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Abstract. In many situations, the response variable is observed on subjects at several time 
points. Such a data are often referred to as longitudinal data. A widespread model for 
analysing this type of data is a linear mixed model. We use a score algorithm to estimate a 
parameters of this model with AR(1) errors to achieve confidence regions for regression 
parameters. In simulation study we discus qualities of constructed confidence regions and 
point out some of their deficiencies. 
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1. Introduction 

The main characteristic of longitudinal studies is that subjects are measured in some time 
points or time intervals. With this repeated observations on several subjects we try to describe 
a common feature, which defines the behaviour of all subjects in time. It is natural to assume 
that these vectors of outcomes are independent between subjects, but the repeated 
measurements, done on the single subject exhibit some form of correlation. This is due to the 
fact that every subject has except these joint attributes also his own individual effects, which 
affects the final outcome of his repeated measurements. For analyzing such type of data it 
appears to be advantageous to use the linear mixed model as in [8], which reflects both 
(common and individual) effects of each subject on his repeated measurements.  

It is advisable to note, that individual effects can differ from subject to subject and so the 
suggested model is able to distinguish between them. Moreover, such model can be used to 
make statistical inferences not only about the common effects, but also in a broader problem 
to estimating MSE of the prediction error of the individual’s effects, since we are able to 
estimate with linear mixed model these individual effects and evaluate a deviation of each 
subject from a common mean. However, this is not the problem discussed in this article. 

Apart from that, there is one more advantage to linear mixed model. It permits a certain form 
of dependence connected with random errors. 

2. Model construction 

Let us consider a linear mixed model as in [1] with AR(1) errors. The response vector for i-th 
subject ( i  ) can be written as  = 1; 2; : : : ; I

  (1) yi = Xi® + Zibi + "i

where X  is ( -dimensional known matrix for i-th subject, ® is i ni £ p) p-dimensional vector of 
the unknown regression parameters. These are identical for all subjects. Zi are ( -
dimensional known design matrices for individual effects bi, where bi’s are q-dimensional 
random vectors from N  mutually independent. "  are ni-dimensional error 
vectors independent of bi. Here D and Ri are some covariance matrices. In light of the above 
mentioned assumptions we require, that for i-th subject ( i  ) at given time point 

 (j ) is  

ni £ q)

(0;D) i » N (0; )Ri

= 1; 2; : : : ; I
j = 1; 2; : : : ; ni

  (2) "i;j = ½"i;j¡1 + ¿i;j

37 



MEASUREMENT 2009, Proceedings of the 7th International Conference, Smolenice, Slovakia 

where ¿i;j » N(0; ¾2). ½ is coefficient of autoregression and ¾  is some positive scalar.  2

 

Covariance matrix for random vector y  is then  i

  (3) Var (yi) = Vi = ZiDZ
0
i + ¾2Ri

where    

 ¾2Ri =
¾2

1¡ ½2

266664
1 ½ ½2 : : : ½n¡1

½ 1 ½ : : : ½n¡2

½2 ½ 1 : : : ½n¡3

: : : : : : : : : : : : : : :
½n¡1 ½n¡2 ½n¡3 : : : 1

377775.  

 
Let us denote º  as a vector of all variance-covariance 
parameters in model (1) (i.e. we can write Va  ). Now it is clear that all the 
parameters of the proposed model (1) are ( . 

= (d11; d12; : : : ; d22; : : : ; drr; ¾
2; ½)0

r (yi) = Vi(º)

®0; º 0)0

3. Parameter estimation and its properties 

With assumption form the section 2 we can use a score algorithm to estimate the parameters 
of model (1) directly from the likelihood function. Despite the fact, that in our primary 
interest is to estimate unknown regression parameter ® , it is necessary to estimate also the 
variance-covariance parameters º, since these are usually also unknown. To obtain an 
estimator of these unknown parameters ( , we can use a logarithm of likelihood 
function, which is proportional to  

®0; º 0)0

 l = ¡1

2

IX
i=1

ln jVi(º)j ¡ 1

2

IX
i=1

h
(yi ¡Xi®)

0
V¡1

i (º)(yi ¡Xi®)
i
 (4) 

With a given maximum likelihood estimate of º, , maximizing (4) we get the following 
maximum likelihood estimate of ®  

