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Abstract: Equivalence ratio (Φ) is one of the most important parameters in combustion diagnostics. In previous studies, flame color 
characteristics have been widely applied to model the Φ of premixed hydrocarbon flames. The flame spatial characteristics also change with 
the varying Φ. In this paper, a high-speed color camera was employed to capture the premixed propane flame images under different Φ 
conditions (Φ = 0.93 to 1.53). Then, the relationship between the spatial characteristics and the Φ variation was investigated. The area and 
height of propane premixed flames perform a strong sensitive response to the Φ variation. Based on the research above, the Φ measurement 
models were constructed using color and spatial characteristics. A comparison was made between the color characteristics (Color-Φ) model 
and the color-spatial characteristics (Multi-dimensional-Φ) model. Both models were applied to a set of color images of a premixed propane 
flame, and the result indicates that the Multi-dimensional-Φ model performs with higher accuracy. 
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1. INTRODUCTION 

Combustion diagnostics is one of the biggest challenges 
the combustion industry faces. It is a technique that applies 
different methods to diagnose the process of flame 
combustion, such as combustion rate, stability, equivalence 
ratio, pollutant emissions, etc. Among the above parameters, 
the equivalence ratio [1] is a physical quantity that measures 
the mixing degree of fuel and oxidizer, which has a great 
impact on the combustion state and the pollutant emissions. 
Therefore, the accurate equivalence ratio (Φ) measurement is 
of great importance for the combustion industry to improve 
energy efficiency and reduce pollutant emissions. 

The flame exhibits different spectral and spatial 
characteristics under different combustion conditions. The 
property of radical chemiluminescence emission is one of the 
spectral characteristics that have been used for the Φ 
measurement of flames. For hydrocarbon flames, the specific 
radicals emit the photons at certain wavelengths, such as the 
peak of OH* at 310 nm [2]. This shows that the Φ can be 
measured according to these chemiluminescence peaks. The 
OH* chemiluminescence intensity can be used to indicate the 
global Φ, since the OH* emission intensity increases with the 
increasing Φ [3]. It has been shown that the 

chemiluminescence intensities of CH* and C2
* also change 

with the Φ of flames non-monotonically [4]. Clark [5] also 
investigated that the CH*/C2

* ratio can be used to indicate the 
Φ of propane-air flames under conditions (Φ = 0.6 to 1.5). 

For the analysis of the radical emission spectrum, 
spectroscopy is the most accurate method providing detailed 
spectral information about the target flame area [6]. However, 
the radical spatial information cannot be directly obtained 
from spectroscopy, thus the flame structure and local Φ can 
hardly be analyzed. To analyze the radical spatial 
information, some researchers used a multispectral imaging 
method to capture the flame radical images, which can 
provide both spectral and spatial information [7]. The 
common method used is to apply the specific narrowband 
filters in combination with a camera, and the flame radical 
emissions at different wavelengths are imaged accordingly 
[3]. The other common method used is to apply the 
narrowband filters with different specific bands to several 
cameras, and the flame radical emissions at different 
wavelengths are imaged at the same time. Since the different 
flame radical emissions cannot be obtained simultaneously by 
one camera, one challenge of this method is to precisely 
synchronize the images captured by different cameras. 
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Therefore, a low error of integration time and low lens 
distortion is required for the instruments.  

Flame color can be seen as a representation of the flame 
spectrum, hence the researchers are concerned with the color 
modelling method. Huang et al. [8] found that the average 
intensities of the Blue (B) and Green (G) channels of a 
methane-air premixed flame color image were well matched 
with the chemiluminescence intensities CH* and C2

*. Then, 
the Φ can be measured by modelling with the color B/G in the 
flame image. However, each pixel of the color image is 
interpolated with a Bayer filter. Additionally, the RGB band 
is broad, and the image color is integrated from the 
broadband. Thus, the color modelled method proposed by 
Huang et al. [8] loses a certain spectral resolution. In this case, 
the image color contains a lot of redundant spectral 
information. Therefore, the accuracy of the 
chemiluminescence intensity measured by the color method 
is not precise enough. To increase the accuracy of Φ 
measurement by image color, Yang et al. [9] proposed an 
improved color model by considering the spectrum response 
of the camera image sensor. 

