. QQ-plots of horizontal residuals, x− µ̂ , and of vertical residuals, y− ν̂ . In accordance with [12], both presented QQ-plots do not
contradict the hypothesis of the normality of the distribution of the input variables and lend support to the adequacy of the model to the data.

Table 3. Uncertainty budget related to the direct measurement of the new indication µ0 by using the calibrated device. Here, we consider
the measurement equation µ̃0 = x0 +εX0 +∆X0 , where x0 is the observed value from the calibrated device and εX0 and ∆X0 are the considered
corrections.

Quantity Estimate (mA) Standard
uncertainty (mA)

Probability
distribution

Sensitivity
coefficient

Coefficient of
contribution (%)

x0 7.4970 0 Dirac 1 0%
εX0 0 0.0038 Normal 1 6%
∆X0 0 0.0150 Rectangular 1 94%

New indication 7.4970 0.0155 Convolution 100%

elements given by u2(â), u2(b̂), and u(â, b̂), are given by solv-
ing the generalised Gauss-Markov regression problem (8) as
specified in [5]. The adequacy of the model to the data was
checked using the QQ-plot, a graphical technique for deter-
mining if two data sets come from populations with a com-
mon distribution, as suggested in [12], see Fig.1. In particular,
the estimates â and b̂ of the straight-line calibration function
parameters a and b and their approximate uncertainty matrix
Uâ,b̂ are calculated by using the MATLAB algorithms from
[30].

The estimates â and b̂ of the straight-line calibration func-
tion parameters a and b and their uncertainty matrix Uâ,b̂ are
given by

â =−15.0167 kPa, b̂ = 3.7481 kPa/mA, (23)

Uâ,b̂ =

(
1.7586×10−4 −8.1970×10−6

−8.1970×10−6 7.1516×10−7

)
. (24)

Hence, the measurement result for the intercept of the cal-
ibration line is specified by the estimate â = −15.0167 kPa

with the associated uncertainty u(â) = 0.0133 kPa (the ex-
panded uncertainty with the coverage factor k = 2 is U(â) =
0.0265 kPa) and the slope of the calibration line is spec-
ified by the estimate b̂ = 3.7481 kPa/mA with the asso-
ciated uncertainty u(b̂) = 10−4 × 8.4567 kPa/mA (the ex-
panded uncertainty with the coverage factor k = 2 is U(b̂) =
0.0017 kPa/mA). By using a normal distribution approxima-
tion, the approximate 95% coverage interval of values that
could reasonably be attributed to the parameter a is given by
(10),

CI(ISO)
a,0.95 = ⟨−15.0427;−14.9907⟩ , (25)

and the approximate 95% coverage interval of values that
could reasonably be attributed to the parameter b is given by
(11),

CI(ISO)
b,0.95 = ⟨3.7464;3.7498⟩ . (26)

Similarly, using (23), (24) and (12), we obtain the joint
(approximate) 95% coverage region of the values that could
reasonably be attributed to the vector of parameter (a,b) as
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Fig.2. Plot of the joint 95% coverage region (12) (blue solid line) of the values that could reasonably be attributed to the vector of calibration
line parameters (a,b) calculated from the estimates (23) and (24) based on ISO/TS 28037:2010, plotted together with the 95% coverage
interval of the values that could reasonably be attributed to parameter a, given in (25) and with the 95% coverage interval of values that could
reasonably be attributed to parameter b, given in (26) (the coverage intervals are specified by the sides of the rectangle with red dashed lines).
The grey dots represent N = 10000 estimates (â, b̂) of the calibration line parameters (a,b) from the Monte Carlo simulations explained in
section 4.

an elliptical region, so that the area under the joint PDF (ap-
proximated by the fitted bivariate normal PDF) is equal to
p = 0.95, see Fig.2.

