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Abstract: In this work, we build a satellite attitude Proportional-Integral-Derivative (PID) controlled system by using the Hubble Space 

Telescope (HST) parameters as a reference and tune its controller parameters using various tuning methods. First, we give the equations for 

the motion of a satellite. We elaborate the control structure as controller, actuator, dynamics, and kinematics subsystems and construct an 

external disturbance model. We use a reaction wheel assembly used in the HST with the same configuration as the actuator. We evaluate the 

performance of the linearization by comparing it with the nonlinear model output. By working on the linearized model, we tune the PID 

controller parameters using two different methods: "Model-Based Root Locus Tuning” and "Genetic Algorithm Based Tuning". First, we 

obtain the controller parameters by manipulating the poles on the root locus plot of the linearized system. In addition, we use genetic 

algorithms to find the optimized controller values of the system. Finally, we compare the performances of the two methods based on their 

cost function values and find that the Genetic Algorithm-based tuned parameters are more fruitful in terms of the cost function value than 

the parameters obtained by the Root Locus-based tuning. However, it is found that the Root Locus-based tuning performs better in 

disturbance rejection. 

Keywords: Spacecraft attitude control, controller parameter optimization, reaction wheel actuation, quaternion error feedback, Hubble Space 

Telescope. 

 

1. INTRODUCTION 

The advancement of technology has undergone a 

significant transformation since the first satellite was 

launched into space. Presently, the Earth is surrounded by a 

multitude of over 2000 satellites [1]. Among them, the 

Hubble Space Telescope (HST) stands as a notable orbiting 

spacecraft, devised by NASA to serve as the pioneering space 

telescope for observing the cosmos from Earth's orbital 

vantage point [2]. 

The HST has a crucial component known as the pointing 

system, which facilitates the alignment of the satellite with a 

fixed position in space. Since the primary objective of the 

HST is to observe celestial objects located at great distances, 

achieving exceptional pointing accuracy is essential. 

Consequently, the HST was engineered to have a pointing 

accuracy exceeding 0.01 arc seconds. This remarkable 

precision is achieved through the use of four Reaction Wheel 

Assemblies (RWA) as attitude control mechanisms, 

alongside four Magnetorquer Bars (MTBs), which are 

responsible for both momentum management and 

deceleration of the reaction wheels. For this work, the MTBs 

are ignored because they contribute little to the momentum 

change of the HST. The reaction wheels of the HST produce 

a torque of 0.8 Nm at a maximum speed of 3000 rpm and a 

rotor moment of inertia of 0.84 kgm2 per wheel [3]. The 

moment of inertia of the HST can be found in [4]. 

As with any satellite that has an attitude control system, a 

control structure must be built to align the spacecraft to a 

desired angle. To build the model-based control structure, a 

mathematical model of the spacecraft must be created and 

simulated in the computational environment. 

Proportional-Integral-Derivative (PID) control is still the 

most popular control strategy, used in 90-95% of industrial 

applications [5]. One of the critical issues in the development 

of PID controllers is the selection of the proper controller 

parameters (Kp, Ki and Kd). Numerous studies have been 

conducted on controller parameter tuning, such as classical 

Ziegler-Nichols Tuning [6], Cohen-Coon Method [7], Relay 

Based Tuning [8], Self-Tuning [9], Reinforcement Learning 

Neural Network Based Tuning. [10], Particle Swarm 

Optimization (PSO) Based Tuning [11], and Genetic 

Algorithm Based Tuning [12]-[14]. 

In this paper, we use both model-based root locus tuning 

and genetic algorithm to find the proper controller gains. 

Several studies have been conducted in the literature that 

covers satellite attitude control with PID tuning methods 
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using various methods similar to ours. Wang et al. designs a 

flexible spacecraft attitude control simulation using a PID 

control algorithm. They optimize the control parameters 

using PSO and compare them with the trial-and-error method, 

which can be described as a time-consuming method for 

complex systems [11]. Khoshrooz et al. design a reaction 

wheel actuated satellite attitude control system. They design 

a PD controller and optimize the PD parameters using 

Genetic Algorithm and PSO methods. They compare two 

optimized variants with an LQR controller and verify them 

with a Hardware-in-the-Loop testbed [13]. Daw et al. design 

a geostationary satellite attitude control system using PID 

controllers. They tune the parameters of the controller using 

experimental Ziegler-Nichols, a fairly generic tuning 

technique, and a genetic algorithm. At the end of their study 

they compare the performance of the two techniques [14]. Jia 

and Yang design a nonlinear adaptive PD controller for 

attitude control of a rigid spacecraft to compensate for 

spacecraft uncertainties such as inertia variation. An adaptive 

part is added to the nonlinear PD controller and the 

parameters are determined using a genetic algorithm. 

