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Abstract: As in all fields, technological developments have started to be used in the field of medical diagnosis, and computer-aided diagnosis 

systems have started to assist physicians in their diagnosis. The success of computer-aided diagnosis methods depends on the method used; 

dataset, pre-processing, post-processing, etc. differ according to the processes. In this study, parameter optimization of support vector 

machines was performed with four different methods currently used in the literature to assist the physician in diagnosis. The success of each 

method was tested on two different Parkinson's datasets and the results were compared within themselves and with the literature. According 

to the results obtained, the highest accuracy rates vary depending on the dataset and optimization method. While Improved Chaotic Particle 

Swarm Optimization achieved high success in the first dataset, Bat Algorithm achieved higher success in the other dataset. While the 

successful results obtained are better than some studies in the literature, they are at a level that can compete with some studies. 
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1. INTRODUCTION 

Parkinson’s disease is the result of insufficient dopamine 

production due to a high decrease in dopamine cells in the 

human brain. The main symptoms of this disease are 

slowness of movement, tremor-trembling, and impaired 

balance [1]. According to statistics, in the USA, 

approximately one million people suffer from Parkinson’s 

disease, and the number of Parkinson’s patients is expected 

to increase to approximately 1.2 million by 2030. This disease 

affects more than 10 million people worldwide [2]. 

For the diagnosis of Parkinson's, the patient is kept under 

observation for a long time and the walking and voice 

recordings are examined. However, this examination and 

observation process is based on expert opinion, so the results 

can be subjective and prone to error. In addition, the length of 

the observation period may cause a delay in reducing 

symptoms. Although there is no treatment method that can 

cure and eliminate this disease, drug therapy can be applied 

to reduce symptoms in the early stages of the disease. 

Therefore, early diagnosis of this disease is very important. If 

the disease is diagnosed early, the progression of the disease 

can be slowed down with drug treatment [3], [4].  

Computer-aided diagnosis (CAD) provides objective, 

rapid and quantitative results. With the widespread use of 

machine learning and artificial intelligence methods and the 

success they have achieved, it has become one of the most 

important research areas in the medical field. CAD is used in 

many medical fields, from signal processing to image 

processing. The main purpose of CAD systems is not to 

diagnose the patient, but to assist the physician in the 

diagnosis process. In CAD systems, traditional methods such 

as SVM, k-NN, fuzzy logic and contemporary methods such 

as CNN are used. The success of CAD systems is affected by 

many factors such as dataset, method, pre-processing, post-

processing, and optimization. 

In this study, Support Vector Machines (SVMs) [5] that 

would contribute to the diagnosis of Parkinson's disease and 

four different optimization methods including parameter 

optimization of this classifier were used for the CAD system. 

Optimization of the parameters in SVM affects the 

classification performance seriously. Incorrect tuning of 

parameter values can result in unsuccessful classification 

performance [6]. Therefore, optimization algorithms are 

needed. Since SVM is an optimization-based classifier, it is 

more successful than other techniques in terms of 

performance [7]. 

Since successful results have been obtained with meta 

heuristic optimization algorithms, these algorithms have 

progressed rapidly in literature in recent years [8]. They are 

not problem-specific, do not require complex mathematical 

operations, and cover a wide range from simple local search 

methods to complex learning operations.  
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Particles Swarm Optimization (PSO) falls into the local 

optimum easily. Chaotic Particle Swarm Optimization 

(CPSO) was developed to solve this problem and increase the 

convergence rate of PSO. Higher classification success was 

achieved using GA-SVM and PSO-SVM compared to studies 

which used SVM parameter optimization with CPSO [9], 

[10]. 

The Harmony Search Algorithm (HSA) was used to 

optimize SVM parameters in the study using hyperspectral 

images, and the results were compared to those of the Genetic 

Algorithm (GA) and Grid Search (GS). According to the 

results obtained, HSA both increased the classification 

success and shortened the processing time [11]. The authors 

compared the results by including the Differential Evolution 

Algorithm (DEA) in their other study and concluded that 

HSA and DEA yielded similar results, while AAA had the 

least computational cost [12]. 

Aljarah et al. used Grasshoper Optimization Algorithm 

(GOA), Multi-verse Optimizer (MVO), GA, PSO, Grey Wolf 

Optimizer (GWO), Firefly Algorithm (FF), Bat Algorithm 

(BA), and Cuckoo Search (CS). The best result was obtained 

in GOA-SVM[13].  

Since the probability of crossover and mutation is constant 

in GA, unsuccessful results are obtained when adapting to 

changes in the population. GA was improved by proposing a 

new crossover and mutation probability model and used in 

SVM parameter optimization [14]. Successful results were 

obtained. 