This information is further used to obtain the measure-
ment result from a new indication estimated by using the cal-
ibrated pressure transducer (connected to a different multi-
meter). For illustration, let us assume that the estimate of
a new indication obtained by using the calibration device is
x0 = 7.4970 mA with its combined uncertainty (derived based
on an expert assessment of all influencing factors) given by
u(x0) = 0.0155 mA. In addition, for this measurement re-
sult, we have full information in the form of a detailed un-
certainty budget, which also specifies the type of the state-
of-knowledge distributions of the influencing quantities, see
Table 3. Then, using direct prediction (13) and application of
LPU (14) we stipulate the estimate ν̂0 of the true (unknown)
stimulus ν0 as

ν̂0 = 13.0829kPa, u(ν̂0) = 0.0588. (27)

Hence, the expanded uncertainty is given as U(ν̂0) =
2u(ν̂0) = 0.1176. Further, using (15), the 95% coverage in-
terval of values that can be attributed to the unknown stimulus
ν0 is given by

CI(ISO)
ν0,0.95 = ⟨12.9676;13.1981⟩ . (28)

4. MONTE CARLO METHOD FOR DETERMINING THE
PROBABILITY DISTRIBUTION OF THE PARAMETERS OF
THE CALIBRATION FUNCTION AND THE NEW STIMU-
LUS

Using the calibration example above, we determine here
the distribution (probability density function) of the values
that could be attributed to the calibration function parameters
a and b and the (unknown) stimulus ν0 (based on the mea-
surement result obtained with the calibrated instrument), by
using the MCM proposed in [2] and [3] and comparing it with
the measurement results (23-28) based on the ISO approach
proposed in [5].

For each i = 1,2, . . . ,N (with N = 10000) we have gen-
erated new data set, the estimates x(i) = (x(i)1 , . . . ,x(i)m )′ and
y(i) = (y(i)1 , . . . ,y(i)m )′, with the common uncertainty matrix U,
specified in (22), where x(i) and y(i) are realizations of the
random vectors X(i) and Y(i), generated by

X(i) = x+ εX
(i)+∆

(i)
X 1, (29)

Y(i) = y+ εY
(i)+∆

(i)
Y 1, (30)

where x and y are the measured values observed during the
calibration experiment of the pressure transducer.
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Fig. 3. Probability distribution over the parameters of the calibration function, a and b based on the Monte Carlo method and on ISO/TS
28037:2010. The plots represent histograms from Monte Carlo simulations together with the approximate normal fit (blue solid line) and the
approximate normal fit based on ISO/TS 28037:2010 (dashed red line).

• εX
(i) are mutually independent random vectors rep-

resenting our knowledge about the measurement er-
rors (data fluctuation) in measurements with the
calibrated device, εX

(i) ∼ N(0,u2
xI), where u2

x =
0.00001444 (mA)2, (i.e. ux = 0.0038 mA),

• ∆
(i)
X are mutually independent random variables repre-

senting our knowledge about the systematic error of the
multimeter connected to the calibrated device, ∆X ∼
R(0,u∆X ), where u∆X = 0.0014 mA,

• εY
(i) are mutually independent random vectors repre-

senting our knowledge about the measurement errors
(data fluctuation) in measurements with the reference
device, εY

(i) ∼ N(0,u2
yI), where u2

y = 0.000036(kPa)2,
(i.e. uy = 0.006kPa),

• ∆
(i)
Y are mutually independent random variables rep-

resenting our knowledge about the systematic error
of the multimeter connected to the reference device,
∆
(i)
Y ∼ N(0,u2

δY
), where u2

δY
= 0.000036(kPa)2, (uδY =

0.006kPa).

The empirical distributions about the calibration function
parameters a and b, their estimates, the associated uncertain-
ties and the related 95% coverage intervals, were derived from
the estimates (â(i), b̂(i)), i = 1, . . . ,N, computed from the data
generated by the Monte Carlo method.

