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Abstract: A method for measuring the docking pose of large components based on the draw-wire displacement sensor is proposed. In this 

method, coordinate systems and measurement points are established on the docking surfaces of fixed and moving components. The draw-

wire displacement sensor is used to measure the distances between these measurement points. A mathematical model based on the distances 

between the measurement points is established, and the three-sphere rendezvous positioning principle is optimized to obtain the spatial 

positions of the measurement points. Consequently, the pose deviations of the fixed and moving components in all six degrees of freedom 

(6DOF) are determined. A simulation analysis of the measurement uncertainty of the obtained pose deviations is performed, resulting in a 

composite standard uncertainty obtained from the measurement standard uncertainties of different sensors. The simulation results show that 

the composite standard uncertainty is most affected in the x-axis translation direction and least affected in the x-axis rotation direction. With 

this method, only the distances between the measurement points need to be measured to determine the corresponding pose relationships. The 

cost of the equipment is low, and it is not easily affected by external factors such as the environment. 

Keywords: Draw-wire displacement sensor, three-sphere rendezvous positioning, spatial pose solution, measurement uncertainty. 

 

1. INTRODUCTION 

The assembly and docking of large components is a 

primary aspect of production and manufacturing. For 

instance, in aircraft, assembly and docking account for about 

50% of the total workload in aircraft production, and the 

associated costs account for more than 40% of the production 

cost of an aircraft [1], [2]. With the development of computer 

technology, automation technology and other industries, 

manufacturing is moving toward digitization and automation, 

and digital measurement technology is used in the docking of 

large components. Digital measurement equipment mainly 

includes laser trackers, visual measurement systems, etc. 

However, the docking measurement systems made with this 

measurement equipment have some drawbacks: 

• High manufacturing, transportation and maintenance 

costs for laser trackers and other devices. 

• Susceptible to unstable environmental factors. For 

instance, laser trackers are susceptible to factors such as 

temperature, humidity, and air disturbances, especially 

at transfer stations, and the impact of line-of-sight 

obstructions and light sources is a major issue during 

visual measurements [3]-[8]. 

In order to improve the efficiency of assembly docking and 

reduce the cost while satisfying the docking accuracy of large 

component assembly, a method for measuring the docking 

pose of large components based on a draw-wire displacement 

sensor is proposed. The using of draw-wire displacement 

sensors as a digital measurement device is not easily affected 

by the working environment, is cost-effective and wear-

resistant in large component assembly and docking. This is of 

great significance in expanding the digital assembly and 

docking method for large components and ensuring the 

quality of large component assembly. 

Currently, there are some applications of draw-wire 

displacement sensors for spatial pose measurement. Professor 

Ceccarelli performed an early application of the draw-wire 

displacement sensor for measuring space pose. Professor 

Ceccarelli [9] proposed a 3-2-1 configuration of a draw-wire 

pose measurement mechanism and applied it in areas such as 

robot workspace evaluation. Zhenjun Luo et al. [10] created 

a single-line multiplexed three-dimensional measurement 

system model and proposed the corresponding parameter 

identification algorithm by combining the characteristics of 

each measurement system. Jiao Xinquan et al. [11] designed 

a measurement method and system based on three draw-wire 

displacement sensors, which better solve the problem of 

measuring the magnitude of the position change of an object 

in space. Gang Wang et al. [12] designed a measurement 

method for a deep-sea pipeline attitude measurement system 

based on a draw-wire. By using a draw-wire displacement 

sensor in combination with two magnetically coupled angle 

sensors and an orthogonal angle sensor, the relative distances 
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and angles of two subsea pipelines were measured. Bo Zhang 

et al. [13] used a measurement rope with multiple devices 

such as two-axis tilt sensors, and based on robot theory and 

transfer matrix algorithms, developed a measurement model 

based on different positioning modes to determine the relative 

position information between the pipes. Current research has 

used wire displacement sensors in robotic systems or in 

combination with other sensors to measure the relative poses 

during docking, but no work has been published on spatial 

pose determination problem of large component docking 

surfaces using only wire displacement sensors. 

The installation position and connection layout of the 

draw-wire displacement sensor are very important when 

performing the pose-resolving calculation, which affects the 

complexity of the resolving process. As for the pose solution 

algorithm, in this paper, in conjunction with the relevant 

researches of previous scholars [14]-[18], the corresponding 

measurement model is established according to the 

characteristics of the measurement method, and the analytical 

calculation process is simplified. 