In studies for the detection of Parkinson’s disease, DEA, 

Fruit Fly Algorithm (FFA), PSO, GS, Bacterical Foraging 

Optimization (BFO), Crow Search Algorithm (CSA), Salp 

Swarm Algoritm (SSA), and CS were used. According to the 

results obtained in [15], the use of DEA increased the success 

of SVM by 2.37%. In [16], where FFA, PSO, GS and BFO 

methods were compared, the best classification success was 

obtained with FFA-SVM. In the thesis study using KAA and 

SSA, the highest classification success was obtained in SSA-

SVM with Radial Based Kernel Function (RBF) [17]. In the 

study where two optimization methods are used together, the 

hybrid use of the CS-PSO methods has a higher success than 

their separate use [3].  

According to the literature review, the optimization of the 

parameters in SVM increases the classification performance 

of SVM. The success of the optimization methods used 

varies. Therefore, the most successful method for parameter 

optimization in SVM cannot be determined precisely. Studies 

on this subject continue in the literature. 

In this study, SVM parameter optimization was performed 

with BA [18, p. 201], Improved Chaotic Particle Swarm 

Optimization [19], Improved Genetic Algorithm [14], and 

HSA [20]. The success of the methods used was tested on the 

Oxford Parkinson’s disease dataset [21] and Parkinson 

dataset with replicated acoustic features [22]. Both datasets 

are in the UCI (Machine Learning Repository of University 

of California at Irvine) database. 

The rest of the paper is organized as follows: Section 2 

presents materials and methods used. In Section 3, 

classification results are introduced. Conclusions and 

discussion are introduced in the last section. 

2. MATERIALS AND METHODS 

A. Description of experimental data 

Two different Parkinson’s disease datasets were used in the 

experiments. The datasets were obtained from the UCI 

database. Parkinson dataset with replicated acoustic features 

[22] was named Parkinson1 and the Oxford Parkinson’s 

disease dataset [21] was named Parkinson2 to avoid 

confusion.  

Parkinson1 dataset contains acoustic features of 3 different 

voice recordings of 40 patients and 40 healthy individuals [4], 

[23]. Parkinson2 dataset contains the acoustic features of the 

voice recordings of 23 patients and 8 healthy individuals [21].  

B. Support Vector Machine 

SVM is a machine learning algorithm used in solving 

classification problems based on statistical learning theory 

and structural risk minimization. The basic idea in SVM is to 

find the hyperplane that can optimally separate two classes 

from each other [24]. More than one hyperplane can be drawn 

in a linearly classified dataset. The purpose of SVM is to find 

the hyperplane that maximizes the distance between the 

points closest to it [25]. 

In SVM used to separate nonlinear data, the penalty 

parameter (C), which will minimize the errors, is added to the 

objective function. C adjusts the tradeoff between 

misclassification and the width of the margin.  This controls 

the classification accuracy and the number of support vectors. 

In other words, a small value of C makes it easy to ignore the 

constraints, while a large value of C makes it harder to ignore 

the constraints [26]. When the value of C is small, the number 

of misclassifications increases and a hyperplane with a large 

margin is chosen. When C is large, a hyperplane with a 

smaller margin, which tries to correctly classify many 

samples, is chosen. 

There are many kernel functions in SVM, and each kernel 

function has different parameters. Optimizing the parameters 

of the kernel function used increases the classification 

success. In this study, RBF, linear and polynomial kernel 

functions were used, and the penalty parameter and the 

parameters of these kernel functions were optimized with BA, 

ICPSO, IGA, and HSA. 

C. Bat Algorithm  

BA is a population-based algorithm inspired by 

echolocation, which bats use to communicate, determine their 

distance to their prey, detect objects around them and move 

without hitting them [27], [28]. 

BA has five different parameters: bats’ positions (𝑥𝑖), 

velocity (𝑣𝑖), pulse rate (𝑟𝑖), frequency (𝑓𝑖), and loudness (𝐴𝑖) 
[29]. The initial positions of the bats are determined 
randomly. The directed velocity is used to move the bats to 
the optimal solution. Pulse rate is used to measure the 
distance of the bats to their prey. If there is improvement in 
the new solution, the pulse rate is updated according to the 

equation 𝑟𝑖
𝑡+1 = 𝑟𝑖

0[1 − exp(−𝛾𝑡)]. In this equation, 𝛾 > 0 

and is constant. t represents the current iteration number. fi is 
used to control the velocity of the bats. The high fi is an 
abbreviation for high velocity. The frequency is randomly 

assigned, and it is bounded by [𝑓𝑚𝑖𝑛 , 𝑓𝑚𝑎𝑥]. 𝑓𝑚𝑖𝑛 and 𝑓𝑚𝑎𝑥 are 
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changed according to the domain size of the problem. If there 
is improvement in the new solution, the loudness is updated 

according to the equation 𝐴𝑖
𝑡+1 =  𝛼𝐴𝑖

𝑡.  𝛼 is chosen between 

0.7 and 0.99 [30].  
The position of the bat with the best fitness among the bats 

in the population is represented by 𝑥∗. The update equations 
of the frequencies, positions and velocites of the bats are 
shown in (1), (2), and (3) [31]. 