In an earlier version of this paper, we generated new
samples based on WTLS estimates fitted from the original
data, µ̂ and ν̂ . However, as one reviewer pointed out, this
method does not comply with JCGM 101:2008 [2] and JCGM
102:2011 [3]. We fully respect this expert opinion and have
therefore recalculated all simulations around the observed
values and found that the differences in the presented results
are minimal.

A. Probability distributions over the parameters of the cal-
ibration function a and b based on the Monte Carlo
method

Here we present the derived probability distributions of
values that could be reasonably attributed to the calibration
function parameters a and b, based on MCM combined with
the ISO estimation approach.

The left panel in Fig.3. plots the histogram and
the normal fit of the state-of-knowledge distribution
about the parameter value a based on the Monte Carlo
method (solid blue line), with the parameters â(MCM) =
−15.0167 (â(MCM) = 1

N ∑
N
i=1 â(i)) and u(â(MCM)) = 0.0132

(u(â(MCM)) =
√

1
N−1 ∑

N
i=1(â(i)− â(MCM))2), plotted together

with the normal fit based on ISO/TS 28037:2010 (dashed red
line), with the parameters â(ISO) =−15.0167 and u(â(ISO)) =
0.0133.

The approximate 95% coverage interval of values that
could reasonably be attributed to the parameter a (based on
using the Monte Carlo empirical quantiles1), is given by

CI(MCM)
a,0.95 =

〈
â(MCM)

0.025 ; â(MCM)
0.975

〉
= ⟨−15.0424;−14.9909⟩ . (31)

The interval (31) is close to the approximate 95% coverage
interval (25) based on the ISO/TS 28037:2010.

The right panel in Fig.3. plots the histogram and the nor-
mal fit of the state-of-knowledge distribution about the pa-
rameter value b based on the Monte Carlo method (solid blue
line), with the estimated parameters b̂(MCM) = 3.7481 and

1If â(1), . . . , â(N) are the ordered Monte Carlo estimates of the parameter

a, here we define the required empirical quantiles by â(MCM)
0.025 = â(⌊N×0.025⌋)

and â(MCM)
0.975 = â(⌈N×0.025⌉), where ⌊·⌋ rounds the element to the nearest inte-

ger less than or equal to that element and ⌈·⌉ rounds the element to the nearest
integer greater than or equal to that element.
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Fig.4. The probability distribution of the values that could be attributed to the stimulus value ν0 based on the Monte Carlo method and on
ISO/TS 28037:2010. The graph shows the histogram from the Monte Carlo simulations together with the approximate normal fit (blue solid
line) and the approximate normal fit based on ISO/TS 28037:2010 (dashed red line). The solid black line shows the PDF derived by the
characteristic function approach.

u(b̂(MCM)) = 10−4 × 8.4896, plotted together with the nor-
mal fit based on ISO/TS 28037:2010 (dashed red line), with
the estimated parameters b̂(ISO) = 3.7481 and u(b̂(ISO)) =
10−4 ×8.4567.

The approximate 95% coverage interval of values that
could reasonably be attributed to the parameter b (based on
using the Monte Carlo empirical quantiles) is given by

CI(MCM)
b,0.95 =

〈
b̂(MCM)

0.025 ; b̂(MCM)
0.975

〉
= ⟨3.7464;3.7497⟩ . (32)

The interval (32) is perfectly close to the approximate 95%
coverage interval (26) based on the ISO/TS 28037:2010.

B. Monte Carlo method for measurement uncertainty of the
result obtained with a calibrated instrument

For each simulation step i = 1,2, . . . ,N we also generated
a realisation x(i)0 of the indication µ0 measured with the cali-
brated instrument under the following assumptions,

• x(i)0 are realisations of mutually independent random

variables X (i)
0 representing our knowledge about the

new indication µ0 measured with the calibrated instru-
ment, X (i)

0 ∼ µ̂0 + ε
(i)
X0

+∆
(i)
X0

, where µ̂0 = x0 is the ob-
served (measured) value from the calibrated instrument
as specified in Table 3. and the random variables εX0
and ∆X0 represent the imposed corrections (due to the
considered measurement errors and the systematic er-
ror of the currently used multimeter). They are mutu-
ally independent random variables whose distributions
are given in Table 3. In particular, ε

(i)
X0

∼ N(0,u2
x),

where u2
x = 0.00001444 (mA)2 (ux = 0.0038 mA), and

∆
(i)
X0

∼ R(0,u∆X0
), where u∆X0

= 0.015 mA.