The conventional color modelled Φ measurement method 
considers only the flame color information. Both color and 
spatial characteristics change with varying Φ. For the same 
type of air-fuel premixed flame, the air volume and oxygen 
content affect the length of the flames [1]. In addition, for fuel 
with a different chemical ratio between the hydrogen and 
carbon atoms, the flame height increases when the chemical 
ratio between hydrogen and carbon atoms of the fuel 
decreases under the same conditions. For example, the flame 
length of propane is approximately 2.5 times longer than that 
of methane [1]. It is more effective and practical to have the 
optimal combination of correlated variables to predict or 
estimate the independent variable. Thus, the combination of 
color and spatial characteristics seems to be more effective 
and practical to estimate Φ. 

The rapid advances in machine learning offer new 
technical methods for modelling high-dimensional data. 
Machine learning algorithms can fit not only high-
dimensional linear data but also non-linear data. In this case, 
the machine learning algorithm can be applied to construct 
the Φ model based on both color-spatial characteristics. In the 
previous studies, Ge et al. [10] analyzed the spectrum of the 
biomass flame over the spectral wavelength from 200 nm to 
1200 nm. And the spectral peak intensities of OH* 
(310.85 nm), CN* (390.00 nm), CH* (430.57 nm), and C2

* 
(515.23 nm, 545.59 nm) were extracted as the characteristics 
of the biomass flame. After the characteristic extraction, Ge 
et al. [10] constructed the identification model including 
decision tree [11], and random forest [12], and realized the 
goal of type identification of the biomass fuel. Wang et al. 
[13] extracted the total area, gray value, averaged intensity of 
B channel, etc. as the characteristics of a gas fire. Then, fuzzy 
pattern recognition was employed to identify the combustion 
state under varying Φ conditions. Machine learning has been 
applied in combustion diagnostics as mentioned above, but it 
has not been employed in Φ measurement. 

In this work, we studied both color and spatial 
characteristics for modelling of Φ. The relationship between 

varying Φ and spatial characteristics was investigated, then 
the area and height of the flame were extracted as spatial 
characteristics. The intensity of the B Channel and the G 
Channel, the B/G ratio, and the improved color modelled 
CH*/C2

* ratio proposed by Yang et al. [9] were extracted as 
the color characteristics. Since there is multicollinearity 
among these characteristics in the same space, we used the 
characteristic selection method to choose the characteristics. 
Multiple Linear Regression (MLR) was applied to establish 
the relationship between both color-spatial characteristics and 
Φ. At last, a comparison was investigated between the color 
characteristics (Color-Φ) model and the Color-spatial-Φ 
model. 

2. METHODOLOGY 

A. Experimental setup 
In this work, we performed Φ measurement on premixed 

air-propane flames and the inner nozzle diameter of the 
Bunsen burner was 10 mm. The Photron FASTCAM SA-4 
high-speed color camera with a Sigma 24-70 nm, f/2.8 EX 
DG zoom lens was used to capture the flame images, as 
shown in Fig. 1. The Φ of the flame was increased from 0.93 
to 1.53 at intervals of 0.1 L/min of air flow rates and the fuel 
flow remained at 0.105 L/min across 12 cases. For each set of 
Φ, 2000 images were captured at the steady combustion state. 
The combustion and imaging system was used in the 
improved color modelled CH* and C2

* measurements [9]. 

 

Fig. 1.  Experimental setup and block diagram for Φ measurement 
based on MLR. 

After the data acquisition was completed, the flame color 
images needed pre-processing for noise reduction. Then the 
spatial and color characteristics were extracted for further 
analysis. Based on this, the MLR models were constructed 
with different combinations of characteristics, and the model 
with better performance in the evaluation indices was 
selected as the color-spatial characteristics (Multi-
dimensional-Φ) model. 

B. Data pre-processing 
The acquired image data are shown in Fig. 2 (upper). The 

original flame image was processed by the Gaussian filtering 
algorithm with a 5×5 Gaussian kernel for noise reduction. The 
brightness and contrast of the color images were enhanced by 
40 percent for visualization. Fig. 2 presents the enhanced 
flame images. It is found that the color of the flame changes 
from blue to greenish-blue, which is caused by the increase 
of C2

*/CH* in the combustion progress. The spatial 
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characteristic parameters such as height, area, etc. have 
changed due to the variation of flow speed, different 
combustion processes and different spatial distribution of 
fuel. 