However, no comparison has been made with other tuning 

methods [12].  

In this work, we present a structure for satellite attitude 

control using PID controllers. We elaborate the design using 

the physical parameters of the HST. Then we tune the 

controller parameters using the model-based root locus 

method and the genetic algorithm. We simulate and compare 

the results in a commercial software environment. 

The outline of the paper is as follows: in Section A, the 

satellite equations of motion are constructed as dynamics, 

kinematics, and actuator subsystems. Also, the linearized 

equations of motion are shared. The attitude control structure 

is constructed in Section B, and a comparison between 

nonlinear and linear models is performed to show that the 

linearized model is reliable to use instead of the nonlinear 

model in terms of linear model-based tuning and faster 

computation process. In Section C, the controller parameters 

are tuned to meet the time domain requirements using Root 

Locus and Genetic Algorithm-based methods. Section 3 

compares the performance of tuning with respect to cost 

function values. In Section 4, conclusions and the advantages 

and disadvantages of both methods are discussed and future 

research aspects are explored. 

2. METHODS 

A. Satellite equations of motion 

In this section, the equations of motion of the HST are 

given with dynamics, kinematics, and actuator subsystem 

equations. 

Dynamics 

Spacecraft dynamics with reaction wheels as actuators can 

be calculated using the dynamics equations based on 

Newton’s second law as given below [15]:  

 ℎ̇𝑡𝑜𝑡 = 𝑁𝑒 − ω × ℎ𝑡𝑜𝑡 (1) 

where ℎ𝑡𝑜𝑡 is the total angular momentum acting on the 

spacecraft, 𝜔 is the angular velocity vector of the spacecraft, 

and 𝑁𝑒 is the external torque acting on the spacecraft. 

Equation (1) can be divided into two parts: the spacecraft 

and the reaction wheel. For the spacecraft, the angular 

momentum can be defined as 𝐼𝑠𝜔. Then (1) becomes: 

 
𝑑

𝑑𝑡
(𝐼𝑠ω) + ℎ̇𝑤 = 𝑁𝑒 − ω × 𝐼𝑠ω − ω × ℎ𝑤 (2) 

where ℎ𝑤 is the angular momentum generated by the reaction 

wheels and 𝐼𝑠 is the moment of inertia matrix of the 

spacecraft. It is also known that the control torque vector 𝑁𝑐 

is related to the rate of change of the angular momentum 

vector of the satellite as: 

 ℎ̇𝑤 = −𝑁𝑐 (3) 

than (2) becomes [16]:  

 ω̇ = 𝐼𝑠
−1(−𝑆(ω)𝑰𝒔𝝎 − 𝑆(ω)ℎ𝑤 + 𝑁𝑐 + 𝑁𝑒) (4) 

where 𝑆 is the skew-symmetric matrix given as: 

 [

0 −𝜔3 𝜔2

𝜔3 0 −𝜔1

−𝜔2 𝜔1 0
] (5) 

Kinematics 

To create kinematic equations, a quaternion representation 

can be used. A quaternion is a representation with three vector 

and one scalar element as [17]: 

 𝑞 = 𝑖𝑞1 + 𝑗𝑞2 + 𝑘𝑞3 + 𝑞4 (6) 

Equation (6) can be rewritten in terms of its vector and 

scalar elements as: 

 𝑞 ≡ (𝑔, 𝑞4)  (7) 

It is also possible to indicate the kinematic equations by 

using the Euler angles, which can be defined as rotations 

around the body axis of the spacecraft: 

𝜙: Roll angle (rotation around the x-axis) 

𝜃: Pitch angle (rotation around the y-axis) 

𝜓: Yaw angle (rotation around the z-axis) 

 

Fig. 1.  An illustration of the HST with defined axes. 
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The defined x, y, and z axes for the HST are shown in 