To address the problem of expensive equipment such as 

laser trackers and machine vision in the assembly inspection 

of large component docking and the susceptibility to 

environmental factors such as temperature, humidity, air 

disturbance, the transfer station and line of sight obstruction 

leading to misalignment of large component docking, a large 

component docking position measurement method based on 

wire displacement sensors is proposed. The corresponding 

mathematical model is established and solved, and finally the 

measurement uncertainty of the position deviation obtained 

by the method is simulated. 

2. ESTABLISHMENT OF A POSE MEASUREMENT SYSTEM 

Before the two large components are assembled and 

docked, several sensor mounting points are set up near the 

docking surfaces of the two components, as shown in Fig. 1 

(e.g., the location of the connection flange holes) and several 

wire sensors are installed between the sensor mounting points 

of the two components to measure the distance between the 

two points. The spatial position deviation between the two 

components is calculated based on the measurement results 

of the multiple sensors, and the posture of the movable  
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Fig. 1.  Schematic diagram of the docking pose measurement 

method for large components. 

component is adjusted according to the detected deviation 

during the assembly process (Fig. 1 is only a schematic 

diagram, the pose adjustment platform can be adjusted in six 

degrees of freedom). 

For large components for docking pose inspection, the 

moving component is placed on a platform that can be 

adjusted for pose. The spatial position of the docking section 

of the movable component is represented as o′x′y′z′, and the 

spatial position of the docking section of the fixed component 

is denoted as oxyz. Before docking, there are translational 

position deviations Δx, Δy, angular deviations α, β, γ, and the 

z-direction is the direction of the docking axis of the two 

components. The vector (Δx, Δy, Δz) is the position of the 

origin o′ in the coordinate system {A}. Three non-coincident 

mounting points are set near the docking surface of the 

moving component and the fixed component (e.g., at the 

location of the connection flange hole), and the distance 

between the corresponding mounting points of the two 

components is measured using nine draw-wire sensors. The 

specific adjustment process is shown in the flowchart in 

Fig. 2. 
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Fig. 2.  Flow chart of the adjustment process. 

After the adjustment is complete, the pose deviation of the 

moveable component at this point is zero, i.e.:  

Δx = 0, Δy = 0, α = 0, β = 0, γ = 0, Δz = 0 

3. CALCULATION OF RELATIVE SPATIAL POSITIONS 

A. Calculation process 

The moving coordinate system, the fixed coordinate 

system, and the installation point are established on the two 

components. The coordinates of the three points in the fixed 

coordinate system are known. The coordinates of each point 

in the moving coordinate system can be derived from the 

coordinates of the three points in the fixed coordinate system 
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and the readings from the three draw-wire sensors, and thus 

the pose of the dynamic coordinate system relative to the 

fixed coordinate system can be determined. The calculation 

process for the relative pose of the two components is shown 

in Fig. 3. 
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Fig. 3.  Relative pose calculation process. 

B. Establishment of a mathematical model 

As shown in Fig. 4, the lower and upper planes are 

assumed to be the fixed component docking surface and the 

moving component docking surface, respectively. The two 

planes can be fully docked and overlapped. Points A1, A2 and 

A3 are the measurement reference points on the fixed 

component docking surface, located at the edge of the fixed 

component docking surface and correspondingly overlapping 

with points B1, B2 and B3 on the moving component docking 

surface. ΔA1A2A3 on the fixed component docking surface is 

an isosceles right triangle, where A2A3 and the midpoint o are 

the diameter and center of the fixed component docking 

circle, respectively. Two coordinate systems {A} and {B} are 

established on the docking surfaces of the fixed component 

and the moving component, as shown in Fig. 4, with points o 

and o′ as the origins, respectively. 

In the model shown in Fig. 4, we assume that the radii of 

the circular dimensions of the moving and the fixed 

components are both r. The coordinates of A1 and A2 in the 

coordinate system {A} are (r, 0, 0) and (0, r, 0), respectively, 

and the coordinates of B1, B2 and B3 in the coordinate system 

{B} are (r, 0, 0), (0, r, 0), and (0, -r, 0), respectively. The 

distance between the reference points in the coordinate 

systems {A} and {B} measured by the draw-wire 

displacement sensor is ri, L1i, and L2i, where i = 1, 2, 3. 
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Fig. 4.  Selection and connection of measurement points. 