 

Fig. 2.  The segmented flame profiles (upper) and flame 
segmentation (lower) at conditions (Φ = 0.93 to 1.53). 

Then, the Otsu segmentation algorithm and the Canny edge 
detection algorithm were combined to segment the contours 
of the flames to improve the accuracy of the segmentation. As 
shown in Fig. 2, the actual area of the flame should be 
calculated from the bottom part of the flame above the nozzle, 
which is also the widest part of the flame. Based on this, we 
select the widest part as the bottom of the flame to further 
improve the accuracy of the segmentation algorithm, and the 
flame segmentation result is presented in Fig. 2 (lower). The 
relationship between varying Φ and variation of spatial 
characteristic parameters can be intuitively studied from the 
segmentation result. Abel transform was performed for all 
image data to transform the images from cylindrical to 2D, 
and the transformed result is shown in Fig. 3. 

 

Fig. 3.  The original and Abel transformed image. 

C. Color and spatial characteristics extraction 
The accuracy of the MLR model for the color-modelled Φ 

measurement is strongly dependent on the quality of 
characteristics extracted from the flame color images. The 
more sensitively characteristics change with the variation of 
Φ, the more discriminatory the characteristics are. The 
following section provides the definition and mathematical 
expression of the characteristics in color and spatial 
dimension. 

The spatial characteristics of flames consist of the 
geometrical parameters that vary with the increase of Φ. The 
total area of the flame represents the sum of the pixels of the 
flame in the color image as in (1) and (2). 

Pf (x, y) = �1,  if G (x, y) > λ
0,  other                                 (1) 

Af  = ∑ ∑ 1y∈ fx∈ f                                 (2) 

Here, (x, y) indicates the pixel point in the flame image and 
G (x, y) represents the gray scale of the pixel point. λ denotes 
the gray scale threshold. Pf (x, y) represents the binarization 

result of the pixel point (x, y). Pf is equal to 1 if G (x, y) > λ, 
and Pf is equal to 0 if G (x, y) < λ or G (x, y) = λ. Af shows the 
total area of the flame and is the sum of Pf (x, y), which is 
equal to 1. 

In addition, the flame height also changes with the 
variation of Φ. Therefore, the correlation between Φ and 
height is investigated. The height of the flame in the image is 
defined as: 

Hf  =  max�y� Pf (x, y) = 1� − min�y� Pf (x, y) = 1�     (3) 

where Hf represents the flame height. The correlations 
between Φ and spatial characteristics extracted are plotted in 
Fig. 4. In addition, the global width of the flame changes with 
varying Φ, which is shown in Fig. 2. However, the definition 
of the flame width is ambiguous because the width of the 
different flame parts is different. And the bottom width of the 
flame is determined by the nozzle, which does not change 
with varying Φ. Moreover, the variation of the area already 
includes the combination of varying height and width. Based 
on the above, we did not extract the flame width as a spatial 
characteristic. 

The greenish-blue flame color is attributed to radical 
chemiluminescence. Therefore, color is the main 
characteristic of a premixed propane flame, which contains 
the integration of spectral information of radicals over the 
broad wavelength. According to the study of Huang et al. [8], 
the chemiluminescence intensities of CH* and C2

* are well 
matched with the averaged intensities of the B and G channels 
in the premixed methane flame image. Based on this, the 
averaged intensities of the B and G channels in premixed 
propane flame images are extracted as color characteristics. 
The averaged intensities of the B and G channels denote the 
average intensity of the B and G channels of all pixels 
occupied by the flames in the color images defined as (4) and 
(5). Yang et al. [9] illustrated that the ratio of the average B 
and G intensities can be used approximately to indicate the Φ 
of the flame. Therefore, B/G can also be extracted as the 
characteristic defined as (6). Finally, the improved color 
modelled CH*/C2

* ratio proposed by Yang et al. [9] was used 
as the characteristic, shown as (7). 