Fig. 1. In addition, Euler angles can be converted to 

quaternions using the following transformation: 

 [
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 (8) 

where 𝑐 stands for cosine and 𝑠 stands for sine. Moreover, 

quaternions can be converted to Euler angles using (9): 

 [
𝜙
𝜃
𝜓

] =

[
 
 
 
 tan−1 2𝑞4𝑞1+2𝑞2𝑞3

1−2(𝑞1
2+𝑞2

2)

sin−1(2𝑞4𝑞2 − 2𝑞3𝑞1)

tan−1 2𝑞4𝑞3+2𝑞1𝑞2

1−2(𝑞2
2+𝑞3

2) ]
 
 
 
 

 (9) 

In this paper, the kinematic equations are represented using 

quaternions because singularities occur in high-angle 

maneuvers, called gimbal lock, when Euler angles are used to 

represent the kinematics. The use of quaternions is also 

advantageous in terms of fast computational power. 

Furthermore, the kinematic equations can be represented as 

[16]: 

 �̇� =
1

2
Ω(ω)𝑞 (10) 

where: 

 Ω(𝜔) = [

0 𝜔3 −𝜔2 𝜔1

−𝜔3 0 𝜔1 𝜔2

𝜔2 −𝜔1 0 𝜔3

−𝜔1 −𝜔2 −𝜔3 0

] (11) 

By using kinematic equations, it is possible to obtain the 

quaternion elements of a spacecraft from its angular velocity 

elements. The angular velocity vector can be obtained by 

integrating the rate of change of the angular velocity vector 

into the dynamic equations. 

By combining dynamic and kinematic equations, the 

orientation of a satellite can be determined from the forces 

acting on it, i.e., the external torque and the torque generated 

by the reaction wheels. In this work, it is assumed that there 

are no external torques acting on the HST. Also, an actuator 

model must be built to calculate the torque generated by the 

RWA. 

Actuator 

The HST uses four reaction wheels and magnetorquers to 

stabilize the attitude of the spacecraft. The RWA consists of 

two pairs. The pairs are spaced 90 degrees apart. Also, the 

elements of each pair are tilted  ±20 degrees from the defined 

yz plane [18]. 

Since the Satellite Body Coordinate (SBC) axis and the 

reaction wheel axes in the HST are not identical, the torques 

generated by the RWA must be converted to the SBC system. 

To convert the RWA to the SBC system, a transformation 

matrix 𝐴 must be created. Multiplying the transformation 

matrix by the torque vector of the RWA (𝑻𝑹𝑾𝑨) results in the 

total torque vector in the SBC system (𝑻𝑺𝑩𝑪): 

 TSBC = [A]TRWA (12) 

The transformation matrix 𝐴 can be written as: 

 Ω(𝜔) ≡ [

−𝑠(20)𝑐(45) 𝑠(20)𝑐(45) 𝑠(20)𝑐(45) −𝑠(20)𝑐(45)
−𝑐(20)𝑐(45) −𝑐(20)𝑐(45) 𝑐(20)𝑐(45) 𝑐(20)𝑐(45)

𝑠(45) 𝑠(45) 𝑠(45) 𝑠(45)
]

  (13) 

For the RWA configuration of the HST, the total torque 

vector in the SBC system can be obtained by substituting the 

obtained transformation matrix into (12). 

Moreover, the torque vector in the SBC system can also be 

converted to a RWA torque vector. To do this, the pseudo-

inverse of the transformation matrix, 𝐴†, must be substituted 

into the equation[19]: 

 𝑇𝑅𝑊𝐴 = [𝑨†]𝑇𝑆𝐵𝐶  (14) 

For simplicity, a reaction wheel can be assumed to be a 

Permanent Magnet DC (PMDC) motor. Since not all 

parameters of the HST RWA are publicly available, a 

commercial PMDC motor was chosen (PBLH60AS115-430) 

that meets the requirements of the HST RWA, which are 

0.8 Nm torque capability and 3000 rpm speed [3]. 

It is possible to explain the response of a PMDC motor by 

using a set of linear equations [20]:  

 
𝑑𝑖𝑎(𝑡)

𝑑𝑡
=

1

𝐿𝑎
[𝑒𝑎(𝑡) − 𝑅𝑎𝑖𝑎(𝑡) − 𝐾𝑏ω𝑚(𝑡)] (15) 