 𝑓𝑖 =  𝑓𝑚𝑖𝑛 + (𝑓𝑚𝑎𝑥 −  𝑓𝑚𝑖𝑛)𝛽 , (1) 

 𝑣𝑖
𝑡 =  𝑣𝑖

𝑡−1 + (𝑥𝑖
𝑡−1 −  𝑥∗) 𝑓𝑖 , (2) 

 𝑥𝑖
𝑡 =  𝑥𝑖

𝑡−1 +  𝑣𝑖
𝑡  . (3) 

In (1), 𝛽 is a random value. It is bounded by [0,1]. 𝑥∗ is 
updated when a better solution is found. Each bat chooses 
another solution according to the quality of its fitness value 
and looks for new resources around that solution. Finding a 
local solution around the best solution is done by (4). 

 𝑥𝑛𝑒𝑤 = 𝑥𝑜𝑙𝑑 +  𝜀𝐴𝑡. (4) 

𝜀 is a random number. It is bounded by [-1,1]. 𝐴𝑡 is the 
average loudness of all bats in the t iteration. 

D. Improved Chaotic Particle Swarm Optimization  

PSO is an optimization algorithm inspired by the behavior 
of flocks of birds trying to find food [32]. In this algorithm, 
each particle adjusts its new position towards the best 
position, taking advantage of its previous experience and the 
individual with the best position in the swarm.  

Let  𝑥𝑖 = (𝑥𝑖1, 𝑥𝑖2 , 𝑥𝑖3, … , 𝑥𝑖𝐷)  represent   the  position  of 
the ith particle in  a D-dimensional space. 

𝑝𝑖 = (𝑝𝑖1, 𝑝𝑖2, 𝑝𝑖3, … , 𝑝𝑖𝐷) represents the previous best 

position of the ith particle. Let 𝑣𝑖 = (𝑣𝑖1 , 𝑣𝑖2 , 𝑣𝑖3, … , 𝑣𝑖𝐷) 
represent the velocity of the ith particle. The update equations 
of the positions and velocities of the particles are shown in 
(5) and (6). 

𝑣𝑖𝑑 =  𝑤 ∗ 𝑣𝑖𝑑 + 𝑐1𝑟𝑎𝑛𝑑1(𝑝𝑖𝑑 − 𝑥𝑖𝑑) + 𝑐2𝑟𝑎𝑛𝑑2(𝑝𝑔𝑑 −  𝑥𝑖𝑑), 

  (5) 

 𝑥𝑖𝑑 =  𝑥𝑖𝑑 +  𝑣𝑖𝑑 . (6) 

𝑝𝑔𝑑 represents the position of the particle with the best 

fitness in the swarm. 𝑐1 and 𝑐2 are learning factors. They 

determine the acceleration weights. 𝑟𝑎𝑛𝑑1 and 𝑟𝑎𝑛𝑑2 are 

random values. They are bounded by [0,1]. 𝑤 is inertia weight 
[33].  

The local search capacity of PSO is weak. PSO falls into 
the local optimum easily [9]. Chaos operation is added to PSO 
to prevent PSO from falling into the local optimum, to 
improve the global search and to prevent premature 
convergence. 

The speed of convergence and precision of the PSO can be 
improved by adding the chaos into PSO. Chaos is random, 
ergodic and sensitive to initial conditions. Therefore, chaos 
can improve population diversity and prevent falling into the 
local optimum [9]. 

The performance of PSO depends on the parameter values 
(adaptive inertia weight factor) of the algorithm. The control 

of the inertia coefficient is effective in determining the 
optimum solution. The inertia coefficient determines the 
effect of updating the velocity of a particle [33]. To control 
the inertia weight, an equation has been proposed in the 
literature [19], [34]. This equation is shown in (7). 