IB = 1
K

 ∑ Bp (x, y)(x, y) ∈ f                         (4) 

IG = 1
K

 ∑ Gp (x, y)(x, y) ∈ f                         (5) 

Tf =  
∑ Bp (x, y)(x, y) ∈ f
∑ Gp (x, y)(x, y) ∈ f

                             (6) 

If =  3.03∑ Bp (x, y) - 3.3∑ Gp (x, y)(x, y) ∈ f(x, y) ∈ f

1.79∑ Gp (x, y)(x, y) ∈ f
               (7) 

where the IB and IG represent the averaged intensities of the B 
and G channels, respectively. Tf  is the averaged intensity 
ratio of the B and G channels and If is the improved color-
modelled CH*/C2

* ratio. K denotes the sum of pixels occupied 
by the flame. Bp (x, y) and Gp (x, y) indicate the intensity of 
the B and G channels of the pixel point (x, y), respectively. 
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3. RESULTS AND DISCUSSION 

A. Color and spatial characteristic analysis 
For each set of Φ, 100 sets of data are extracted for each 

dimensional characteristic, giving a total of 1200 sets of data. 
The 100 sets of data are averaged for each set of Φ to illustrate 
the trend of the characteristics corresponding to the variation 
of Φ from 0.93-1.53 and plotted in Fig. 4 and Fig. 5. The 
standard deviation (σ) is applied to assess the fluctuations of 
each 100 sets of data to ensure the accuracy of the 
characteristic data, which are shown as red lines in Fig. 4 and 
Fig. 5. 

 

Fig. 4.  The correlation between Φ and spatial characteristics of 
flames. (a) relationship between Af and Φ. (b) relationship between 
Hf and Φ. 

 

Fig. 5.  The relationship between Φ and color characteristics of 
flames. (a) relation between IB and Φ. (b) relationship between IG 
and Φ. (c) relationship between Tf, Abel transformed Tf and Φ. 
(d) relationship between Tf and Φ. 

As shown in Fig. 4(a), Af decreases rapidly under 
conditions (Φ = 0.93 to 1.24) and increases under conditions 
(Φ = 1.24 to 1.53). The variation trend of Hf is plotted in 
Fig. 4(b) that the Hf decreases under conditions (Φ = 0.93 to 
1.24) and increases under conditions (Φ = 1.24 to 1.53). This 
indicates that the variation of Af and Hf is sensitive to the 
varying Φ conditions, and the varying trend of Af and Hf under 
conditions (Φ = 0.93 to 1.24 and Φ = 1.24 to 1.53) is 
separately approximately linear. The MLR model is a linear 
model that requires the relationship between independent and 
dependent variables. Therefore, both Af and Hf can be 

employed in the MLR model. In addition, as seen from Fig. 4, 
the standard deviations of Af and Hf are small, which ensures 
the accuracy and stability of the model. 

The correlations between Φ and the color characteristics 
extracted from flames are plotted in Fig. 5. Fig. 5(a) 
illustrates the variation trend of IB with the increase of Φ. It 
can be found that IB increases under conditions (Φ = 0.93 to 
1.24) and decreases under conditions (Φ = 1.24 to 1.53). This 
is similar to the variation trend of IB, IG that increases under 
conditions (Φ = 0.93 to 1.37) and decreases under conditions 
(Φ = 1.37 to 1.53) as plotted in Fig. 5(b). Fig. 5(c) and 
Fig. 5(d) show that the Tf and If keep decreasing under 
experimental conditions (Φ = 0.93 to 1.53). 

Additionally, the Abel transformed B/G ratio was plotted 
in Fig. 5(c). It shows that there is no obvious difference 
between the B/G ratio and the Abel transformed B/G ratio. 
This is because the flames used in this study are uniform 
along the flame sheet. And the normalization of the B/G ratio 
is the same as that of the Abel transformed B/G ratio due to 
their similar trend. 

B. Multi-dimensional-Φ and Color-Φ modelling 
All data were normalized to remove the dimension of the 

data and to eliminate the residuals caused by the data 
acquisition. The Φ measurement model based on MLR was 
constructed separately under combustion conditions 
(Φ = 0.93 to 1.24 and Φ = 1.24 to 1.53). In this equation, Y 
is the Φ of the premixed propane flame and X denotes a vector 
of N characteristics, and the models are formed as: 

Y = β0 + ∑  βn X
n

 N
n=1 + ε                        (8) 

where Xn is the characteristic n which is an independent 
variable. The β0 is a common intercept and βn denotes the 
regression coefficient of characteristic n. The ε is the random 
error that is assumed to follow the normal distribution with 
mean zero and standard deviation σ. 