C. Calculation of the spatial position of measurement points 

Based on the distance between the measured point and the 

three datum points in space, the unique position coordinates 

of the measured point can be obtained. The three points on 

the docking surface of the fixed component can be set as the 

three datum points. By measuring the distances from these 

three datum points on the docking surface of the fixed 

component to the three points on the docking surface of the 

moving component, the position coordinates of the three 

points on the docking surface of the moving component in the 

fixed coordinate system can be determined.  

The distance between the three datum points and the 

measured points on the docking surface of the moving 

component is measured with three draw-wire displacement 

sensors. Three spheres with each sensor as the center of the 

sphere and the measured distance as the radius intersect at two 

points [19]. The coordinates of the single measured point in 

the fixed coordinate system are obtained by constraining the 

initial relative position of the two components. The relative 

position between the measurement reference point and the 

point to be measured is shown in Fig. 5. In the fixed 

coordinate system in which the fixed component is located, 

the measurement reference points O, A1 and A2 correspond to 

the following three sets of coordinates in sequence: 

 (𝑥𝑡 , 𝑦𝑡 , 𝑧𝑡)，𝑡 = 0,1,2 (1) 

Assume that the coordinate of the measured point Bi on the 

docking surface of the moving component in the fixed 

coordinate system is (xBi, yBi, zBi). 
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Fig. 5.  Relative position of the measurement reference point to the 

point to be measured. 

Using the coordinates of the three measurement reference 

points, and the distance between the three measurement 

reference points and the measured points on the docking 

surface of the moving components, we obtain the following 

equations: 

 𝑥𝐵𝑖
2 + 𝑦𝐵𝑖

2 + 𝑧𝐵𝑖
2 = 𝑟𝑖

2 (2) 

 (𝑥𝐵𝑖 − 𝑟)2 + 𝑦𝐵𝑖
2 + 𝑧𝐵𝑖

2 = 𝐿1𝑖
2 (3) 

 𝑥𝐵𝑖
2 + (𝑦𝐵𝑖 − 𝑟)2 + 𝑧𝐵𝑖

2 = 𝐿2𝑖
2 (4) 

where i = 1,2,3. 
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Solving equations (2)-(4) yields: 

 𝑥𝐵𝑖 =
𝑟2+𝑟𝑖

2−𝐿1𝑖
2

2𝑟
  

 𝑦𝐵𝑖 =
𝑟2+𝑟𝑖

2−𝐿2𝑖
2

2𝑟
  

 𝑧𝐵𝑖 = √𝑟𝑖
2 − 𝑥𝐵𝑖

2 − 𝑦𝐵𝑖
2  

where i = 1,2,3. 

By equations (2) to (4), three spheres intersect at two 

points. It is evident that the plane mentioned here should be 

z = 0. According to Fig. 4 and Fig. 5, the point of interest has 

the positive z coordinate, zBi > 0, which leads to the solution 

for zBi. 

D. The solution to the pose deviation 

The calculation of the relative pose of the two components 

is equivalent to the calculation of the conversion relationship 

between the coordinate systems of the two components. The 

conversion relationship between the two coordinate systems 

can be expressed by seven parameters: three rotation 

parameters, three translation parameters, and one scale 

parameter. In other words: if we have the coordinates of the 

three points in the fixed coordinate system and then obtain the 

coordinates of the three points in the moving coordinate 

system with respect to the moving coordinate system and 

fixed coordinate system, the coordinate conversion 

relationship between the two coordinate systems can be 

solved. Since the scaling of the two coordinate systems {A} 

and {B} is the same in all directions and the coordinates of 

the three points B1, B2 and B3 in the two coordinate systems 

{A} and {B} are known, these seven parameters can be 

uniquely determined. 

The scale parameter in this model is 1, so the 

transformation model between the two coordinate systems 

can be expressed as: 

 [
𝑥
𝑦
𝑧
]

𝐴

= [
𝛥𝑥
𝛥𝑦
𝛥𝑧

] + 𝑅 [
𝑥 ′

𝑦′

𝑧 ′

]

𝐵

 (5) 

where R is the rotation matrix, Δ is the translation vector, and 

A, B are the coordinates in the {A} and {B} coordinate 

system, respectively. 