 
𝑑ω𝑚(𝑡)

𝑑𝑡
=

1

𝐽𝑚
[𝐾𝑖𝑖𝑎(𝑡) − 𝑇𝐿(𝑡) − 𝐵𝑚ω𝑚(𝑡)] (16) 

where 𝑖𝑎 is the armature current, 𝑒𝑎 is the input voltage, 𝜔𝑚 

is the motor angular velocity, 𝑇𝐿  is the load torque, 𝑅𝑎 is the 

armature resistance, 𝐿𝑎 is the armature inductance, 𝐾𝑖 is the 

torque constant, 𝐾𝑏 is the back-emf constant, 𝐽𝑚 is rotor 

inertia, and 𝐵𝑚 is the viscous-friction coefficient. 

From (15) and (16), the resulting angular velocity of a 

PMDC motor can be derived as an output by using the voltage 

as an input. The angular velocity of the RWA in the body 

frame can be converted to the torque generated by the RWA 

using the ideal reaction wheel equation [16]: 

 ḣ =
d

dt
Jωw = Tw (17) 

where ℎ is the angular momentum vector, 𝐽 is the moment of 

inertia vector, 𝜔𝑤 is the angular velocity vector of the RWA, 

and 𝑇𝑤 is the torque vector generated by the RWA. 

External disturbance 

It is known that there are two dominant external 

disturbances acting on the HST: the gravity gradient and the 

aerodynamic torques. 

The gravity gradient torque is the main external force 

acting on the HST [21]. Since the HST is not symmetrical, 
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the gravitational force acting on different points of the 

spacecraft changes and generates a disturbance torque. This 

torque can be approximated as a linear equation [22]:  

 𝐺𝑥 =
3𝜇

𝑅3 (𝐼𝑧𝑧 − 𝐼𝑦𝑦)𝜙  

 𝐺𝑦 =
3𝜇

𝑅3
(𝐼𝑧𝑧 − 𝐼𝑥𝑥)𝜃 (18) 

 𝐺𝑧 = 0  

where 𝜇 is the gravitational parameter of the Earth and 𝑅 is 

the orbital radius for circular orbits. The HST has a nearly 

circular orbit with an eccentricity of 0.0003 [23]. 

The other disturbance torque is the aerodynamic torque. 

Since the HST is orbiting in the Low Earth Orbit (LEO), it is 

subjected to a drag force due to the air present at these 

altitudes. The drag force 𝐹𝑑 acting on the spacecraft can be 

calculated using a well-known equation [22]: 

 Fd = 0.5𝜌𝑣2𝑐𝐷𝐴 (19) 

where 𝜌 is the air density, 𝑣 is the linear velocity vector of the 

spacecraft, 𝑐𝐷 is the drag coefficient, and 𝐴 is the reference 

area facing the air. The total disturbance torque can be 

constructed using the gravity gradient and the aerodynamic 

torques acting on the HST, which are the dominant 

disturbances. For the HST, the total disturbance torque varies 

between 0-0.25 Nm, as given in [24]. To represent the total 

torque, which varies between 0-0.25 Nm, a band-limited 

white noise with a noise power of 5e-6 and sampling time of 

0.001 seconds was used. Fig. 2 shows the generated white 

noise. The values greater than 0.25 Nm represent the 

remaining external torques. 

 

Fig. 2.  Generated noise as external torque. 

Model validation 

The model was created in a commercial software 

environment. To validate the model, 3 volts are applied to the 

roll DC motor in the SBC system, which represents the 

reaction wheel of the spacecraft, neglecting the external 

disturbance. Since the voltage is given in the SBC, the 

spacecraft is expected to perform only roll motion. The output 

of the Euler angles is shown in Fig. 3. As shown in Fig. 3, the 

HST begins to rotate continuously around the roll axis. This 

is expected because the reaction wheel generates a control 

torque at the beginning of the movement, then there is no 

torque produced to stop the spacecraft. 

 

Fig. 3.  Model output for 3 volts input of the reaction wheel. 

Linearization of equations of motion 

For a linear controller, it is important to have a linear 

system in order to adjust the controller parameters to the 

behavior of the system. Since the attitude control model of 

the HST is nonlinear, the equations of motion must be 

linearized. 