 𝑤 = {
𝑤𝑚𝑖𝑛 +  

(𝑤𝑚𝑎𝑥− 𝑤𝑚𝑖𝑛)(𝑓− 𝑓𝑚𝑖𝑛) 

𝑓𝑜𝑟𝑡− 𝑓𝑚𝑖𝑛
,           𝑓 ≤  𝑓𝑎𝑣𝑔,

𝑤𝑚𝑎𝑥 ,                                                        𝑓 > 𝑓𝑎𝑣𝑔,
. (7) 

𝑓 is the current fitness value of the particle. 𝑓𝑎𝑣𝑔 represents 

the mean of the current fitness value of all particles in the 

swarm. 𝑓𝑚𝑖𝑛 is the fitness value of the particle with the 

smallest fitness value among all particles. 𝑤𝑚𝑖𝑛 and 𝑤𝑚𝑎𝑥 
represent the smallest and largest values of the inertia 
coefficient, respectively. 

E. Improved Genetic Algorithm 

GA, inspired by Darwin’s theory of evolution, is a method 

used for problems that are difficult to solve with traditional 

methods [35], [36]. This method is based on the principle that 

good generations survive and bad generations perish. In GA, 

the problem is encoded in the gene structure. Genes form 

chromosomes, and chromosomes form the population. First, 

the chromosomes are encoded, and the data is translated into 

a language that the algorithm can understand in GA. Then the 

initial population is created. The fitness values of the 

chromosomes are calculated with the specified fitness 

function. The next step is selection. Individuals are selected 

from the current population in this step. The purpose of this 

is to produce individuals with good fitness values [37]. It is 

important that the selection is balanced. If a very strong 

choice is made, diversity may decrease. As a large data is 

scanned in a very weak selection, evolution may slow down 

[38], [39]. After selection, crossover starts. The parents 

determined by selection are combined with various rules [37]. 

According to the probability of crossover, it is decided 

whether a crossover between parents will occur. In the last 

step, mutation is applied in order to increase and protect 

diversity in the population [40]. It aims to recover useful 

genes lost in the previous steps through mutation [41]. 

Mutation does not apply to all children. 

Since the crossover and mutation probability is usually 

constant in GA, it cannot adapt to changes in the population. 

The probability of crossover and mutation has a significant 

effect on the convergence of GA and classification accuracy 

[14]. If the crossover ratio is high, the search space is scanned 

very quickly and individuals that are better than others 

deteriorate quickly after breeding. The low crossover rate 

causes a small number of new individuals to enter the new 

generation resulting from reproduction and the search space 

cannot be scanned sufficiently. The high mutation probability 

adds extreme randomness to the search and accelerates 

divergence. The search space is not fully scanned, and 

divergence slows down at a low mutation probability. 

Therefore, the premature convergence occurs [42]. To solve 

these problems, a crossover and mutation probability model, 

which varies according to the fitness value of individuals in 

the population, was proposed in 2019 [14]. The crossover 

probability according to this model is shown in (8) [14]. 
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 𝑃𝑐 = (

𝐹𝑖𝑡𝑚𝑖𝑛.  𝑃𝑐𝑚𝑎𝑥
𝐹𝑖𝑡𝑚𝑎𝑥

 + (𝑃𝑐𝑚𝑖𝑛.
𝑐

𝑡
+ 𝑃𝑐𝑚𝑎𝑥.

𝑡−𝑐

𝑡
𝑃𝑐𝑚𝑎𝑥)

2
). (8) 

𝑃𝑐 is the crossover probability. 𝐹𝑖𝑡𝑚𝑖𝑛 and 𝐹𝑖𝑡𝑚𝑎𝑥 are the 

minimum and maximum fitness value in the current 

population, respectively. 𝑃𝑐𝑚𝑖𝑛 and 𝑃𝑐𝑚𝑎𝑥 are the minimum 

and maximum crossover probability determined at the 

beginning of the problem. 𝑡 is the total number of generations 

to be reached at the end of the algorithm. 𝑐 represents the 

current generation number during the execution of the 

algorithm. 

The mutation probability is shown in (9) [14]. 

 𝑃𝑚 =  𝑃𝑚𝑚𝑖𝑛 .
𝑐

𝑡
+ 𝑃𝑚𝑚𝑎𝑥 .

𝑡−𝑐

𝑡
. (9) 

𝑃𝑚 is mutation probability. 𝑃𝑚𝑚𝑖𝑛 and 𝑃𝑚𝑚𝑎𝑥 are the 

minimum and maximum mutation probability determined at 

the beginning of the problem. 

F. Harmony Search Algorithm  

HSA is an optimization algorithm inspired by the method 

of finding the best harmony in jazz music. If the orchestra 

members play together more, they can achieve the best 

harmony. Accordingly, the best result can be achieved with 

more trials in the optimization problem [20]. 

This algorithm consists of five steps. The first step is to set 

up the problem and set the parameters of the algorithm. The 

optimization problem is defined in (10), where 𝑥𝑖 is the 

decision variables, 𝑋𝑖 is the solution space for the ith decision 

variable, 𝑁 is the total number of decision variables and 𝑓(𝑥) 

is the objective function to be minimized. 