The rotation matrix R is a 3x3 orthogonal matrix with 3 

degrees of freedom and can be constructed using the 

antisymmetric matrix S: 

 𝑆 = [
0 −𝑐 −𝑏
𝑐 0 −𝑎
𝑏 𝑎 0

]  

Using the antisymmetric matrix S to construct the rotation 

matrix R in the process of calculation [20]-[22] simplifies the 

analytical calculation process. This is not limited to the single 

model described above, but the calculation process remains 

unchanged even if the position of the measurement points on 

the movable component varies. 

So 

 𝑅 = (𝐼 − 𝑆)−1 ⋅ (𝐼 + 𝑆) (6) 

where I is the identity matrix. The rotation matrix R has only 

three variables a, b and c, and by solving for these three 

variables, R can be obtained. 

On substituting points B1 and B2 into (5) and subtracting 

the two resulting equations to eliminate Δx, Δy and Δz, we 

obtain the following equation: 

 [

𝐵1𝐴𝑥 − 𝐵2𝐴𝑥
𝐵1𝐴𝑦 − 𝐵2𝐴𝑦
𝐵1𝐴𝑧 − 𝐵2𝐴𝑧

] = 𝑅 [

𝐵1𝐵𝑥′ − 𝐵2𝐵𝑥′

𝐵1𝐵𝑦′ − 𝐵2𝐵𝑦′

𝐵1𝐵𝑧 ′ − 𝐵2𝐵𝑧 ′

] (7) 

where B1AX is the value of the x-axis coordinate of the point 

B1 in the {A} coordinate system, which is a known quantity 

and can be simplified here by setting: 

 𝑋𝐴12 = 𝐵1𝐴𝑥 − 𝐵2𝐴𝑥  

Substituting the above equation into (7), we have: 

 [

𝑋𝐴12
𝑌𝐴12
𝑍𝐴12

] = 𝑅 [

𝑋𝐵12
𝑌𝐵12
𝑍𝐵12

] (8) 

Substituting (6) into (8) gives: 

 (𝐼 − 𝑆) [

𝑋𝐴12
𝑌𝐴12
𝑍𝐴12

] = (𝐼 + 𝑆) [

𝑋𝐵12
𝑌𝐵12
𝑍𝐵12

]  

Using the antisymmetric matrix S in the above equation, 

we obtain: 

 [
1 𝑐 𝑏
−𝑐 1 𝑎
−𝑏 −𝑎 1

] [

𝑋𝐴12
𝑌𝐴12
𝑍𝐴12

] = [
1 −𝑐 −𝑏
𝑐 1 −𝑎
𝑏 𝑎 1

] [

𝑋𝐵12
𝑌𝐵12
𝑍𝐵12

]  

Expanding the above equation yields: 

 [

𝑋𝐴12 + 𝑐𝑌𝐴12 + 𝑏𝑍𝐴12
−𝑐𝑋𝐴12 + 𝑌𝐴12 + 𝑎𝑍𝐴12
−𝑏𝑋𝐴12 − 𝑎𝑌𝐴12 + 𝑍𝐴12

] = [

𝑋𝐵12 − 𝑐𝑌𝐵12 − 𝑏𝑍𝐵12
𝑐𝑋𝐵12 + 𝑌𝐵12 − 𝑎𝑍𝐵12
𝑏𝑋𝐵12 + 𝑎𝑌𝐵12 + 𝑍𝐵12

]  

The above equation can be written in the form: 

 [

𝑋𝐴12 − 𝑋𝐵12
𝑌𝐴12 − 𝑌𝐵12
𝑍𝐴12 − 𝑍𝐵12

] = [

−𝑐(𝑌𝐵12 + 𝑌𝐴12) − 𝑏(𝑍𝐵12 + 𝑏𝑍𝐴12)

𝑐(𝑋𝐵12 + 𝑋𝐴12) − 𝑎(𝑍𝐵12 + 𝑍𝐴12)

𝑏(𝑋𝐵12 + 𝑋𝐴12) + 𝑎(𝑌𝐵12 + 𝑌𝐴12)
]  

 (9) 

Since there are only two independent equations in (9), it is 

not possible to solve for the three unknown quantities a, b and 

c. If you substitute points B1 and B3 into the above model, a 

set of equations similar to equation (9) can be obtained. 