Severe multicollinearity between the independent 
variables makes the regression model unstable and the model 
calculations unreliable, so the data are analyzed separately for 
spatial and color variables before model construction. The 
variance inflation factor (VIF) and correlation coefficient 
(Corr) were used to verify the correlation among the 
characteristics extracted as (9) and (11). The correlation 
coefficients between the variables were first determined on a 
case-by-case basis using Corr. After completing the pre-
processing of the data, VIF was used to further determine that 
there was no severe multicollinearity between the variables. 
Mean absolute error (MAE) was applied to evaluate the error 
between the calculated and true values of the model, which is 
formed as (12). 

VIF = 1
1 - R2                                  (9) 

R2 = 1-
∑ (yi - f (xi))

2n
i=0
∑ (yi - ya)2n

i=0
                         (10) 

Corr (a, b) = Cov (a, b)
�Var (a) ∙ Var (b)

                  (11) 
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MAE = 1
n
∑ |yi - f (xi)| n

i=0                        (12) 
 

where R2 denotes the coefficient of determination as (10), Cov 
(a, b) indicating the covariance of a and b, and Var (a, b) 
indicating the variance of a and b. In (10) and (12), n is the 
sum of data, yi and f (xi) denoting separately the true and 
calculated value, ya denoting the averaged value of yi. 

The correlation coefficient between the extracted 
characteristics is plotted separately in Fig. 6 under 
combustion conditions (Φ = 0.93 to 1.24 and Φ = 1.24 to 
1.53). This indicates the correlation between the two 
variables is nearly linear when the absolute correlation 
coefficient is exactly 1 between the two variables. In other 
words, it demonstrates that the two variables can be expressed 
by each other in an approximately linear correlation with a 
correlation coefficient approximating exactly 1. 

Similarly, for the color characteristics, there is severe 
collinearity between Tf and If, and thus the two color 
characteristics cannot appear in the same linear model at the 
same time. In addition, there is severe multicollinearity 
between IB and IG in both conditions. Since Tf and If are ratios 
based on IB and IG, Tf and If already contain the information 
of IB and IG. Therefore, there is severe multicollinearity 
between Tf, If, and IB, IG. Because Tf and If already contain the 
information of IB and IG, Tf, If show an approximately linear 
trend under conditions (Φ = 0.93 to 1.53). Thus, Tf and If are 
more suitable for the linear regression model compared with 
IB and IG. Based on the above, Tf and If were selected as the 
color characteristics of flames. 

 

Fig. 6.  Correlation coefficients. (a) Φ = 0.93 to 1.24. (b) Φ = 1.24 
to 1.53. 

Overall, Fig. 6 indicates that the multicollinearity between 
spatial and color characteristics is considerable. However, in 
reality, spatial and color characteristics change 
simultaneously along with the variation of Φ, so the 
multicollinearity between these two different dimensional 
characteristics will be further determined using VIF when 
constructing the model. There is severe multicollinearity 
between variables a and b when absolute VIF > 10, as shown 
by Mason et al. [15]. 

Due to the presence of severe multicollinearity among the 
characteristic variables, this paper employs the characteristic 
selection method, which draws on the idea of stepwise 
selection [16] to construct the Φ model. The stepwise 
selection was used to select the different characteristics to 
construct the regression model. One independent variable at 
a time is initially introduced for testing, and then the other 
independent variables are gradually introduced. Then, all 

variables are tested, and if the originally introduced variables 
become less significant due to later introductions, they are 
removed accordingly. The optimal regression equation is 
gradually obtained. 

Drawing on the idea of stepwise selection, a characteristic 
variable in the spatial space is introduced first, then a 
characteristic in the color space is selected for model 
construction. Then, the characteristics introduced are tested 
for significance and VIF. The color characteristic variable 
will be removed if it is not significant or if there is 
multicollinearity between the spatial and color 
characteristics. The optimal Φ regression model is gradually 
obtained. 

The Φ measurement models were constructed under two 
different combustion conditions (Φ = 0.93 to 1.24 and 
Φ = 1.24 to 1.53). One spatial characteristic is introduced 
first, followed by color characteristics in turn, and 
significance tests and VIF tests are performed. The model 
constructed with characteristic selection is shown in Table 1 
(Φ = 0.93 to 1.24) and Table 2 (Φ = 1.24 to 1.53). 