º̂

 ®̂ =

Ã
IX

i=1

X
0
iV

¡1
i

^(º)Xi

!¡1 Ã
IX

i=1

X
0
iV

¡1
i

^(º)yi

!
 (5) 

As we can see, it is necessary at first to estimate unknown variance-covariance parameters 
and then we can calculate an estimate for regression parameter. Successive iteration between 
these two steps yields maximum likelihood estimates of unknown parameters, such as  and 

. For more details see [1]. 
®̂

º̂

With a given estimate  we can consider a construction of confidence regions for some linear 
combination , where L is known ( -dimensional matrix. If a covariance matrix of 
vectors y  were known, then  is asymptotically normally distributed with mean  

®̂
L® r £ p)

1; : : : ;yI ®̂

  (6) E (®̂) = ®

and covariance matrix  

 Var(®̂) =

Ã
IX

i=1

X
0
iV

¡1
i Xi

!¡1

 (7) 

In this case is  

  (8) X 2 = (L®̂ ¡ L®)
0
(LVar(®̂)L

0
)¡1(L®̂¡ L®)

Â2 distributed with r degrees of freedom. 
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If, and it is in the majority of practical application, must be estimated also the variance-
covariance parameters of the model, we can replace (7) with its maximum likelihood estimate  

 , V̂ar(®̂) =
³PI

i=1 X
0
iV̂

¡1
i Xi

´¡1

where  is maximum likelihood estimate of  the covariance matrix. Then we can 
“naïve” assume (and it is that, what many authors do, see for example [2] or [3]) that  

V̂i = Vi(º̂)

  (9) X 2 = (L®̂ ¡ L®)
0
(LV̂ar(®̂)L

0
)¡1(L®̂¡ L®)

has also Â  distribution with r degrees of freedom. 2

It was created a MATLAB algorithm “CONFZON” which evaluates the 95  confidence 
region from (9) for different numbers of subjects and different ranges of measurements for 
each subject. For some combination of these two parameters, we counted the empirical 
probability of coverage of the real value ® from 10000 simulations taken by this confidence 
region. We considered model (1) with 2-dimensional regression parameter ® , 2-
dimensional vector of individual effects b  with covariance matrix D , 
AR(1) parameter ½  and errors variance ¾ . Results are shown in the Tables 1-2.  

%

= (1; 2)0

= (b1; b2)
0 = (1; 0; 0; 1)

= 0:5 2 = 1

Table 1. Simulated probability of coverage of 95% confidence region evaluated from (9) for different 
numbers of subjects with the same range of the repeated measurements on each subject. 

Number of subjects Range of  the repeated measurements on each 
subject 

Probability of coverage 

5                                   5      0.8297 

10                                   5      0.8797 

30                                   5       0.9394 

50                                   5      0.9384 

100                                   5      0.9413 

500                                   5      0.9510 

1000                                   5      0.9586 
 

Table 2. Simulated probability of coverage of  95%  confidence region evaluated from (9) for small number 
of subjects with a different range of the repeated measurements on each subject. 

Number of subjects Size of the repeated measurements on each subject Probability of coverage 

5                               5      0.8297 

5                               30      0.8687 

5                               50      0.8805 

5                               80      0.8933 

5                               100      0.9040 

5                               150      0.9082 

4. Discussion and conclusions 

As it turns out, that our “naive” concept of the confidence region is particularly suitable for 
large numbers of subjects, which shows the Table 1. It is also appropriate to note, that for 
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small numbers of subjects (5 or 10) is this conference region unsuitable or (30 and 50) liberal. 
However, for a sufficient number of subjects (from 100 subjects) also for small numbers of 
the repeated measurements on each subject proposed confidence region is approaching the 
theoretical value. Moreover, from the Table 2 can be concluded that despite the increasing 
number of repeated measurements on each subject for a small sample of the subjects 
approaching simulated probability of coverage is very slow to the theoretical value. It is 
caused because the proposed confidence region does not take into account the uncertainty 
inherent in estimating the variance-covariance parameters. This can be removed using the F  
distribution instead of Â  distribution, but there arise practical problems with the numbers of 
degrees of freedom for this F  distribution, where are used different approximation, see e.g. 
[4] and [6], [7]. Unfortunately, these confidence regions were not yet studied in detail for the 
analysis of longitudinal data. Therefore we think that it would be appropriate, on the basis of 
additional simulations, to verify their properties, or to propose their improvement. 
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