Assuming that the external torque is zero, the linear state 

space equation of a spacecraft can be expressed as [16]: 

 �̇�(𝑡) = 𝐴(𝑡)𝑥(𝑡) + 𝐵𝑢(𝑡)𝑁𝑐(𝑡) (20) 

where as, 

 A(t) = [

𝐼𝑠
−1𝐴𝜔,𝜔 0 𝐼𝑠

−1𝐴𝜔,ℎ
1

2
𝐼3×3 0 0

0 0 0

] (21) 

Elements of matrix 𝐴(𝑡) are: 

 Aω,ω = [𝐴𝜔,1 𝐴𝜔,2 𝐴𝜔,3] (22) 

 Aω,1 = [

0
−𝜔3𝐼𝑧𝑧 + 𝜔3𝐼𝑥𝑥 + ℎ3

𝜔2𝐼𝑦𝑦 − 𝜔2𝐼𝑥𝑥 − ℎ2

] (23) 

 Aω,2 = [

𝜔3𝐼𝑧𝑧 − 𝜔3𝐼𝑦𝑦 − ℎ3

0
−𝜔1𝐼𝑥𝑥 − 𝜔1𝐼𝑦𝑦 + ℎ1

] (24) 

 Aω,3 = [
−𝜔2𝐼𝑦𝑦 + 𝜔2𝐼𝑧𝑧 + ℎ2

𝜔1𝐼𝑥𝑥 − 𝜔1𝐼𝑧𝑧 − ℎ1

0

] (25) 

 Aω,h = [

0 𝜔3 −𝜔2

−𝜔3 0 𝜔1

𝜔2 −𝜔1 0
] (26) 
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 𝐵𝑢 = [
𝐼𝑠
−1

0
−𝐼3×3

] (27) 

The moment of inertia vector of the satellite is taken as 

Is = diag (Ixx, Iyy, Izz) = diag (31.046, 77.217, 78.754) [4] and 

the state space vector is: 

 𝑥 = (�̃�1, �̃�2, �̃�3, �̃�1, �̃�2, �̃�3, ℎ̃1, ℎ̃2, ℎ̃3)
𝑇
 (28) 

with the elements of the angular velocity vector of the 

spacecraft as �̃�1, �̃�2, and �̃�3; the first three (vector) elements 

of the quaternion vector as �̃�1, �̃�2, and �̃�3; the elements of the 

angular momentum vector as ℎ̃1, ℎ̃2, and ℎ̃3.  

Consequently, with knowledge of the satellite’s angular 

velocity, angular momentum, and moment of inertia vector, 

it is possible to obtain a linear approximation of the attitude 

of the spacecraft using the linearized equations. 

B. Attitude control structure 

A general attitude control diagram consists of a controller, 

an actuator, and the satellite system, which consists of the 

equations for the dynamics and kinematics of the spacecraft. 

The block diagram for the simulation of the attitude control 

system of the HST is shown in Fig. 4. The HST is exposed to 

gravity gradient, and aerodynamic and solar-array 

disturbances in orbit [24], [25]. For simplicity, it was 

assumed that there are no external and internal disturbances 

in the system and no errors in the attitude determination 

sensors. 

In the case of the HST, PID controllers were used as 

controllers, a RWA consisting of four reaction wheels of the 

HST as actuators, and equations for the dynamics and 

kinematics of the satellite as the plant. The main purpose is to 

dampen the error between the desired angle and the output 

angle with a stable response. This purpose is achieved by 

changing the voltage input of the actuators using PID 

controllers. 

In the work, a quaternion error vector between the output 

quaternion and the desired quaternion was calculated as an 

error vector to be used as input to the controller. Then, the 

voltage command generated by the controller is used for the 

PMDC motors of the actuator. The angular momentum and 

torque vector generated by the RWA is used by the satellite 

dynamics in order to calculate the corresponding satellite 

angular velocity. Finally, the satellite angular velocity is used 

by the kinematics subsystem to calculate the resulting 

quaternion, which is sent for error calculation. To visualize 

the angle response, the quaternion vector is converted to Euler 

angles using (9). 

