Determining the Confidence Interval for the Center and Width of a Structure in Fitting Measured Data by the Regression Line

${ }^{1}$ G. Wimmer, ${ }^{2}$ K. Karovič
${ }^{1}$ IMS and MI SAS, Bratislava, FNS UMB, Banská Bystrica, Slovakia and FNS MU Brno, Czech Republic,
${ }^{2}$ Institute of Measurement Science SAS, Bratislava, Slovakia Email: wimmer@mat.savba.sk

Abstract

The two dimensional cross section of interest of a structure (e.g. a grating line) is schematically seen in Fig.2. Solid lines are structure's edges. The solid bold arrow at the horizontal axis is the structure's width w for given value F. Here the proper confidence intervals for width and center of the structure are derived.

Keywords: Confidence Interval, Measurement Uncertainty

1. Introduction

In metrology in case of assumed linear dependence between two quantities x, y (e.g. length and electric signal, respectively) the functional dependence $y=f(x)$ is fitted using the regression line $y=a+b x$. It is assumed that measurement of the quantity y in (exact) point x is normally distributed, and the measurements are independent with equal standard deviations. The estimators of the regression coefficients \hat{a}, \hat{b} and their standard deviations $s_{\hat{a}}, s_{\hat{b}}$ are determined from pairs of measured values $\left\{x_{i}, y_{i}\right\}_{i=1}^{n}$ using standard procedures (see e.g. [3]). A common estimator of the x value for assigned level F of the quantity y (e.g. electric signal) is

$$
\hat{x}=\frac{\hat{F}-\hat{a}}{\hat{b}},
$$

where \hat{F} is a proper estimator of F, independent of \hat{a}, \hat{b}. Let f be the estimate of F and s_{F} be the estimate of the standard deviation of f. By using the Law of Propagation of Uncertainties (see [2]) we obtain the estimate of the standard deviation of the estimator \hat{x} as

$$
s_{\hat{x}}=\frac{1}{\hat{b}} \sqrt{\left[\frac{s^{2}}{n \sum_{i=1}^{n} x_{i}^{2}-\left(\sum_{i=1}^{n} x_{i}\right)^{2}}\left(\sum_{i=1}^{n} x_{i}^{2}-2 \frac{f-\hat{a}}{\hat{b}} \sum_{i=1}^{n} x_{i}+n\left(\frac{f-\hat{a}}{\hat{b}}\right)^{2}\right)\right]+s_{F}^{2}} \text {, }
$$

where

$$
\begin{equation*}
s^{2}=\frac{1}{n-2}\left(\sum_{i=1}^{n} y_{i}^{2}-\frac{\left(\sum_{i=1}^{n} y_{i}\right)^{2}}{n}-\hat{b}\left(\sum_{i=1}^{n} x_{i} y_{i}-\frac{\sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} y_{i}}{n}\right)\right) \tag{1}
\end{equation*}
$$

In deriving the (1- α)-confidence interval for x difficulties arise caused by the generally nonsymmetrical distribution of \hat{x} and so this confidence interval cannot be determined in usual way as $\left(\hat{x}-k s_{\hat{x}}, \hat{x}+k s_{\hat{x}}\right)$.

The desired (1- α)-confidence interval for x can be determined by the below described procedure.

2. Subject and Methods

The (1- α)-confidence interval for x
It is obvious (see e.g. [3]) that for an arbitrary x the (1- α)-confidence interval for (nonrandom value) $a+b x\left(=y_{x}\right)$ is $\left(y_{x}, y_{x}\right)$, where

$$
{ }_{1} y_{x}=\hat{a}+\hat{b} x-s d_{x}\left(t_{n-2}\left(1-\frac{\alpha}{2}\right)\right), \quad{ }_{u} y_{x}=\hat{a}+\hat{b} x+s d_{x}\left(t_{n-2}\left(1-\frac{\alpha}{2}\right)\right),
$$

with

$$
d_{x}=\sqrt{\frac{1}{n}\left(1+\frac{\left(n x-\sum_{i=1}^{n} x_{i}\right)^{2}}{n \sum_{i=1}^{n} x_{i}^{2}-\left(\sum_{i=1}^{n} x_{i}\right)^{2}}\right.},
$$

and $t_{n-2}\left(1-\frac{\alpha}{2}\right)$ is the $\left(1-\frac{\alpha}{2}\right)$-quantile of the Student t -distribution with $n-2$ degrees of freedom, where s is given by (1), for illustration see Fig. 1. According to [1], pp. 509-512, in case of sufficiently steep edges of the structure and small value of s (what is assumed here), the ($1-\alpha$)-confidence interval for x, dented by $\left({ }_{\mu},{ }_{u} x\right)$, can be constructed by the approach illustrated in Fig. 1. Given the errorless (nonrandom) value F, the following relations hold true for the boundaries $x,{ }_{u} x$ of the (1- α)-confidence interval for x

$$
\begin{aligned}
F & =\hat{a}+\hat{b}_{l} x-s d_{x}\left[t_{n-2}\left(1-\frac{\alpha}{2}\right)\right], \\
F & =\hat{a}+\hat{b}_{u} x+s d_{x}\left[t_{n-2}\left(1-\frac{\alpha}{2}\right)\right] .
\end{aligned}
$$