Combining the two sets of equations, we obtain three 

independent equations as follows: 
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 [

𝑋𝐴12 − 𝑋𝐵12
𝑌𝐴12 − 𝑌𝐵12
𝑍𝐴13 − 𝑍𝐵13

] = [

−𝑏(𝑍𝐵12 + 𝑍𝐴12) − 𝑐(𝑌𝐵12 + 𝑌𝐴12)

−𝑎(𝑍𝐵12 + 𝑍𝐴12) + 𝑐(𝑋𝐵12 + 𝑋𝐴12)

𝑎(𝑌𝐵13 + 𝑌𝐴13) + 𝑏(𝑋𝐵13 + 𝑋𝐴13)
]=  

[

0 −𝑏(𝑍𝐵12 + 𝑍𝐴12) −𝑐(𝑌𝐵12 + 𝑌𝐴12)

−𝑎(𝑍𝐵12 + 𝑍𝐴12) 0 𝑐(𝑋𝐵12 + 𝑋𝐴12)

𝑎(𝑌𝐵13 + 𝑌𝐴13) 𝑏(𝑋𝐵13 + 𝑋𝐴13) 0

] [
𝑎
𝑏
𝑐
] 

We can now derive the solution to the above equation, 

 

Substituting a, b and c into (6), the rotation matrix R can 

be determined. 

The fixed X-Y-Z Euler angles are used to represent the 

three rotational degrees of freedom of the component in 

space. α, β, and γ represent the rotation angles around the x-

axis, y-axis and z-axis, respectively. When sinα = sα, 

cosα = cα, β and γ are identical, the rotation matrix R can be 

expressed as: 

 𝑅(𝛼,𝛽,𝛾) = [

𝑐𝛽𝑐𝛾 𝑠𝛼𝑠𝛽𝑐𝛾 − 𝑐𝛼𝑠𝛾 𝑐 𝛼 𝑠 𝛽 𝑐 𝛾 + 𝑠𝛼𝑠𝛾
𝑐𝛽𝑠𝛾 𝑠𝛼𝑠𝛽𝑠𝛾 + 𝑐𝛼𝑐𝛾 𝑐𝛼𝑠𝛽𝑠𝛾 − 𝑠𝛼𝑐𝛾
−𝑠𝛽 𝑠𝛼𝑐𝛽 𝑐𝛼𝑐𝛽

]  

Considering the first column of the matrix, the sum of the 

squares of elements r11 and r21 is c2β (c2γ + s2γ) = c2β, then β 

can be determined by √𝑟11
2 + 𝑟21

2 and r31. In addition, γ can 

be calculated from r11 and r21, and α can be calculated from 

r32 and r33. Assuming cβ ≠ 0, the following equation is 

obtained: 

 𝛽 = 𝐴 𝑡𝑎𝑛 2 (−𝑟31, ±√𝑟11
2 + 𝑟21

2)  

 𝛾 = 𝐴 𝑡𝑎𝑛 2 (𝑟21/𝑐𝛽, 𝑟11/𝑐𝛽)  

 𝛼 = 𝐴 𝑡𝑎𝑛 2 (𝑟32/𝑐𝛽, 𝑟33/𝑐𝛽)  

where A tan 2 (y, x) is a four-quadrant arctangent function. 

The quadrant of the angle is determined based on the signs of 

x and y, and the angle value is then obtained by calculating 

arctan (y/x). 

Finally, substituting the coordinates of any point from B1, 

B2, or B3 in coordinate systems {A} and {B} into (5), we 

obtain the three translation degrees of freedom Δx, Δy and Δz 

for the component in space. 

4. MEASUREMENT UNCERTAINTY ANALYSIS AND 

SIMULATION 

We assume that the radius r of the circular dimension is 

3.9625 m for the moving and fixed components. The distance 

between the measuring points can be measured and the length 

of the connecting lines between the measuring points is given 

in Table 1. 

Based on the above known radius of the circular compo-

nent and the length of the line between the measurement 

points, the relative displacement and the rotation angle of the 

two components can be solved in six degrees of freedom. 