 𝑧 = min{ 𝑓(𝑥) }       𝑥𝑖  ∈   𝑋𝑖    𝑖 = 1, 2, 3, … , 𝑁. (10) 

The solution parameters in HSA are three: Harmony 

Memory Size (HMS), Harmony Memory Consideration Rate 

(HMCR), and Pitch Adjusting Rate (PAR).  

HMS is the number of the best solutions to keep in memory 

while the algorithm is running. HMCR is the parameter that 

determines the extent to which the harmony memory will be 

considered when generating a new harmony. PAR is the 

parameter that adjusts the rate of tone adjustment to the values 

selected from the memory [43]. 

The second step of the algorithm is the creation of the 

harmony memory. Harmony equal to HMS value determined 

at the beginning of the problem is randomly generated. 

The third step is to create a new harmony. Let 𝑥′ =
(𝑥1

′ , 𝑥2
′ , 𝑥3

′ , … . , 𝑥𝑁
′ ) be the new harmony. It is determined 

whether the harmony to be generated will be randomly 

selected from the existing harmony memory or from the 

existing solution space with HMCR. HMCR value indicates 

the probability that the new harmony will be selected from 

the existing harmony memory, while (1-HMCR) value 

indicates that random selection will be made from the existing 

solution space. The inequality of the selection is shown in 

(11) [44]. 

𝑥𝑖
′ = {

𝑥𝑖
′  ∈ {𝑥𝑖

1, 𝑥𝑖
2, 𝑥𝑖

3, … , 𝑥𝑖
𝐻𝑀𝑆}  𝑇ℎ𝑒 𝑐𝑎𝑠𝑒 𝑜𝑓 𝐻𝑀𝐶𝑅 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦

𝑥𝑖
′  ∈  𝑋𝑖                                      𝑇ℎ𝑒 𝑐𝑎𝑠𝑒 𝑜𝑓 (1 − 𝐻𝑀𝐶𝑅) 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦

  (11) 

After the selection it is decided by PAR parameter whether 

pitch adjustment is made for each decision variable. The 

mathematical definition of this is given in (12). 

𝑥𝑖
′ = {

𝑥𝑖
′  ± 𝑅𝑛𝑑(0,1) ∗ 𝑏𝑤,          𝑇ℎ𝑒 𝑐𝑎𝑠𝑒 𝑜𝑓 𝑃𝐴𝑅 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦

𝑥𝑖
′ ,                                𝑇ℎ𝑒 𝑐𝑎𝑠𝑒 𝑜𝑓 (1 − 𝑃𝐴𝑅) 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦

. (12) 

𝑅𝑛𝑑(0,1) is random number and it is bounded by [0,1]. 𝑏𝑤 

represents the randomly selected bandwidth. 𝑅𝑛𝑑(0,1) ∗ 𝑏𝑤 

is added to the decision variable in the case of PAR 

probability. No change is made to the decision variable in 

case of (1-PAR) probability [44]. 

The fourth step is to update the harmony memory. The 

fitness value of the newly generated harmony is calculated. If 

the fitness value is better than the fitness value of the worst 

harmony in the memory, the worst harmony is removed from 

the memory and the new harmony produced is added to the 

memory. 

The fifth step is to check the stopping condition. If the 

stopping condition is satisfied, the algorithm is terminated. If 

the stopping condition is not satisfied, the third step is 

returned, and the operations are repeated. 

3. EXPERIMENTAL RESULTS 

In this study, the optimization of SVM kernel function 

parameters was carried out using meta heuristic algorithms. 

The algorithms used are the Bat Algorithm (BA), Improved 

Genetic Algorithm (IGA), Improved Chaotic Particle Swarm 

Optimization (ICPSO), and Harmony Search Algorithm 

(HSA).   

A. Experimental environment 

The optimization and classification processes were done in 

the MATLAB program on a computer with an Intel Core i7 – 

7700 HQ, 2.80 GHz, 16 GB RAM and Windows 10 operating 

system. 

In all experiments, the datasets were divided into training 

and test sets. Different methods can be used for this. In this 

study, the k-fold cross-validation method was used. The k 

value selected in this method determines how many subsets 

the dataset will be divided into. After the dataset is divided 

into k subsets, one of the subsets is designated as the test set, 

and the remaining k - 1 subsets are the training sets. This 

process is repeated for the k value and the average of the 

classification results obtained is found. In this study, the value 

of k was chosen to be 5. 

B. Performance evaluation criteria 

The confusion matrix is used to evaluate the performance 

of classification results. A comparison of the actual class and 

predicted class is made with this matrix. The confusion 

matrix is shown in Table 1. 

Table 1.  Confusion matrix.  