Then, for each i = 1,2, . . . ,N we calculated also the esti-
mated value of the new stimulus ν̂

(i)
0 ,

ν̂
(i)
0 = â(i)+ b̂(i)µ̂(i)

0 , (33)

where we use µ̂
(i)
0 = x(i)0 to emphasise that the observed value

x(i)0 is our estimate of the new indication µ0 measured by the
calibrated instrument.

Fig.4. plots the histogram and the normal fit of the prob-
ability distribution about the stimulus value ν0 based on the
Monte Carlo method (solid blue line), with the estimated pa-
rameters ν̂

(MCM)
0 = 13.0837 and u(ν̂(MCM)

0 ) = 0.0585, plot-
ted together with the normal fit based on ISO/TS 28037:2010
(dashed red line), with the estimated parameters ν̂

(ISO)
0 =

13.0829 and u(ν̂(ISO)
0 ) = 0.0588.

Finally, the approximate 95% coverage interval of values
that could reasonably be attributed to the new stimulus ν0,
based on using the Monte Carlo empirical quantiles, is given
by

CI(MCM)
ν0,0.95 =

〈
ν̂
(MCM)
0,0.025 ; ν̂

(MCM)
0,0.975

〉
= ⟨12.9812;13.1855⟩ . (34)

The interval (34) is narrower than (28), with visible differ-
ences between the histogram and the approximate (normal fit)
distribution.
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Table 4. Empirical coverage probabilities (the observed relative frequencies of inclusion of the true parameter value) of the considered
approximate 95% coverage intervals of the values that could reasonably be attributed to parameters a, b and the new stimulus ν0, cal-
culated for m = 5 calibration points and different combinations of the input parameters, namely the intercept a = 0 the slope b = 1,
the combined uncertainty of the x measurements uc(x) ∈ {0.002,0.022,0.224} and the combined uncertainty of the y measurements
uc(y) ∈ {0.002,0.022,0.224}, using ISO/TS 28037:2010 (ISO) and the Monte Carlo method (MCM). The probabilities shown in bold
deviate significantly from the stated nominal significance level of 0.95.

m uc(x) uc(y) CI(ISO)
a,0.95 CI(MCM)

a,0.95 CI(ISO)
b,0.95 CI(MCM)

b,0.95 CI(ISO)
ν0,0.95 CI(MCM)

ν0,0.95

0.002 0.961 0.948 0.945 0.943 0.953 0.946
0.002 0.022 0.961 0.953 0.952 0.952 0.970 0.950

0.224 0.957 0.948 0.958 0.957 0.974 0.952
0.002 0.981 0.950 0.951 0.951 0.961 0.954

5 0.022 0.022 0.962 0.954 0.948 0.947 0.953 0.949
0.224 0.960 0.950 0.949 0.950 0.973 0.957
0.002 0.984 0.951 0.949 0.952 0.964 0.951

0.224 0.022 0.982 0.948 0.948 0.948 0.968 0.953
0.224 0.964 0.948 0.950 0.946 0.967 0.950
0.002 0.968 0.955 0.944 0.944 0.959 0.953

0.002 0.022 0.967 0.953 0.950 0.950 0.973 0.950
0.224 0.965 0.950 0.949 0.948 0.983 0.951
0.002 0.984 0.950 0.950 0.952 0.956 0.950

9 0.022 0.022 0.960 0.947 0.948 0.948 0.955 0.951
0.224 0.968 0.956 0.953 0.954 0.976 0.953
0.002 0.989 0.947 0.943 0.945 0.957 0.945