Solving both preceding equations the bounds x and ${ }_{u} x$ are given by

$$
\begin{equation*}
{ }_{l} x=\frac{-B}{2 A}-\frac{\sqrt{B^{2}-4 A C}}{2 A},{ }_{u} x=\frac{-B}{2 A}+\frac{\sqrt{B^{2}-4 A C}}{2 A} \tag{2}
\end{equation*}
$$

for

$$
A=\hat{b}^{2}-\frac{n s^{2}\left[t_{n-2}^{2}\left(1-\frac{\alpha}{2}\right)\right]}{n \sum_{i=1}^{n} x_{i}^{2}-\left(\sum_{i=1}^{n} x_{i}\right)^{2}},
$$

$$
\begin{aligned}
& B=2\left(\frac{s^{2}\left[t_{n-2}^{2}\left(1-\frac{\alpha}{2}\right)\right] \sum_{i=1}^{n} x_{i}}{n \sum_{i=1}^{n} x_{i}^{2}-\left(\sum_{i=1}^{n} x_{i}\right)^{2}}-\hat{b}(F-\hat{a})\right), \\
& C=(F-\hat{a})^{2}-\frac{s^{2}}{n}\left[t_{n-2}^{2}\left(1-\frac{\alpha}{2}\right)\right] \cdot\left(1+\frac{\left(\sum_{i=1}^{n} x_{i}\right)^{2}}{n \sum_{i=1}^{n} x_{i}^{2}-\left(\sum_{i=1}^{n} x_{i}\right)^{2}}\right) .
\end{aligned}
$$

Fig. 1. The confidence interval $\left(\alpha,{ }_{u} x\right)$

Determining some parameters of the structure

In order to determine the structure's center and width, for a given (errorless, nonrandom) F in analyzed cross section, it is necessary to use the x values from two confidence intervals $\left({ }_{l}^{(1)} x,{ }_{u}^{(1)} x\right)$ and $\left({ }_{l}^{(2)} x,{ }_{u}^{(2)} x\right)$ that correspond to the structure's edges (borders), see Fig. 2.

Using Bonferroni's inequality (see e.g. in [3]) for the structure's center x_{s}

$$
P\left\{x_{S} \in\left(\frac{{ }_{l}^{(1)} x+{ }_{l}^{(2)} x}{2}, \frac{{ }_{4}^{(1)} x+{ }_{4}^{(2)} x}{2}\right)\right\} \geq 1-2 \alpha,
$$

i.e.

$$
\begin{equation*}
\left(x_{S_{1}}=\frac{{ }_{1}^{(1)} x+{ }_{1}^{(2)} x}{2}, \quad x_{S_{2}}=\frac{{ }_{u}^{(1)} x+{ }_{u}^{(2)} x}{2}\right) \tag{3}
\end{equation*}
$$

is at least (1-2 α)-confidence interval for the structure's center.

Similarly, for the structure's width w,

$$
P\left\{w \in\left({ }_{l}^{(2)} x-{ }_{u}^{(1)} x,{ }_{u}^{(2)} x-{ }_{l}^{(1)} x\right)\right\} \geq 1-2 \alpha,
$$

and from this,

$$
\begin{equation*}
\left(w_{1}={ }_{l}^{(2)} x-{ }_{u}^{(1)} x, w_{2}={ }_{u}^{(2)} x-{ }_{l}^{(1)} x\right) \tag{4}
\end{equation*}
$$

is the at least $(1-2 \alpha)$-confidence interval for the structure's width w.

Fig. 2. Determining the sizes of the structure

3. Conclusion

The above achieved assertions are applicable to measurement of the geometry of twodimensional structures (or cross sections of three-dimensional structures) in the following manner:

For a chosen (errorless) value (level) F of quantity y (e.g. electric signal of a length gauge) and $\alpha \in(0,1)$, the (1- α)-confidence interval for the structure's border (bound) is ($\alpha,{ }_{u} x$) where $\alpha,{ }_{u} x$ are given in (2), the ($1-2 \alpha$)-confidence interval for the structure's center is given in (3), and the (1-2 α)-confidence interval for the structure's width is given in (4).

Acknowledgment

Contribution was supported by Alexander von Humboldt foundation and grants APVV RPEU-0008-06, VEGA 1/0077/09, VEGA 2/7082/27 and MŠMT ČR LC06024.

References

[1] Cramér H. Mathematical Methods of Statistics. Princeton University Press, Princeton, 1946.
[2] Guide to the Expression of Uncertainty of Measurement (GUM) (1995), ISO, ISBN 91-67-10188-9, Geneve, Switzerland, 101 pages.
[3] Mood R.M., Graybill F.A., Boes D. Introduction to the Theory of Statistics. (3rd edn.). International Student Edition McGraw-Hill, Auckland, 1974.