  Predicted 

  Positive Negative 

Actual 
Positive TP (True Positive) FN (Fault Negative) 

Negative FP (Fault Positive) TN (True negative) 
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TP is the state that the classifier predicts as sick, and the 
actual class is sick. FN is the state that the classifier predicts 
is not sick, but the actual class is sick. FP is the state that the 
classifier predicts as sick, but the actual class is not sick. TN 
is the state that the classifier predicts as not sick, and the 
actual class is not sick. 

Five different criteria were used in the performance 
evaluation with the help of the confusion matrix: accuracy, 
sensitivity, specificity, precision, and F1 score. 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 , (13) 

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =   
𝑇𝑃

𝑇𝑃+𝐹𝑁
 , (14) 

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
 , (15) 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 , (16) 

 𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 . (17) 

Accuracy is the ratio of the number of correctly classified 
samples to the total number of samples. Sensitivity is how 
many of the samples that are sick are correctly predicted. 
Specificity is defined by how many of the samples that are 
not sick are predicted as non-sick. Precision is how many of 
all the classes predicted as positive are actually positive. The 
F1 score is the harmonic mean of sensitivity and precision. It 
can be used, especially when evaluating performance on 
unbalanced datasets. 

C. Classification with BA-SVM  

Xin-She suggested that BA can obtain global convergence 
when α = 𝛾 = 0.99, 𝐴0= 0.5, and 𝑟0 = 0.5 [30]. Therefore, α = 
𝛾 = 0.99, 𝐴0= 0.5 and 𝑟0 = 0.5 were chosen. 𝑓𝑚𝑖𝑛 = 0 and 
𝑓𝑚𝑎𝑥 = 2 were chosen. The number of bats can affect the 
performance of the BA. There is no definite recommendation 
value for the number of bats. In [28], different bat number 
values were used for different datasets, and it was observed 
that the results differed in each dataset. Therefore, we 
analyzed the effect of the number of bats on the classification 
accuracy. Experiments were carried out by increasing the 
number of bats by fives between 5 and 50. Results were 
obtained in 100 iterations. 

The effect of the number of bats on classification accuracy 
in RBF, linear and polynomial kernel functions for 
Parkinson1 and Parkinson2 datasets is shown in Fig. 1 and 
Fig. 2. 

As can be seen in Fig. 1 and Fig. 2, the number of bats 
affects the classification accuracy. There is no direct or 
inverse relationship between the number of bats and the rate 
of classification accuracy. In addition, the number of bats in 
which the best classification accuracy rate is obtained, differs 
according to the kernel functions. 

All the non-patient samples in the Parkinson1 dataset were 
classified correctly, with a 100% success rate in the 
classification made with the RBF kernel function in the BA-
SVM. 

As the Parkinson2 dataset is an unbalanced dataset, it may 
be misleading to decide based on classification accuracy 
alone. It is also necessary to examine the F1 score value. 
Although the accuracy rate in the linear kernel function is 

81.031%, the F1 score value is 67.596%. This proves that the 
classification accuracy rate can be misleading in unbalanced 
datasets. Although the F1 score values in RBF and 
polynomial did not reach the accuracy rates, they performed 
well.  

 

Fig. 1.  Effect of bat number on classification accuracy in BA-SVM 

for the Parkinson1 dataset. 

 

Fig. 2.  Effect of bat number on classification accuracy in BA-SVM 

for the Parkinson2 dataset. 

D. Classification with ICPSO-SVM  

Values of 𝑐1and 𝑐2 were chosen to be 2. 𝑤𝑚𝑖𝑛 is 0.2, 𝑤𝑚𝑎𝑥 

is 1.2 [19]. Population size can affect the success of the 

algorithm, and there is no definite value for this. The effect of 

population size on classification accuracy was analyzed by 

increasing the population size by fives between 5 and 50. The 

effect of population size on the classification accuracy for the 

datasets is shown in Fig. 3 and Fig. 4. Results were obtained 

in 100 iterations. 

 

Fig. 3.  Effect of population size on classification accuracy in 

ICPSO-SVM for the Parkinson1 dataset. 
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Fig. 4.  Effect of population size on classification accuracy in 
ICPSO-SVM for the Parkinson2 dataset. 

The highest success in the ICPSO-SVM was obtained with 
the RBF kernel function. 

E. Classification with IGA-SVM  

The roulette circle was used for selection in GA, uniform 
crossover for crossover. 𝑃𝑐𝑚𝑎𝑥 = 0.9, 𝑃𝑐𝑚𝑖𝑛  = 0.4, 
𝑃𝑚𝑚𝑖𝑛  = 0.01 and 𝑃𝑚𝑚𝑎𝑥 = 0.08 were chosen [14]. The effect 
of population size on classification accuracy was analyzed by 
increasing the population size by 10 between 10 and 50. Two 
children are produced by two parents in GA. Therefore, even 
numbers were chosen for the population size, and odd 
numbers were not calculated. The effect of population size on 
the classification accuracy for the datasets is shown in Fig. 5 
and Fig. 6. Results were obtained in 100 iterations. 

