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Abstract: To improve the parameter estimation performance of damped real-value sinusoid in noise, a novel algorithm with high accuracy 

and computational efficiency is proposed that combines the characteristics of good anti-interference, small computation of frequency-domain 

methods, and high parameter estimation accuracy of time-domain methods. First, the Discrete Fourier Transform (DFT) algorithm and the 

two-point spectrum interpolation algorithm of the frequency-domain methods are used to improve the noise immunity. Then, the linear 

prediction property and the enhancement filter of the time-domain methods are used to improve the parameter estimation accuracy. In 

addition, the parameter estimation performance of the proposed algorithm is verified by computational complexity analysis and test 

experiments, and the practical application effectiveness of the proposed algorithm is demonstrated on the Coriolis Mass Flowmeter (CMF) 

experimental platform. The experimental results show that the proposed algorithm effectively improves the real-time performance and the 

parameter estimation accuracy is better than that of the existing excellent algorithms.  
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1. INTRODUCTION 

Parameter estimation of damped real-value sinusoidal 

signal in noise is a basic but significant problem in signal 

processing. It is used in many areas, such as signal spectrum 

analysis, power quality detection systems, instrument 

measurement devices, and others [1]-[4]. For instance, the 

free damped vibration signal of the flow tube of a digital 

Coriolis Mass Flowmeter (CMF) can be used to track the 

natural frequency change of the flow tube, and the natural 

frequency is used to drive the vibration of the flow tube [5]-

[7]. 

The signal model of damped real-value sinusoid in noise is 

as follows [8], [9]. 

𝑥(𝑛) = 𝑎𝑒−𝜂𝑛 𝑐𝑜𝑠(𝜔𝑛 + 𝜃) + 𝑧(𝑛) 𝑛 = 0,1,⋅⋅⋅, 𝑁 − 1 (1) 

where a > 1, 0 < ω < π, -π < θ < π, and η > 0 denote the 

amplitude, frequency, initial phase, and damping factor of the 

sampled signal, respectively. n is a sampling index and N 

stands for signal length. z(n) is additive white Gaussian noise 

with a mean value of 0 and a variance of σ², and the Signal-

to-Noise Ratio (SNR) is defined as: 

 𝑆𝑁𝑅 = 10𝑙𝑔
𝑎2

2𝜎2
 (2) 

In recent decades, parameter estimation algorithms for 

damped real-value sinusoids have been extensively 

researched by scientists, which can be classified into 

frequency- and time-domain methods [10],[11]. 

Frequency-domain methods convert sampled signals from 

the time domain to the frequency domain for spectrum 

analysis and mainly include iterative interpolation methods 

and leakage correction methods [12]. In spectrum analysis, 

the damped real-value sinusoid can be considered as a 

superposition signal of positive- and negative-frequency 

components. To suppress the spectrum leakage influence of 

the negative frequency component, the sampled signal was 

processed by windowing and spectrum interpolation in [13]. 

To improve the parameter estimation accuracy at low 

frequencies, a novel spectrum interpolation algorithm was 

proposed in [14]. First, the sampled signal is analyzed by the 

Discrete Fourier Transform (DFT) algorithm and the signal 

spectrum is interpolated by two points. Then, spectrum values 

of the interpolation points are corrected by a subtraction 
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strategy. This algorithm effectively reduces the spectrum 

leakage influence, but the parameter estimation accuracy still 

decreases with increasing SNRs at low signal frequencies. 

Based on this, a Spectrum Leakage Correction (SLC) 

algorithm was proposed in [15]. The authors changed the 

interpolation interval and added iterations to further improve 

the parameter estimation accuracy. The parameter estimation 

accuracy of SLC is higher than that of other frequency-

domain algorithms. However, there is still an estimation 

deviation when the signal frequency is low and SNR is high. 

Time-domain methods process the sampled signal directly 

in the time domain using the linear prediction property, Least 

Squares method (LS), prediction matrix, etc., and have high 

parameter estimation accuracy under medium and high SNR 

conditions [16]-[18]. However, the anti-interference is poor, 

which means that the estimation accuracy is greatly affected 

by noise. Moreover, the computation of the time-domain 

methods is extensive due to the iterative matrix solution [19]. 