0.224 0.022 0.989 0.953 0.955 0.952 0.962 0.951
0.224 0.962 0.948 0.943 0.956 0.961 0.945
0.002 0.967 0.950 0.949 0.949 0.959 0.953

0.002 0.022 0.972 0.952 0.953 0.955 0.975 0.948
0.224 0.971 0.951 0.945 0.945 0.990 0.952
0.002 0.988 0.952 0.949 0.947 0.960 0.953

13 0.022 0.022 0.964 0.947 0.951 0.952 0.961 0.956
0.224 0.970 0.951 0.950 0.951 0.979 0.950
0.002 0.993 0.951 0.954 0.950 0.960 0.949

0.224 0.022 0.992 0.954 0.954 0.957 0.959 0.948
0.224 0.965 0.948 0.944 0.962 0.956 0.944

5. SIMULATION STUDY

Inspired by the linear comparative calibration of a pressure
transducer with a pressure standard presented above, we con-
ducted a simulation study in which we investigated the empir-
ical coverage probabilities (i.e. the frequencies of coverage of
the true parameters) of ISO and MCM coverage intervals and
also examined the influence of the sample size and the effect
of different measurement uncertainties of the input variables.

For each i = 1,2, . . . ,N (with N = 5000) and each m ∈
{5,9,13} we have set the true values of the calibration line
parameters as a = 0, and b = 1 and generated new measure-
ments x(i) = (x(i)1 , . . . ,x(i)m )′ and y(i) = (y(i)1 , . . . ,y(i)m )′ as reali-
sations of the random variables X(i) and Y(i),

X(i) = µ + εX
(i)+∆

(i)
X 1, (35)

Y(i) = ν + εY
(i)+∆

(i)
Y 1, (36)

where ν = a1+bµ , with the common uncertainty matrix U
given in (22), together with x(i)0 , a new indication measured
by the calibrated instrument and assumed to be a realisation
of the random variable X (i)

0 ,

X (i)
0 = µ0 + ε

(i)
X0

+∆
(i)
X0
, (37)

were we set

• µ =(µ1, . . . ,µm)
′ as an m-dimensional vector of equidis-

tant values in the interval (0,1) and µ0 = 0.5.

• εX
(i) and ε

(i)
X0

as mutually independent random variables
representing the measurement errors of the calibrated in-
strument, εX

(i) ∼N(0,u2
A,xI) and ε

(i)
X0

∼N(0,u2
A,x), where

uA,x ∈ {0.001,0.01,0.1},
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• ∆
(i)
X and ∆

(i)
X0

as a mutually independent random vari-
ables representing the systematic errors of the calibrated
instrument during its calibration and during measure-
ment of the new indication, ∆X ∼ R(0,uB,x) and ∆X0 ∼
R(0,uB,x), where uB,x ∈ {0.002,0.02,0.2},

• εY
(i) as mutually independent random vectors represent-

ing the measurement errors of the reference instrument,
εY

(i) ∼ N(0,u2
A,yI), where uA,y ∈ {0.001,0.01,0.1},

• ∆
(i)
Y as a mutually independent random variables repre-

senting the systematic error of the reference instrument,
∆Y ∼ R(0,uB,y), where uB,y ∈ {0.002,0.02,0.2}.

On this basis, we further calculated the combined un-
certainties uc(x) =

√
u2

A,x +u2
B,x ∈ {0.002,0.022,0.224} and

uc(y) =
√

u2
A,y +u2

B,y ∈ {0.002,0.022,0.224}.