A linear control structure was also built using the linearized 

equations of motion. The linearized model also uses 3 PID 

controllers to control movement in the yaw, roll, and pitch 

axes. They generate voltage commands for the actuators and 

finally the torque vector generated by the actuators is 

converted to vector elements of the quaternion. Since the 

scalar element of the quaternion vector can be assumed to be 

‘1’ for small-angle maneuvers, it is assumed to be 1 for the 

linearized model. 

 

Comparison of nonlinear and linear models 

To test the precision of the linearization, the same random 

PID parameters were used for both the nonlinear and 

linearized models. First, the PID parameters and filter 

coefficient were set to 52.995, 2.488, 132.442, and 4.748, 

respectively. Then, for the roll, pitch, and yaw angles, the 

responses of the nonlinear and linearized models were 

examined for different angle commands. To find the 

difference between the nonlinear and linearized models, the 

root mean square error (RMSE) method was used. RMSE 

values for different inputs for the roll, pitch, and yaw angle 

commands are given in Table 1. 

In addition, responses of the nonlinear and linear models 

were compared for corresponding angle inputs. An angle 

command with 3 degrees of roll and 15 degrees of yaw was 

input to the system for arbitrary PID coefficients (same for 

nonlinear and linear systems). The angle responses of the 

system are shown in Fig. 5 and Fig. 6, with closer views 

inside. As shown in Fig. 5 and Fig. 6, it is evident that for 3 

degrees of roll input, the response of the nonlinear system is 

nearly identical to that of the linearized system. However, at 

15 degrees of yaw input, it can be seen that the difference 

between the nonlinear and linearized models becomes larger, 

which is to be expected since linear models are mostly valid 

for small angle maneuvers. Consequently, it can be said that 

the linearized model is fairly reliable and can be used instead 

of the nonlinear model in determining the optimal controller 

parameters for small-angle maneuvers. 

Table 1.  RMSE values for different angle commands (in degrees). 

𝐴𝑛𝑔𝑙𝑒𝑐𝑚𝑑 𝑅𝑀𝑆𝐸𝑟𝑜𝑙𝑙  𝑅𝑀𝑆𝐸𝑝𝑖𝑡𝑐ℎ 𝑅𝑀𝑆𝐸𝑦𝑎𝑤  

03 6.365e-4 7.893e-4 7.878e-4 

08 0.014 0.016 0.0153 

15 0.089 0.113 0.102 

25 0.396 0.656 0.499 

35 1.0219 2.696 1.434 

C. Controller tuning 

Developing the controller for a system involves two tasks: 

determining the structure of the controller and tuning the 

controller parameter/s. The behavior of the system can be 

changed by manipulating its controller parameters. The 

controller structure can guarantee stability and convergence, 

but without proper tuning of the controller parameters, the 

system may not be in the best shape to meet the required or 

desired time-domain characteristics. For a PID-controlled 

system, there are several methods to obtain optimal PID 

values. In this paper, we present a tuning method based on 

genetic algorithm optimization and compare it with a well-

known, well-established tuning method: Root Locus-based 

tuning. 

We tune the parameters to control the roll axis of the 

spacecraft. The time domain requirements for the system are 

determined as the desired time constant is 1.5 seconds and the 

desired percentage overshoot for one degree of angle input is 

2%. This robust behavior is preferred because the spacecraft 

components are very sensitive to sudden motion. 
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Fig. 4.  Satellite attitude control system block diagram.

 

Fig. 5.  Responses of the models to 3 degrees of roll input. 

 

Fig. 6.  Responses of the models to 15 degrees of yaw input. 

Root locus-based tuning 

To execute this method, the root locus of the linearized 

system was plotted by using the "Control System Designer" 

tool in the MATLAB/Simulink environment. This Simulink 

method updates the response of the system at each time for 

the corresponding root locus change and is able to restrict the 

manipulation area for the given time domain requirements. 

The settling time restriction is chosen to be lower than 6 

seconds and the percent overshoot is lower than 2%. By 

manipulating the poles on the root locus to the desired points, 

a satisfactory output was obtained for the given requirements. 

The optimal PID parameters for the roll angle determined by 

the root locus method are 113.554, 0.006, 260.942, and 

14.626 for P, I, D, and N coefficients, respectively. 