Therefore, due to the poor anti-interference and real-time 

performance, the time-domain methods are not suitable for 

practical application [20]. 

To overcome the spectrum leakage influence, poor anti-

interference and mass calculations, a novel algorithm 

combining the advantages of frequency- and time-domain 

methods is proposed. In this paper, the classical Steiglitz and 

McBride (STMB) algorithm of time-domain methods is 

introduced in section 2, and the proposed algorithm is 

presented in section 3. The algorithm performance analysis is 

demonstrated in section 4, and measurement experiments are 

performed in section 5. Finally, the entire text is summarized. 

2. THE STMB ALGORITHM 

STMB is a classical time-domain algorithm with a very 

high parameter estimation accuracy, and the computational 

process is described as follows [21]. 

First, according to the prediction property of the sinusoidal 

signal, the prediction relation is constructed. 

 𝑥(𝑛) = 𝑐(1)𝑥(𝑛 − 1) + 𝑐(2)𝑥(𝑛 − 2) + 𝑐(3)𝛿(𝑛) + 𝑐(4)𝛿(𝑛 − 1)

  (3) 

where δ(n) = [1,0,0,...,0]N*1 is the unit impulse function, and 

the prediction coefficients are: 

 

{
 

 
𝑐(1) = 2 𝑐𝑜𝑠(𝜔) 𝑒−𝜂            

𝑐(2) = −𝑒−2𝜂                          
𝑐(3) = 𝑎 𝑐𝑜𝑠(𝜃)                  

𝑐(4) = −𝑎𝑒−𝜂 𝑐𝑜𝑠(𝜔 − 𝜃)

 (4) 

Second, a filter with transfer function H(z) is designed to 

suppress noise influence. 

 𝐻(𝑧) =
1

1−𝑐(1)𝑧−1−𝑐(2)𝑧−2
 (5) 

The initial values of the filter parameters are obtained by 

calculating with (3) using a LS method when δ(n) is not 

considered. 

The prediction matrix is structured by filtering the sampled 

signal. 

 [

𝑉(2)

𝑉(3)
⋮

𝑉(𝑁 − 1)

] = [

𝑉(1) 𝑉(0) 𝑈(2) 𝑈(1)

𝑉(2) 𝑉(1) 𝑈(3) 𝑈(2)
⋮ ⋮ ⋮ ⋮

𝑉(𝑁 − 2) 𝑉(𝑁 − 3) 𝑈(𝑁 − 1) 𝑈(𝑁 − 2)

] [

𝑐(1)

𝑐(2)

𝑐(3)

𝑐(4)

]

  (6) 

where V(n) and U(n) denote the filtered signal of x(n) and 

δ(n), respectively. 

Then, the accurate prediction coefficients are obtained by 

calculating with (5) and (6) using a LS method and an 

iteration procedure. In [21], the number of iterations is 

recommended to be 4. 

By solving the polynomials: 

 1 − 𝐶(1)𝑧−1 − 𝐶(2)𝑧−2 = 0 (7) 

The complex root is obtained. 

 𝜆 = 𝑒−𝜂+𝑖𝜔 (8) 

Finally, signal frequency and damping factor are 

calculated. 

 {
�̂� = −𝑅𝑒[𝑙𝑛(𝜆)]

�̂� = 𝐼𝑚[𝑙𝑛(𝜆)]   
 (9) 

where the hat above the parameter stands for the estimated 

value, and Re[ ] and Im[ ] denote a real and a complex part of 

a complex number, respectively. 

Furthermore, we can obtain the amplitude and phase 

according to (4). 

 {
�̂� = tan−1

−(2𝐶(4)+𝐶(1)𝐶(3))

2𝐶(3) sin �̂�𝑒−�̂�

�̂� =
𝐶(3)

cos �̂�
                                

 (10) 

The STMB algorithm has the highest parameter estimation 

accuracy among the existing algorithms. However, the matrix 

calculation is performed many times, which causes high 

computational cost. Therefore, the STMB algorithm is not 

suitable for practical application. 

3. THE PROPOSED ALGORITHM 

To reduce computational cost and improve parameter 

estimation accuracy, a novel algorithm is proposed that can 

be divided into two steps. 