In Table 1 and Table 2, P is P-Value that denotes the 
significance and the result is significant when P < 0.05. P_S 
and P_C are the P-Value of spatial and color characteristics, 
respectively. The β_S and β_C denote the regression 
coefficient of spatial and color characteristics, and β0 is the 
common intercept of the MLR model. It can be seen from 
Table 1 and Table 2 that the model constructed with Af, Hf 
and Tf is the same as with Af, Hf and If, which is because the 
trends and distributions of Tf and If are almost identical, and 
the values of Tf and If are almost identical after data 
normalization. 

Table 1.  Parameters of the model and test results (Φ = 0.93 to 1.24). 

Selection Af, Tf Af, If Hf, Tf Hf, If 
R2 0.9978 0.9978 0.9964 0.9964 
MAE 0.0047 0.0047 0.0048 0.0048 
P_S <0.0001 <0.0001 <0.0001 <0.0001 
P_C <0.0001 <0.0001 <0.0001 <0.0001 
VIF 6.4059 6.4059 5.9065 5.9065 
β_S -0.0632 -0.0632 -0.0859 -0.0859 
β_C -0.3302 -0.3302 -0.3413 -0.3413 
β0 1.3162 1.3162 1.3202 1.3202 

Φ = - 0.0632Af - 0.3302𝐼𝐼f + 1.3162                (13) 

Table 1 indicates that the Multi-dimensional-Φ with Af and 
Tf, If shows better performance in R2 and MAE, and the 
relationship is formed as (13). It demonstrates that the 
variation of Af is negatively correlated with Φ and the 
variations of Tf, If are negatively correlated with Φ under 
conditions (Φ = 0.93 to 1.24). The relationships are 
consistent with the relationship between Af and Φ in Fig. 4(a), 
and the relationship between Tf, If and Φ in Fig. 5(c) and 
Fig. 5(d). 

Under normalized data conditions, the regression 
coefficients β_S and β_C indicate that the effect of a unit 
change in Tf or If on Φ is greater than that of a unit change in 
Af on Φ. In other words, a change of one unit of Φ has a 
greater effect on Af than on Tf and If. It also suggests that the 
introduction of spatial characteristics to construct the Φ 
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measurement model is feasible, in terms of both accuracy and 
sensitivity. Moreover, the VIF between Af and IG is 6.4059, 
which indicates that there is no severe multicollinearity 
between Af and Tf, If. 

Table 2.  Parameters of the model and test results (Φ = 1.24 to 1.53). 

Selection Af, Tf Af, If Hf, Tf Hf, If 
R2 0.9978 0.9978 0.9964 0.9964 
MAE 0.0035 0.0035 0.0042 0.0042 
P_S <0.0001 <0.0001 <0.0001 <0.0001 
P_C <0.0001 <0.0001 <0.0001 <0.0001 
VIF 1.0599 1.0599 1.0718 1.0718 
β_S 0.1676 0.1676 0.1807 0.1807 
β_C -0.6059 -0.6059 -0.5621 -0.5621 
β0 1.3698 1.3698 1.3602 1.3602 

Φ = 0.1676Af - 0.6059𝐼𝐼f + 1.3698                 (14) 

Similar to the initial conditions (Φ = 1.24 to 1.53), a 
change of one unit of Φ has a greater effect on Af than on Tf 
and If. It also suggests that the introduction of spatial 
characteristics to construct the Φ measurement model is 
feasible, in terms of both accuracy and sensitivity. And the 
VIF between Af and Tf is 1.0599, which indicates that there is 
no severe multicollinearity between Af and Tf, If. 

The conventional Color-Φ model was constructed on 
normalized If and the relationship between Φ (Φ=0.93 to 
1.53) and If is as (14). The data applied in the Color-Φ model 
are the same as in the Multi-dimensional-Φ model. 

Φ = - 1.2728If
 3 + 2.1773If

 2 - 1.4956If + 1.4890      (15) 

C. Comparison with conventional Color-Φ model 
The conventional Φ measurement model was constructed 

based on only color characteristics of flames, while an Φ 
measurement model that incorporates spatial and color 
information was proposed in the present paper. The same 
experimental data were processed by the conventional color-
modelled Φ measurement model [8] and the improved color-
modelled Φ measurement model [9] for further comparison. 
After all the data are normalized, the models proposed by 
Huang et al. [8] and Yang et al. [9] are almost the same. 
Therefore, we selected the model constructed on If as the 
Color-Φ model. 