Genetic algorithm based tuning 

Genetic Algorithm (GA) is an optimization-based method 

that can be used for tuning controller parameters. The tuning 

process of the GA is as follows: 

The objective function is chosen as: 

 𝐽 = |τ − τ𝑑| + 𝑤𝑂𝑆(𝑂𝑆) (19) 

where 𝜏 is the time constant and 𝑤𝑜𝑠 is the weight of 

overshoot in the cost function. The function is optimized for 

the PID controller coefficients 𝐾𝑝, 𝐾𝑖, 𝐾𝑑, and 𝑁. The PID 

structure is as follows: 

 𝐾𝑝 + 𝐾𝑖 (
1

𝑠
) + 𝐾𝑑 (

𝑁𝑠

𝑠+𝑁
) (19) 

The optimization procedure is shown in Fig. 7. It can be 

described as follows: 

1. The first generation is created, i.e., values for 𝐾𝑝, 𝐾𝑖, 𝐾𝑑, 

and 𝑁 (search variables) are selected. Initialization of 

the population. 

2. The cost function value for each search variable is 

calculated. 

3. The next generation is created based on crossover 

mutation functions. 

4. Step 2 and Step 3 are repeated until the minimum value 

for the cost function is reached. 

The optimization procedure is run several times with 

different 𝑤𝑜𝑠 ranging from 100 to 1. Since the overshoot 

condition is less than 2% and the time constant part of the cost 

function takes values close to 1, it is decided that the best 

suited value for 𝑤𝑜𝑠 is 1. 

The genetic algorithm is a global optimization method with 

benefits of being derivative free, suitable for complex, non-
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convex problems. However, this does not necessarily mean 

that whenever an optimization problem is constructed with 

GA, the algorithm will yield the global optimum values. By 

its nature, GA has the ability not to converge to the local 

optimum, but this is possible with crossover and especially 

mutation parameters. In several runs of this specific PID 

tuning problem, some of the results did not yield a better cost 

function value than the Root Locus-based tuning method. To 

overcome this situation, the population number is increased 

so that the coverage of each generation is increased. The 

mutation rate is adjusted using the trial-and-error method. 

When the mutation rate is increased, the population deviates 

from the previously known minima, which preferably leads 

to finding new minima. The final tuned values of the 

controller using GA are 48.894, 0.071, 106.046, and 1.427 for 

P, I, D, and N coefficients, respectively. 

3. RESULTS 

The controllers obtained by two different methods can be 

compared in terms of their performance. For this purpose, we 

use the cost function values of two different tuning methods. 

By inserting PID values obtained by two methods, it is 

possible to get a cost function value that is used as a 

performance criterion to be minimized. 

For the Root Locus-based tuning method, we obtained a 

cost function value of 0.7215, while the cost function value 

for the GA-based tuning is 0.5129. Since the cost function 

value obtained from the GA is lower than Root Locus-Based 

Tuning, it can be said that the PID values calculated by the 

GA are suitable for the control system. To obtain more 

realistic results, it is also crucial to compare the results in the 

presence of a disturbance. To achieve this, the disturbance 

explained in Section 2.A. was included in the system roll 

angle. The output of the roll angle for a custom signal input 

is shown in Fig. 7. 

 

Fig. 7.  Genetic algorithm based PID tuning chart. 

4. CONCLUSIONS AND DISCUSSION 

All subsystems are built as controller, actuator, and plant 

using equations of motion. Linearization has been performed 

and it has been shown that the linearized model can be used 

to determine the controller parameters both mathematically 

and visually. The PID parameters are obtained by two 

methods and their performance is compared in terms of cost 

function values. It is shown that the GA parameters perform 

better in terms of the corresponding cost function values. 

However, it is found that in the presence of disturbance, the 

root locus-tuned parameters perform better in terms of 

disturbance rejection as depicted in Fig. 8. 

 

Fig. 8.  Comparing tuning methods including external disturbance. 

The genetic algorithm is able to optimize complex cost 

functions, considering the saturations of actuating signals, 

nonlinear, non-convex phenomena acting in the problem 

itself. If desired, there is no need to linearize or simplify the 

system, unlike linear or modern control theory applications. 

This comes with the cost of being computationally expensive 

and time-consuming. When optimized tuning is advantageous 

and even required for a task such as spacecraft control, where 

pointing accuracy is quite significant, the time and 

computation burden can be neglected. 
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