Step 1: The DFT and spectrum interpolation algorithm are 

used to estimate the coarse values of frequency and damping 

factor. 

First, DFT is used to analyze the sampled signal and obtain 

the spectrum X(k) and spectrum index k0. 

 𝑋(𝑘) = ∑ 𝑥(𝑛)𝑒−𝑖
2𝜋

𝑁
𝑘𝑛𝑁−1

𝑛=0   𝑘 = 0,1,⋯ ,𝑁 2⁄ − 1 (11) 

 𝑘0 = 𝑎𝑟𝑔𝑚𝑎𝑥{|𝑋(𝑘)|} (12) 

where argmax{ } is an index for the maximum value of a 

sequence. 
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Then the signal spectrum is interpolated with an interval of 

0.5 on both sides of k0. 

 𝑋(𝑘0 + ∆𝑘) = ∑ 𝑥(𝑛)𝑒−𝑖
2𝜋

𝑁
(𝑘0+∆𝑘)𝑛𝑁−1

𝑛=0    ∆𝑘 = ±0.5
  (13) 

So, the coarse values of frequency offset and damping 

factor are estimated. 

 {
�̂�𝑐 =

1

2
𝑅𝑒 [

𝑋(𝑘0+0.5)+𝑋(𝑘0−0.5)

𝑋(𝑘0+0.5)−𝑋(𝑘0−0.5)
]  

�̂�𝑐 =
𝜋

𝑁
𝐼𝑚 [

𝑋(𝑘0+0.5)+𝑋(𝑘0−0.5)

𝑋(𝑘0+0.5)−𝑋(𝑘0−0.5)
] 

 (14) 

Hence, the coarse value of signal frequency is calculated. 

 �̂�𝑐 =
2𝜋

𝑁
(𝑘0 + �̂�𝑐) (15) 

Step 2: The idea of the STMB algorithm is used to estimate 

the fine signal parameter values. 

First, using the coarse values of frequency and damping 

factor, the initial values of the prediction coefficients in (4) 

are obtained. 

 {
𝑐(1) = 2 𝑐𝑜𝑠 �̂�𝑐
𝑐(2) = −𝑒−2�̂�𝑐   

 (16) 

Second, the transfer function H(z) of the enhancement 

filter is calculated by (5). 

Then, the prediction matrix is constructed according to (6) 

and the matrix is solved by a LS method to obtain accurate 

prediction coefficients c(1) and c(2). Thus, the fine estimation 

values for the frequency and damping factor are obtained. 

 {
�̂� = 𝑐𝑜𝑠−1

𝑐(1)

2√−𝑐(2)

�̂� = −
𝑙𝑛(−𝑐(2))

2
     

 (17) 

Finally, the spectrum leakage influence of the negative 

frequency component is suppressed by a spectrum leakage 

correction strategy, and the complex amplitude of the 

sampled signal is calculated. 

 𝐴 =
1−𝑒−�̂�

1−𝑒−�̂�𝑁
((∑ 𝑥(𝑛)𝑒−𝑖�̂�𝑛𝑁−1

𝑛=0 ) − �̂�∗
1−𝑒−(𝑖2�̂�+�̂�)𝑁

1−𝑒−(𝑖2�̂�+�̂�)
) (18) 

where A = 0.5aeiθ, A* = 0.5aeiθ. 

The estimation accuracy is gradually improved by an 

iterative procedure and the initial value of A* is set to 0. 

Simulation tests show that only four iterations are needed to 

calculate the complex amplitude due to precise estimation 

values for the frequency and damping factor. Depending on 

the estimation value of 𝐴, the fine estimation values for 

amplitude and initial phase are obtained. 

 {
�̂� = 2|𝐴|

�̂� = ∠𝐴  
 (19) 

where | | and ∠ represent a modulus and an angle of a complex 

number, respectively. 

4. THE ALGORITHM PERFORMANCE ANALYSIS 

In this section, the algorithm performance is analyzed. 

First, the computational complexity is counted to analyze the 

real-time performance. Then, the parameter estimation 

accuracy is verified by experiments under different 

simulation conditions. Since SLC and STMB are 

representative algorithms for frequency- and time-domain 

methods, the parameter estimation performance of the 

proposed algorithm is compared with that of SLC and STMB 

in this paper. 