For each x(i) and y(i) we fitted the calibration function
ν = a+bµ by estimating the parameters â, b̂ and µ̂ (together
with ν̂ = â1+ b̂µ̂), and evaluated the corresponding 95% cov-
erage intervals: CI(ISO)

a,0.95 as given in (10), CI(ISO)
b,0.95 as given in

(11), and CI(ISO)
ν0,0.95 as given in (15), using the approach and

algorithms as given in [5].
Moreover, for each i = 1,2, . . . ,N (with N = 5000), we ap-

plied the Monte Carlo method, and for each j = 1,2, . . . ,M
(with M = 2500) generated another new set of measurements,
x( j) = (x( j)

1 , . . . ,x( j)
m )′ and y( j) = (y( j)

1 , . . . ,y( j)
m )′, as realisa-

tions of the random variables X( j) and Y( j),

X( j) = x(i)+ εX
( j)+∆

( j)
X 1, (38)

Y( j) = y(i)+ εY
( j)+∆

( j)
Y 1, (39)

together with x( j)
0 , a new indication by the calibrated instru-

ment generated as a realisation of the random variable X ( j)
0 ,

X ( j)
0 = x(i)0 + ε

( j)
X0

+∆
( j)
X0
, (40)

where εX
( j), ∆

( j)
X , εY

( j), ∆
( j)
Y , ε

( j)
X0

, and ∆
( j)
X0

are distributed as
above.

Then, for each x( j) and y( j) we fitted the calibration func-
tion and based on that evaluated the corresponding 95%
MCM coverage intervals: CI(MCM)

a,0.95 as given in (31), CI(MCM)
b,0.95

as given in (32), and CI(MCM)
ν0,0.95 as given in (34).

Table 4. show the empirical coverage probabilities (the ob-
served relative frequencies of inclusion of the true parameter
values) of the considered approximate 95% coverage inter-
vals that could reasonably be attributed to the parameters a,
b and the new stimulus ν0, calculated for m = 5, m = 9 and
m = 13 calibration points and different combinations of the
input parameters based on ISO/TS 28037:2010 and the Monte
Carlo method. The probabilities in bold deviate significantly
(in a statistical sense, based on the use of a standard normal
approximation) from the nominal significance level of 0.95.
Here, we interpret the stated empirical coverage probabilities
as estimates of the parameter p of the binomial distribution
Bino(N, p), where N represents the size of the simulation.

Under the null hypothesis that the considered coverage in-
terval covers the true parameter with the prescribed probabil-
ity p, and using the normal approximation, we determined a
95%-confidence interval for the true value of the probability
p. In our situations, we had N = 5000 and p = 0.95, result-
ing in a 95% confidence interval ⟨0.944,0.956⟩. The fact that
the estimated probability is outside this confidence interval
indicates that with a high probability the actual probability of
coverage of the parameter differs from the set nominal value
at the 95% level.

The ISO coverage intervals for the intercept a and also for
the new stimulus ν0 are somewhat conservative in our exper-
imental setup, i.e. they include the true parameter value more
often than expected. On the other hand, the observed empir-
ical coverage probabilities of the ISO coverage intervals for
slope b suggest that these interval estimators are exact in the
sense that the difference of the observed coverage probabili-
ties from the nominal level 0.95 is not statistically significant.
Similarly, it can be observed that all MCM coverage intervals
for a, b as well as for ν0 are exact for all considered combi-
nations of the input parameters.

The results are consistent for all designs considered. The
reported empirical coverage probabilities are neither influ-
enced by the number of calibration points nor by the consid-
ered measurement uncertainty levels (small, medium, large).

As suggested by one reviewer, investigation of the empir-
ical coverage probability of the joint coverage regions (for
slope and intercept) and the closeness of the estimate to the
simulated value could provide further valuable insights. We
plan to conduct such and other detailed investigations in fu-
ture work.

6. CONCLUSIONS

The main objective of this work was to study the prob-
lem of linear comparative calibration and to analyse the un-
certainty of the measurement results obtained with the cal-
ibrated instrument. We have described and illustrated this
concept in detail by analysing the actual calibration experi-
ment of the pressure transducer and the subsequent analysis
of the uncertainty of the measurement results at the Slovak
Institute of Metrology in Bratislava. All required procedures,
calibration, parameter estimation and subsequent uncertainty
analysis of the measurement result with the calibrated instru-
ment were performed according to ISO Technical Specifica-
tion 28037:2010 and furthermore compared with the Monte
Carlo method.