The Multi-dimensional-Φ model and the Color-Φ model 
were used to predict Φ of the testing set (each condition 
containing 20 random flame images), and the prediction is 
shown in Fig. 7. As a whole, the error between the predicted 
and true values of the Multi-dimensional-Φ model is smaller 
than the error between the predicted and true values of the 
Color-Φ model under conditions (Φ = 0.93 to 1.53). The 
range of application of the Color-Φ model is limited, and it 
does not perform well except for conditions (Φ = 1.08 and 
1.24) in the experimental data compared with the Multi-
dimensional-Φ model. In addition, the predicted values of the 
Color-Φ model fluctuate considerably under conditions 
(Φ = 0.93 to 1), which indicates that the accuracy and 
stability of the Color-Φ model are not sufficient in these 
conditions. 

Comparatively, the Multi-dimensional-Φ model has a good 
performance in accuracy and stability. To supply more direct 
insights, R2 and MAE of the predicted values of the two 
models are shown in Table 3. It can be concluded from 
Table 3 that the R2 and MAE of the Multi-dimensional-Φ 
model are smaller than those of the Color-Φ model, which 
indicates that the Multi-dimensional-Φ model has a better 
performance in terms of goodness of fit and the prediction 
errors on the test set. 

 

Fig. 7.  Comparison of predicted values of Color-Φ and Multi-
dimensional-Φ model. 

In the predicted Φ values of the Color-Φ model and Multi-
dimensional-Φ model, it can be found that the error of the 
model and the stability of the predicted values are relatively 
poor and unstable at Φ = 1.04. It is because the flame speed 
of this condition is the highest in the whole condition 
(Φ = 0.93 to 1.53). According to Mohammadreza et al. [17], 
for propane-oxygen-air flame (21% O2), freely propagating 
flame speed increases in slightly fuel-rich conditions, and the 
combustion frequency is the highest in this condition. In the 
progress of the combustion, the violent reaction of the flame 
causes certain fluctuations in the color characteristics and 
spatial characteristics of the flame, which lead to instability 
in the predicted values of the model. In addition to this, 
another reason for the large errors and fluctuations in the 
model at Φ = 1.04 is that the relationship between IG and Φ 
is not completely linear in practice (Φ = 0.93 to 1.24) but is 
only treated as an approximately linear relation in the MLR 
modelling process. 

Table 3.  The R2 and MAE of the two models. 

Model R2 MAE 
Color-Φ 0.9886 0.0169  
Multi-dimensional-Φ 0.9993 0.0043 

CONCLUSION 
In this work, the relationships between Φ and spatial, color 

characteristics have been investigated, which are nearly linear 
at conditions (Φ = 0.93 to 1.24 and Φ = 1.24 to 1.53). 
Regarding the color modelled measurement of premixed air-
propane flames under conditions (Φ = 0.93 to 1.53), 
intensities of IB and IG were extracted as characteristics of the 
color space. Furthermore, Tf and If were extracted and they 
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were approximately linearly correlated with the variation of 
Φ. Af and Hf were extracted as the spatial characteristics, 
which showed a nearly linear varying trend to the variation of 
Φ.  

The improved Φ measurement model of premixed propane 
flame was proposed, which takes both spatial and color 
characteristics into consideration. We have improved the 
accuracy and stability of the Φ measurement model using 
both color-spatial characteristics of digital color flame 
images. R2 and MAE of the Multi-dimensional-Φ model were 
compared with those of the Color-Φ model. The comparison 
indicated that both the accuracy and stability of the Multi-
dimensional-Φ model were better than the Color-Φ model. 
The proposed Φ measurement model provides a new 
modelling method in which all the characteristics varying 
with the independent can be considered. In addition, the rapid 
development of machine learning provides the possibility to 
fit multi-dimensional characteristics. 

When applying this method to different fuel flames, the 
relationship between Φ and characteristics should be 
investigated in advance. And the relation should be 
approximately linear, which is the assumptions of the MLR 
model. Furthermore, according to the assumptions of MLR 
there must not be significant multicollinearity between the 
characteristics. Thus, the processing of the data is also one of 
the main tasks in the modelling process. However, the 
relationship between Φ and characteristics of flames is often 
not linear, and thus the application of MLR is limited to non-
linear conditions. For the non-linear case, more non-linear 
machine learning algorithms can be applied to model Φ 
according to different requirements. 
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