A. Computational complexity 

When we analyze the computational complexity, the 

simple computational steps are omitted and only the steps 

with large computation are counted. In statistics, all quantities 

of complex-value computations are converted into quantities 

of real-value computations. For example, one complex-value 

multiplication requires four real-value multiplications and 

two real-value additions, and one complex-value addition 

requires two real-value additions. To reduce the 

computational cost, the DFT is calculated using the Fast 

Fourier Transform (FFT). Moreover, one N-point FFT 

calculation requires 3𝑁𝑙𝑜𝑔2
𝑁 real-value additions and 2𝑁𝑙𝑜𝑔2

𝑁 

real-value multiplications. The statistical results of the 

proposed algorithm are compared with those of SLC and 

STMB and are shown in Table 1 and Fig. 1. 

Table 1.  Computational complexity of algorithm. 

Algorithm Multiplication Addition 

SLC 2𝑁 𝑙𝑜𝑔2
𝑁 +96𝑁 3𝑁 𝑙𝑜𝑔2

𝑁 +64𝑁 

STMB 170𝑁 152𝑁 

Proposed 2𝑁 𝑙𝑜𝑔2
𝑁 +46𝑁 3𝑁 𝑙𝑜𝑔2

𝑁 +42𝑁 

 

Fig. 1.  Computational complexity of algorithms. 

The prediction matrix is calculated by a LS method with 

four iterations in STMB, and the filter parameters are also 

obtained by one matrix calculation, which significantly 
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increases the computational complexity. Based on the FFT 

calculation, SLC directly constructs a two-point interpolation 

spectrum and performs spectrum leakage correction by a 

subtraction strategy. Therefore, the computational 

complexity of SLC is lower than that of STMB. However, 

when the complex amplitude is calculated by SLC, the LS 

method is used for 4 times, which increases the computational 

complexity. In the proposed algorithm, DFT, which is 

calculated by the FFT, is used to estimate the coarse 

parameter values, and the linear prediction property and filter 

are used to estimate the fine parameter values. In our 

algorithm, the LS method is needed only once when we solve 

the prediction matrix to obtain high-precision parameter 

estimation values. Therefore, the computational complexity 

of the proposed algorithm is lower than that of SLC and far 

lower than that of STMB. Compared with SLC and STMB, 

the proposed algorithm has good real-time performance. 

B. Test experiments 

In this section, the parameter estimation accuracy of the 

proposed algorithm is tested, mainly simulating the frequency 

and the damping factor under different conditions. To reduce 

random errors caused by the computation, 10000 Monte 

Carlo experiments are performed for each simulation group. 

To simplify the analysis, the estimation results are converted 

into mean square errors (MSEs) and expressed in logarithms. 

 𝑀𝑆𝐸𝑠 = 10 𝑙𝑔
∑ (�̂�𝑙−𝜔)

2𝐿
𝑙=1

𝐿
 (20) 

where 𝐿 represents the experiment times, and �̂�𝑙 is the 

estimation value of the l-th experiment. 

At the same time, simulation results are compared with 

those calculated using SLC, STMB, and Cramer-Rao Lower 

Bound (CRLB). For the damped real-value sinusoid, the 

lower bound of the MSEs of each parameter estimation value 

is defined as (21) in [22]. 

{
  
 

  
 𝑣𝑎𝑟(�̂�) = 𝑣𝑎𝑟(�̂�) ≥

(1−𝑑2)
3
(1−𝑑2𝑁)

(−𝑁2𝑑2𝑁(1−𝑑2)2+𝑑2(1−𝑑2𝑁)
2
)𝑆𝑁𝑅

    

𝑣𝑎𝑟(�̂�) ≥
1−𝑑2

𝑆𝑁𝑅
[1 +

(1−𝑑2𝑁)𝑑2(𝑑2+𝑑2𝑁)−2(1−𝑑2)𝑑2𝑁𝑑2𝑁

−𝑁2𝑑2𝑁(1−𝑑2)2+𝑑2(1−𝑑2𝑁)
2 ]    

𝑣𝑎𝑟(�̂�) ≥
(1−𝑑2)𝑎2

𝑆𝑁𝑅
[1 +

(1−𝑑2𝑁)𝑑2(𝑑2+𝑑2𝑁)−2(1−𝑑2)𝑑2𝑁𝑑2𝑁

−𝑁2𝑑2𝑁(1−𝑑2)2+𝑑2(1−𝑑2𝑁)
2 ]

  (21) 

where d = e-η. 

