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Abstract. This contribution describes the procedure of evaluating the calibration of 
thermocouple by means of its comparison with the thermocouple standard. In the process of 
thermocouple calibration by means of comparison, the resulting uncertainty specified by 
applying the generalized procedure for evaluating the calibration of measuring devices with 
continuous scale.  
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1. Introduction 

For measuring instrument with continuous scale a generalized procedure for evaluating the 
calibration uncertainties and covariances has been developed by Palenčár, Wimmer [1,2] and 
Kubáček [4]. In this paper authors are presenting these procedures for evaluating uncertainties 
of the calibration of a thermocouple (hereafter TC only) type S by means of comparison.  

2. Calibration procedure 

Calibration is carried out by comparison of the unit under test TC type S against standard TC 
type S calibrated in defined fixed points according to ITS-90 (Fig.2.1).  The calibration is 
represented as a curve fitted to the measured values of the deviation E-Eref and generally 
given as a function of temperature t. This curve is representing deviation function. 

 

 
 
 

Fig. 2.1: Scheme of calibration 
 
1- Calibration furnace, 2- Isothermal block, 3- Standard 
TC, 4- Unit under test, 5- Dewar flask, 6- Reference 
junction of TC’s, 7- Voltmeters, 8- Computer with GPIB 
port 

 

3. Methodology 

We consider the case, when number of 
calibration points r is higher than number of unknown parameters p, r>p the model is 
overdetermined. Calibration model should be established using following relations  

 
Table 2.1: Measured and computed values 
i- calibration points (nominal values), ( )Si

t - 
values measured by standard TC, 

C )( °E

( )- values 
measured by unit under test TC 

C K °
i

E

 
Cal. 

Points  ( )C K °
i

E( )   C )( S °
i

Et
i  

100 99,8188 643,85 
200 199,7252 1437,82 
300 299,7120 2319,79 
400 399,7737 3255,32 
500 499,8191 4228,52 
600 599,6689 5230,63 
700 699,7653 6265,91 
800 799,8341 7334,86 
900 899,7653 8437,38 

1000 999,5335 9569,7 
1100 1099,4 10736,91 
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iiiii tatatataaW 4
4
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3

2
210 ⋅+⋅+⋅+⋅+=    i=1, ...., n  (3.1) 

 
in matrix notation 
 

TaW =           (3.2) 
 
where T is a matrix, which contains values, arithmetical means of series of measurements in 
each calibration points measured by standard TC. 

Left side of the model (3.1) or (3.2), the observation vector W is presenting the measurement 
model of unit under test TC  
 

ΛΔ KCEW +=           (3.3) 
 
where EΔ  is the vector of deviations from the reference function. Reference function is given 
by IEC 584.2 standard [3].  
 

refEΕΕ −=Δ           (3.4) 

in product of  fills every influences of measurement. ΛKC
 
Vector of correction  is given by and matrix  is the known matrix, usually its elements 
are sensitivity coefficients.  

Λ KC

 
Our aim is to get estimation for unknown parameters of deviation function. This aim could be 
reached by using least-square method [1,2,3]. Uncertainties are taken into account as well. 
We apply following expression iteratively because of stochastic character of quantity t [1]. 

( ) WUTTUTâ WW
1T11T −−−=            (3.5) 

Initial values of unknown parameters  of deviation function are determined by zero 
estimation. Then covariance matrix of input quantities  is 

â 

WU

T
KK CUCUU EW ΛΔ +=             (3.6) 

where  

EUΔ - covariance matrix of the vector EΔ  is diagonal matrix, principal-diagonal elements 
present square of uncertainties estimated by type A method 

T
KK CUC Λ - product of these matrix gives diagonal covariance matrix, principal-diagonal 

elements present square of uncertainties estimated by type B method  

ΛU  - uncertainties of correction measurement by unit under test TC are included in this covariance 
matrix  

 
Covariance matrix  is represented by matrix of the uncertainties of the estimates âU

( ) 11T −−= TUTU Wâ    (3.7) 
 
Deviation associated with the reference function is solved by  

 

âTÊ =Δ            (3.8) 
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uncertainty of the deviation can be achieved by application of law of propagations of 

uncertainties  
 

          (3.9) T
ˆ

2 TUT aE ⋅⋅=Δu
 
Zero estimation of vector  is biased (see Fig.4.1(â a)). It is caused by stochastic characters of 
the quantity t. Therefore the model is nonlinear and requires a solution procedure. It is 
linearized by application of Taylor series and higher elements of estimated values are 
neglected. After linearization left side of model vector W will be 

 
( 2S1K tCtDCEW δδΛΔ +++= )

)

                     (3.10)  
 

( 1100200100diag ddd K=D - is the known matrix, obtained by application of expansion of 
Taylor series  

 
After linearization covariance matrix  has the form WU

( ) TT
SS

T
KK 21

DCUCUDCUCUU tEW tδδΛΔ +++=       (3.11) 

where  

1tUδ  - covariance matrix of the vector  is diagonal matrix, principal-diagonal elements 
present square of uncertainties estimated by type A method 

1tδ

T
SS 2

CUC tδ - product of this matrix is given by diagonal covariance matrix, principal-diagonal 
elements present square of uncertainties estimated by type B method  

2tδU  -uncertainties of correction of measurements by standard are included in this covariance 
matrix  

Now in new iteration we consider the observation vector W (3.10) and covariance matrix  
(3.11) and we use formula for estimation of parameters (3.5).  

WU

Numerically, in the most cases design matrix T is badly scaled and its columns are nearly 
linearly dependent. For this it is reasonable to transform quantities of t to interval   1  1 ≤≤− t

From the viewpoint of the user relevant results are the temperature values and their 
uncertainties. Temperature value can be obtained by interpolation table which can be edited 
from deviation function and its uncertainty is determined by application of theorem for 
implicit function. 

( ) ( ) 0=−= a,,, tgEatEf          (3.12) 

we get it by adding up deviation function and reference function, where variable E is 
representing the current measured value of emf. Now consider function t=(h,a) is defined 
from the implicit function.  

Standard uncertainty is then obtained from the (3.13) relation 

( ) hUh ˆ ⋅⋅= atu T2          (3.13) 
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4. Conclusion 

Procedure for evaluating the calibration of TC was applied to demonstrate whether 
considering the covariances has an impact on final result of standard uncertainty. For this 
reason was carried out the evaluation twice.  The difference is shown in Fig. 4.1(b). As 
a conclusion we can claim that covariances had significant effect on final result of 
a calibration.  

 
 

(a)                                                                                     (b) 
 

 
Fig 4.1: Standard uncertainties of deviation function: (a) Difference between zero and third 
estimation of parameters, (b) Standard uncertainties derived from third estimation when consider 
covariance and not 
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