 

Fig. 5.  Effect of population size on classification accuracy in IGA-
SVM for the Parkinson1 dataset. 

 

Fig. 6.  Effect of population size on classification accuracy in IGA-
SVM for the Parkinson2 dataset. 

The best accuracy rate for the Parkinson1 is in RBF. 97.5% 
of the patients in the Parkinson1 dataset were classified 
correctly in the classification made with the RBF kernel 

function in the IGA-SVM. All the non-patient samples in the 
Parkinson2 dataset were classified correctly with RBF in the 
IGA-SVM. 

F. Classification with HSA-SVM  

The effects of HMS, HMCR, and PAR parameters in HSA 
on classification accuracy were analyzed. HMS was analyzed 
by increasing by fives. Since HMCR and PAR values are 
between 0 and 1, they were analyzed by increasing 0.1 by 0.1 
between 0.1 and 0.9. While analyzing HMCR, HMS = 20 and 
PAR = 0.5 were chosen. While analyzing HMCR, HMS = 20 
and PAR = 0.5 were chosen. While analyzing PAR, 
HMS = 20 and HMCR = 0.5 were chosen. Results were 
obtained in 1000 iterations. The effect of HMS on the 
classification accuracy is shown in Fig. 7 and Fig. 8. 

 

Fig. 7.  Effect of HMS on classification accuracy in HSA-SVM for 
the Parkinson1 dataset. 

 

Fig. 8.  Effect of HMS on classification accuracy in HSA-SVM for 
the Parkinson2 dataset. 

The effect of HMCR on the classification accuracy is 
shown in Fig. 9 and Fig. 10. 

 

Fig. 9.  Effect of HMCR on classification accuracy in HSA-SVM for 
the Parkinson1 dataset. 
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Fig. 10.  Effect of HMCR on classification accuracy in HSA-SVM 

for the Parkinson2 dataset. 

 

Fig. 11.  Effect of PAR on classification accuracy in HSA-SVM for 

the Parkinson1 dataset. 

 

Fig. 12.  Effect of PAR on classification accuracy in HSA-SVM for 

the Parkinson2 dataset. 

The effect of PAR on the classification accuracy is shown 

in Fig. 11 and Fig. 12. 

The best classification accuracy for Parkinson1 was 

obtained in RBF when HMS = 20, HMCR = 0.5 and 

PAR = 0.5. The best classification accuracy for Parkinson2 

was obtained in RBF when HMS = 20, HMCR = 0.5 and 

PAR = 0.3. 

G. Comparison of classification  

The classification results for the Parkinson1 and 

Parkinson2 datasets of the BA-SVM, ICPSO-SVM, IGA-

SVM, and HSA-SVM used in this study are shown in Table 2. 

 

Table 2.  Classification results of the methods used in the Parkinson1 dataset. 

Kernel Function Evaluation Criteria BA-SVM [%] ICPSO-SVM [%] IGA-SVM [%] HSA-SVM [%] 

RBF 

Accuracy 86.25 88.75 88.33 88.33 

Sensitivity 95.83 87.50 97.50 95.00 

Precision 86.06 88.48 86.85 88.28 

Specificity 100.00 100.00 88.33 87.50 

F1 Score 84.88 85.61 86.40 87.20 

Linear 

Accuracy 86.67 86.25 85.42 83.33 

Sensitivity 86.67 85.83 88.33 84.17 

Precision 86.38 86.54 84.14 83.08 

Specificity 85.83 85.83 84.17 85.00 

F1 Score 85.52 85.83 81.66 81.35 

Polynomial 

Accuracy 86.25 86.67 85.83 85.83 

Sensitivity 87.50 86.67 84.17 85.00 

Precision 87.47 87.95 86.47 87.55 

Specificity 86.67 89.17 84.17 88.33 

F1 Score 84.91 85.96 85.46 85.68 

 

Regarding the sensitivity evaluation criteria, successful 

results were obtained for classifications with RBF in the BA-

SVM, IGA-SVM, and HSA-SVM, while results for 

classification with RBF in ICPSO-SVM were less successful 

than for the other three methods. Similar performances were 

observed in all methods and all kernel functions on accuracy, 

precision, and F1 score metrics. The best performance in all 

evaluation criteria belongs to RBF. A performance evaluation 

can be made according to the criteria that a person wants to 

achieve. For example, if the person wants the patients in the 

dataset to be classified correctly, he/she should evaluate them 

according to the sensitivity metric. In terms of sensitivity, 

RBF classification with BA-SVM, IGA-SVM, and HSA-

SVM is preferable for the Parkinson1 dataset. If the person 

wants the non-patient samples in the dataset to be classified 

correctly, he/she must evaluate them according to the 

specificity metric. Classification in RBF with BA-SVM and 

ICPSO-SVM can be preferred for the Parkinson1 dataset in 
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the specificity metric. If general performance evaluation is 

desired, classification accuracy should be considered. 