Different SNRs: To test the anti-interference performance, 

we increase the SNR from 0 dB to 50 dB in steps of 1 dB. In 

the simulation test, the signal length N is 128. The amplitude 

a is 1, and the damping factor η is 0.005. The spectrum index 

k0 is set to 2, and the spectrum offset δ is a random value of 

(-0.5, 0.5). In addition, the initial phase is set to θ = π/6. The 

results are shown in Fig. 2. 

At low SNRs, the parameter estimation accuracy of SLC is 

high and close to CRLB. However, since the simulation 

signal frequency is low, SLC is seriously affected by 

spectrum leakage of the negative frequency component. At 

high SNRs, the spectrum leakage influence is greater than the 

noise influence. The parameter estimation accuracy of SLC 

gradually decreases, but does not follow the change of CRLB 

until the estimation saturation occurs, which means the 

spectrum suppression capability of SLC is limited. The anti-

interference performance of STMB is poor, and the parameter 

estimation accuracy is not high at low SNRs. As SNR 

increases, the parameter estimation accuracy improves 

significantly and changes with CRLB. At all SNRs, the 

proposed algorithm has good parameter estimation accuracy, 

which is better than the others. The results show that the 

proposed algorithm effectively suppresses the influence of 

spectrum leakage and noise. 

 
                  (a) frequency                            b) damping factor 

 
                  (c) amplitude                               (d) initial phase 

Fig. 2.  Parameter estimation accuracy under different SNRs. 

Different frequencies: When the frequency ω increases 

from 0.01 π to 0.5 π in steps of 0.01 π, the frequency and 

damping factor estimation experiments are performed to test 

the influence of different frequencies under the conditions of 

SNR = 10 dB and SNR = 40 dB, respectively. In this test, the 

signal length N is 128, and the amplitude a is 1. The damping 

factor η is 0.005, and the initial phase θ is a random value in 

(-π, π). The results are shown in Fig. 3 and Fig. 4. 

 
                  (a) frequency                          (b) damping factor 

Fig. 3.  Estimation results of frequency and damping factor under 

different frequencies when SNR is 10 dB. 
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                 (a) frequency                          (b) damping factor 

Fig. 4.  Estimation results of frequency and damping factor under 

different frequencies when SNR is 40 dB. 

When the SNR is 10 dB and the signal frequency is low, 

the parameter estimation accuracy of the proposed algorithm 

is slightly higher than that of SLC and STMB. As the signal 

frequency increases, the three algorithms have equivalent 

estimation accuracy, which is close to that of CRLB. When 

the SNR is 40 dB, the proposed algorithm and STMB have 

equivalent parameter estimation accuracy in the whole 

frequency range. The accuracy is always close to that of 

CRLB, but better than that of SLC, which suffers from the 

spectrum leakage influence. Moreover, the proposed 

algorithm and STMB have more obvious advantages at low 

frequencies.  

It is worth noting that CRLB is the Lower Bound of 

unbiased estimation algorithm, and the proposed algorithm, 

SLC and STMB are biased estimation algorithms. Therefore, 

a few estimation results slightly exceed CRLB, but this does 

not affect the performance comparison of the different 

algorithms. 

Different damping degrees: To test the parameter 

estimation accuracy of the proposed algorithm under different 

damping degrees, we increase the damping factor η from 

0.001 to 0.02 in steps of 0.0005 and perform experiments to 

estimate the frequency and damping factor under the 

conditions of SNR = 10 dB and SNR = 40 dB, respectively. 

The test results are shown in Fig. 5 and Fig. 6. In this test, the 

signal length N is 128, and the amplitude a is 1. The spectrum 

index k0 is 2, and the spectrum offset is δ = -0.2. Moreover, 

the initial phase θ is a random value in (-π, π). 