Table 1.  The length of the connecting line between the measuring 

points. 

r1 r2 r3 

6.2183 10.7365 9.4236 

L11 L12 L13 

6.8893 11.3564 10.1536 

L21 L22 L23 

8.5197 8.9258 11.8743 

 

The relative displacements Δx, Δy and Δz of the two 

components in the three translational degrees of freedom in 

space are 3.6169 m, -3.8736 m, and 6.2632 m, respectively. 

The relative rotation angles α, β and γ of the two 

components in the three rotational degrees of freedom in 

space are -102.5053°, -58.5727°, and 24.2072°, respectively. 

Assuming that the measurement standard uncertainties of 

the direct measurements of each sensor are equal to UL, let  

Li = r1, r2, r3, L11, L12, L13, L21, L22, L23 (I = 1-9),  

the six degrees of freedom functions  

fj  (L1, L2, L3, L4, L5, L6, L7, L8, L9), (j = 1-6)  

are determined by the nine variables Li, and the standard 

uncertainty components of the six degrees of freedom being 

measured caused by Li are: 

 𝑈𝑖 = |
𝜕𝑓

𝜕𝐿𝑖
|𝑈𝐿 (10) 

Since the measurement standard uncertainties of the direct 

measurements of the individual sensors are independent of 

each other, the synthetic standard uncertainty UC can be 

expressed as: 

 𝑈𝐶 = √∑ 𝑈𝑖
29

𝑖=1
 (11) 

Substitute the data in Table 1 into (10) and (11) to obtain 

the relational equation for the synthetic standard uncertainty 

caused by the standard measurement uncertainty UL of the 

direct measurements of each sensor in determining the 

relative displacements of the moving and fixed components 

in six degrees of freedom. The relationship for the synthetic 

standard uncertainty caused by the standard measurement 

uncertainty UL of the direct measurements of each sensor in 

the six degrees of freedom is given in Table 2. 

Table 2.  Synthetic standard uncertainty relationship equation on six 

degrees of freedom 

Six degrees of freedom 

orientation 

Synthetic standard uncertainty 

relationship equation 

Translation along x-axis Uct1 = 4.4350 * UL 

Translation along y-axis Uct2 = 3.3401 * UL 

Translation along z-axis Uct3 = 4.1332 * UL 

Rotation around x-axis Ucalpha = 0.7142 * UL 

Rotation around y-axis Ucbeta = 1.4669 * UL 

Rotation around z-axis Ucgamma = 2.5456 * UL 

 

Using the synthetic standard uncertainty UC as the 

measurement uncertainty for the estimated value y of the 

spatial six degrees of freedom offset Y, the offset of the 

component in the spatial six degrees of freedom can be 

expressed as: 
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𝑌 = 𝑦 ± 𝑈𝐶  

Analysis of Table 2 shows that the synthetic standard 

uncertainty is most affected in the x-axis translation direction 

and least affected in the x-axis rotation direction. In practical 

testing, it is also essential to comprehensively analyze the 

various factors that affect the test results and consider all 

sources of uncertainty in the test results. 

5. CONCLUSIONS 

In this paper, a method for determining the docking pose 

of large components based on the draw-wire displacement 

sensor was proposed and a corresponding measurement 

system was established; a mathematical model of the draw-

wire measurement system was proposed and the application 

of the three-sphere rendezvous positioning principle was 

optimized in it; the relative pose relationship between the 

fixed and moving coordinate systems was solved under this 

model. An analysis and simulation of the measurement 

uncertainty of the relative pose relationships under the model 

was performed. The relative displacement and rotation angle 

of the two components in the six degrees of freedom, as well 

as the synthetic standard uncertainty caused by the standard 

measurement uncertainty of each sensor were obtained. The 

analysis results showed that the standard synthetic 

uncertainty is most affected in the x-axis translation direction 

and least affected in the x-axis rotation direction. 

Unlike commonly used devices, such as laser trackers, 

which required the establishment of ground reference points 

to determine specific vector orientations, this method 

required only a few scalar data points, namely the distance 

between the corresponding point on the moving and fixed 

components, to correctly adjust the pose of the components 

during the assembly process. This method used a draw-wire 

displacement sensor that can detect the distance between two 

components at multiple points without interruption. 

Compared with existing measurement methods using optics 

and images, this method can avoid light obscuration, improve 

the accuracy of attitude measurement, reduce assembly cost, 

reduce manual labor, and improve assembly efficiency. 
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