Our analysis shows that under experimental conditions, as
described in this paper, the reported probability distributions
of the values that can be reasonably attributed to the parame-
ters of the calibration function derived using both approaches
are very close.

In this particular example, some visible differences be-
tween the Monte Carlo distribution and the approximate dis-
tribution based on ISO were found in the measurement results
obtained with the calibrated instrument. However, these dif-
ferences are still acceptable, although the ISO method in com-
bination with the normal distribution approximation cannot
be recommended here and MCM is preferable. On the other
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hand, it should be emphasised that these differences were in-
tentionally caused by the use of a lower accuracy multimeter
in combination with a calibrated pressure transmitter (result-
ing in higher uncertainty and a non-normality effect due to
the correction of its systematic error).

Our simulation study (using a similar calibration model as
in the example considered) focused on the empirical coverage
probabilities of ISO and MCM coverage intervals, as well as
on exploring the effects of sample size and different combina-
tions of measurement uncertainties. As shown, the ISO cov-
erage intervals for the intercept a and also for the new stimu-
lus ν0 in our experimental setup are somewhat conservative,
i.e. they include the true parameter value more often than ex-
pected. On the other hand, the observed empirical coverage
probabilities of the ISO coverage intervals for slope b sug-
gest that these interval estimators are exact in the sense that
the difference of the observed coverage probabilities from the
nominal level 0.95 is not statistically significant. From this
perspective, the MCM coverage intervals for a, b as well as
for ν0 are exact for all considered combinations of the input
parameters. The reported empirical coverage probabilities are
neither influenced by the number of calibration points nor by
the considered measurement uncertainties.

However, it should be clear that these findings have limi-
tations and that there are still open questions that require fur-
ther research in this area. It should be emphasised that in
the above example of comparative linear calibration, a simple
calibration model with only two sources of uncertainty was
considered, while the combined measurement uncertainties
were relatively small compared to the measurement range.

As discussed in [17], the uncertainty matrix of parame-
ter estimates derived from ISO does not strictly follow the
law of propagation of uncertainty as defined in GUM and its
supplements, which could lead to obvious differences espe-
cially in situations with an implicit measurement model and
large combined measurement uncertainties of the variables
involved. The authors argue that the uncertainties correctly
derived based on the LPU are always larger than the uncer-
tainties based on the ISO approach proposed in [5]. This re-
quires further investigation and comparison of the empirical
coverage probabilities and other statistical properties of the
proposed approaches for a much wider range of designs.

As our study shows, the MCM coverage intervals had good
statistical properties for all models and combinations of input
parameters considered. However, the question arises of how
to properly generate independent samples for MCM calcula-
tions.

In an earlier version of this paper, we generated new sam-
ples based on WTLS estimates fitted from the original data,
µ̂ and ν̂ , which, in the reviewer’s opinion does not comply
with JCGM 101:2008 [2] and JCGM 102:2011 [3]. However,
we still believe that in situations where the expected values
of the input variables are functionally constrained, the correct
procedure for generating new Monte Carlo samples should be
based on generating data around the estimates which satisfy
the constraints required by the model, here ν̂ = a1+ bµ̂ for
some intercept a and some slope b, which of course does not
generally hold for the observations x and y obtained by direct

measurement in the calibration experiment.
As the second reviewer noted, the uncertainty evaluations,

including the coverage intervals obtained by application of
the Monte Carlo method described in JCGM 101:2008 [2] and
JCGM 102:2011 [3], are not universally valid, as illustrated
in [29] and [31], and the sufficient conditions for them to be
valid in the context of errors-in-variables regression should be
specified. At this moment, we cannot specify such conditions.
We believe that this will help to open a new discussion on how
to correctly generate calibration data in order to use the law of
propagation of distributions through the Monte Carlo method.
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