With a SNR of 10 dB and a low damping factor, the 

proposed algorithm, SLC, and STMB have a considerable 

parameter estimation accuracy, which is close to that of 

CRLB. With the increase of the damping factor, the 

parameter estimation accuracy of STMB gradually decreases 

and deviates from that of CRLB due to the poor anti-

interference of STMB. However, the proposed algorithm and 

SLC follow CRLB in the whole range of the damping factor, 

which means that the two algorithms have good parameter 

estimation accuracy. In addition, the proposed algorithm is 

slightly better than SLC. 

When the SNR is 40 dB, the noise influence is small. The 

proposed algorithm and STMB have equivalent parameter 

estimation accuracy, which is always close to that of CRLB. 

However, SLC is affected by spectrum leakage, and the 

frequency estimation has a deviation. Moreover, the 

discrepancies of the estimation results of the damping factor 

between SLC and CRLB gradually increase with the increase 

of the damping factor. 

 
                 (a) frequency                          (b) damping factor 

Fig. 5.  Estimation results of frequency and damping factor under 

different damping factors when SNR is 10 dB. 

 
                 (a) frequency                            (b) damping factor 

Fig. 6.  Estimation results of frequency and damping factor under 

different damping factors when SNR is 40 dB. 

5. THE MEASUREMENT EXPERIMENTS 

To verify the feasibility of our algorithm in practical 

application, the RHEONIK CMF experimental platform is 

used to measure the natural frequency of the flow tube, as is 

shown in Fig. 7. 

 

Fig. 7.  CMF experimental platform [15]. 

First, an analog driving scheme is used to drive the flow 

tube vibration. According to the analog driving principle, the 

vibration frequency of the flow tube is the natural frequency. 

Then the flow tube is in the free attenuation state, and the 

vibration frequency is calculated by the proposed algorithm. 

By comparing the estimation frequency of the damped signal 

with the natural frequency, the frequency estimation 

effectiveness of the proposed algorithm can be tested. SLC 

and STMB are also tested at the same time. 

In this section, the experiments to measure the natural 

frequency under the conditions of empty tube, air bubbles in 

the tube, and full water in the tube are demonstrated. The 

results are shown in Table 2. 
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The analysis showed that the SNR of the vibration signal 

is about 26 dB and the frequency is about 0.12 π, which 

satisfies the application conditions of the proposed algorithm. 

Under various conditions, the natural frequency of the flow 

tube can be accurately tracked by SLC, STMB and the 

proposed algorithm, and the estimation errors are about 

0.0012 Hz, 0.0011 Hz and 0.0011 Hz, respectively. STMB 

and the proposed algorithm have equivalent frequency 

estimation accuracy and are slightly better than SLC, which 

is consistent with the test experiment results. 

Table 2.  Measurement results under different conditions. 

condition 
Natural frequency 

(Hz) 

Estimation frequency (Hz) Estimation error (Hz) 

SLC STMB Proposed SLC STMB Proposed 

empty 147.1482 147.1495 147.1471 147.1472 0.0013 -0.0011 -0.0010 

bubble 146.6946 146.6957 146.6955 146.6956 0.0011 0.0009 0.0010 

full 145.5948 145.5935 145.5960 145.5960 -0.0013 0.0012 0.0012 

6. CONCLUSION 

To suppress the spectrum leakage influence of the 

frequency-domain methods at medium and high SNR 

conditions and the disadvantage of large computational cost 

of time-domain methods, the advantages of anti-interference 

of frequency-domain methods and high parameter estimation 

accuracy of time-domain methods are combined to propose a 

novel parameter estimation algorithm for damped real-value 

sinusoids in noise. The proposed algorithm significantly 

reduces the computational cost by computational complexity 

analysis, which is more effective than STMB and SLC. The 

test results under different simulation conditions show that 

the proposed algorithm improves the parameter estimation 

accuracy, and the MSEs of the parameter estimation values 

are closer to CRLB than those of the other algorithms. 

Moreover, the measurement experiments are performed on 

the CMF experimental platform to verify the effectiveness of 

the proposed algorithm, which indicates that the proposed 

algorithm can be applied in engineering practice. 
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