However, if the dataset is unbalanced, the F1 score metric 

should also be considered. 

The most successful performance in the accuracy metric 

belongs  to  RBF.  The accuracy rates are quite close to  each 

other in the classifications made with RBF in BA-SVM, 

ICPSO-SVM, IGA-SVM, and HSA-SVM. The most 

successful performance in the specificity metric belongs to 

the classification made with RBF in the IGA-SVM with 

100%.  

Table 3.  Classification results of the methods used in the Parkinson2 dataset. 

Kernel Function Evaluation Criteria BA-SVM [%] ICPSO-SVM [%] IGA-SVM [%] HSA-SVM [%] 

RBF 

Accuracy 95.42 95.39 94.41 95.41 

Sensitivity 88.00 92.00 92.00 91.78 

Precision 93.33 93.56 87.05 92.14 

Specificity 97.95 98.00 100.00 97.31 

F1 Score 87.57 89.58 87.92 88.79 

Linear 

Accuracy 81.03 81.04 80.45 80.97 

Sensitivity 87.78 90.00 88.00 87.78 

Precision 57.82 60.42 60.84 57.51 

Specificity 79.68 80.23 81.01 79.56 

F1 Score 67.60 67.96 67.86 67.99 

Polynomial 

Accuracy 93.86 86.10 93.79 88.33 

Sensitivity 89.33 86.00 91.56 86.67 

Precision 90.21 85.08 88.67 87.08 

Specificity 94.60 85.35 95.93 87.92 

F1 Score 84.63 84.94 83.27 86.67 

4. CONCLUSIONS AND DISCUSSION 

With the development of methods such as machine 

learning and artificial intelligence and producing successful 

results, computer-aided diagnosis comes to the fore in the 

field of medicine. Computer-aided systems include methods 

that aim to assist the physician in diagnosis and provide 

objective evaluation. In this context, methods such as feature 

selection, filtering, and optimization are used to increase the 

success rate of computer-aided diagnosis. The aim of this 

study is to optimize the parameters of the SVM classifier, 

which is widely used in many fields. For this purpose, Bat 

Algorithm, Improved Chaotic Particle Swarm Optimization, 

Improved Genetic Algorithm, and Harmony Search 

Algorithms were used for optimization. The success of the 

methods used was tested on the Parkinson's disease dataset. 

According to the results obtained, the most successful kernel 

function for SVM is RBF. The success of the optimization 

algorithms used differs depending on the performance 

evaluation criteria. If only the classification accuracy is 

evaluated, the most successful result in the Parkinson1 dataset 

was obtained with ICPSO-SVM, and the most successful 

result in the classification made in the Parkinson2 dataset was 

obtained with BA-SVM. A comparison of the obtained results 

with the literature is given in Table 4. 

The used methods in this study were compared with other 

classification results made with the same dataset in the 

literature, and the best classification accuracy rate in the 

Parkinson1 dataset was with ICPSO-SVM. It was observed 

that the used methods yielded better results than some of the 

other studies in the literature and were at a level that could 

compete with some of them in the Parkinson2 dataset. 

Researchers can propose SVM classification that is 

optimized with hybrid methods using the advantageous 

aspects of different algorithms. In addition, it has been 

observed that the success of the optimization method differs 

according to the dataset. For this reason, it should not be 

assumed that a method with high success will be successful 

in every dataset. The optimization method to be used should 

be reanalyzed according to the dataset. 

Table 4.  Comparison of the obtained results with other studies in 

the literature. 

Method/Reference 
Accuracy (%) 

Parkinson1 Parkinson2 
BA-SVM 86.7 95.4 

ICPSO-SVM 88.8 95.4 

IGA-SVM 88.3 94.4 

HSA-SVM 88.3 95.4 

[22] 85.0 - 

[23] 86.2 - 

[4] 87.5 - 

KAA-SVM [17] - 94.9 

SSA-SVM [17] - 95.4 

Grasshopper optimization algorithm [13] - 95.0 

Fruit fly optimization algorithm [16] - 96.9 

CS-PSO-SVM [3] - 97.5 

DE-SVM [15] - 85.0 
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