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Abstract. Random effects ANOVA models are well established and implemented in statistical 
software, they provide enough freedom to model dependencies between repeated 
measurements (e.g. a stronger dependency between measurements obtained within one day as 
compared to measurements obtained on different days) and they offer a closer look at the 
structure of the uncertainty (by splitting the variability due to different sources). The paper 
illustrates these concepts and advocates the use of random effects ANOVA models for 
analysis of long-term repeated experiments conducted to assess repeatability of a 
measurement. Variability revealed by such an experiment is important when creating an 
uncertainty budget. The concepts are illustrated with the help of data coming from calibration 
of accelerometers.  
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1. Introduction 

To assess repeatability of a measurement, a long-term repeated experiment can be carried out. 
For example, in the context of calibration of accelerometers, an accelerometer may be 
repeatedly mounted into the measurement setup and then the frequency response function 
(FRF) may be measured repeatedly in a usual manner. Such a long-term experiment reveals 
variability that may not be observed when an accelerometer is mounted into the setup only 
once or twice, which is what would be done in a routine calibration. Thus the variability 
observed in the long-term experiment is important when creating an uncertainty budget. In 
order to determine this uncertainty, the simplest way one may think of, is to look at the mean 
values (and their variability) for each of the different mountings of the accelerometer. 
However, this would give us a valid result only if the numbers of repeated measurements per 
mounting, as well as the variability of measurements within each mounting, are always the 
same. Moreover, this approach does not exploit the data to the fullest and leaves much of 
potentially useful information untouched. A finer view can be achieved by employing random 
effects ANOVA(= Analysis Of VAriance) models. We describe them in detail in the next 
section. We then illustrate the method using data obtained within the EMRP project IND09 
‘Traceable dynamic measurement of mechanical quantities’. There, torque, force and pressure 
are of main interest. However, since acceleration is a fundamental quantity for dynamic 
measurements and a traceable primary calibration of accelerometers has been realised in PTB, 
see e.g. [1], calibration of accelerometers provides a good basis for gaining experience with 
implementation of the approach that can be later directly transferred to the other mechanical 
quantities the project focuses on. 

2. Subject and Methods 

Data 
To illustrate the capabilities of random effects ANOVA models, we will use a part of a large 
dataset obtained in an experiment conducted to assess repeatability of FRF measurements for 
calibration of an accelerometer. The measurement campaign involved two different 
accelerometers that were repeatedly mounted into the measurement setup used for calibration 
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of accelerometers in PTB (for details see [1, 2]). However, to make the presentation concise, 
we will consider only data resulting from a repeated mounting of a back-to-back 
accelerometer, type 8305 (Brüel & Kjaer) and excitation of the system by a sinusoidal 
excitation at frequency 4000 Hz. In addition, we will focus only at the amplitude of the FRF 
and show the values in arbitrary units. The input acceleration was determined from 
measurements by a laser interferometer pointing its rays at the top of the mounted 
accelerometer. The accelerometer was mounted repeatedly 20 times within a period of 
roughly 5 weeks. Each time the frequency response was determined repeatedly from a 
sinusoidal fit to the measured signals; 10 times with laser interferometer in ‘position 0°’ (i.e. 
with laser rays pointing at 2 points on the top of the accelerometer lying on a line having 0° 
angle with a certain reference surface), 10 times in ‘position 90°’. Thus, our dataset consists 
of sets of 10 and 10 measured amplitudes (position 0° and 90°) obtained for 20 different 
mountings (see Fig. 1). The main interest is to assess the variability of an average of 
amplitudes obtained for a single mounting, which would be the value, reported for the 
amplitude of the FRF in a routine calibration. However, as we will see, employing random 
effects ANOVA models we can obtain a finer picture of the structure of the uncertainty and 
answer also such questions as e.g. what improvement in uncertainty the averaging over 
positions 0° and 90° brings. 

 
Fig. 1. Amplitude of the frequency response (a.u.) for 20 different mountings of the accelerometer, each time 

for two different adjustments of the laser interferometer. The horizontal lines show respective averages. 

Random Effects ANOVA 
The ANOVA model in our case can be of the form:  

mprmpmpmpr EBAbay  ,   (1) 

where mpry  denotes the rth (r=1,..,10) amplitude measured for mounting m (m=1,...,20) at 

position p (p=1,2), a denotes the common mean (our measurand), pb  is the fixed effect of 

position p , mA ~ N(0, 2
M ), mpB ~ N(0, 2

MP ) are mutually independent random effects and 

mprE ~ N(0, 2 ) are mutually independent random errors. N(.,.) denotes a normal distribution. 

To make it clearer, observe the data in Fig. 1. It seems that for each combination of mounting 
and position, the measured values fluctuate around a certain level. These fluctuations are 
modelled by the random errors. The levels around which the measured values fluctuate are 
moreover shifted up and down around some common value (not shown) in a random manner. 
These shifts are modelled by the random effects. The effect due to mounting, mA , brings a 
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shift common for measurements obtained within 1 mounting, the effect due to the 
combination of mounting-position, mpB , refines further the shift due to mounting by adjusting 

it with a random value for each mounting-position combination. Since these effects are 
random, we are interested in their possible size captured by the variances 2

M , 2
MP . In 

contrast, the fixed effects pb  account for a possible systematic effect of the two different 

positions, i.e. their contribution to the shift is constant for a given position, and thus we are 
interested in their values directly. To make the model identifiable, we assume that the fixed 
effects 21 bb   sum to 0, so that the shifts from the common level a have zero mean. This also 

ensures that the average of amplitudes obtained within one mounting, ..my , is an unbiased 

estimator of our measurand a. Before fitting the model in Eq. 1 to our data, we may look once 
more at Fig. 1 and observe closely the fluctuations of the measured values around the 
depicted levels. It seems that the variability of these fluctuations varies, being rather large for 
some combinations of mounting-position. Thus instead of our original assumption mprE ~ 

N(0, 2 ), we may rather assume a different variance for the random error within each 

mounting–position combination; mprE ~ N(0, 2
mp ).  

Implied (Co)variance Structure 
The model in Eq. 1 implies a certain covariance structure of the measurements. For a given 
mounting, the single measured value, mpry , the average of values at position p, .mpy and the 

average of all values within the mounting, ..my , have the following distributions: 

),(~ 222
mpMPMpmpr baNy       (2) 

)10/,(~ 222
. mpMPMpmp baNy      (3) 

])10/10/[
4

1
2/,(~ 2

2
2

1
22

.. mmMPMm aNy     (4) 

Moreover, measurements within one mounting-position have covariance 022  MPM  , 
while measurements obtained within one mounting but at different positions have covariance 

02 M . It is easy to see that if all random errors have the same variance, i.e. 2
mp = 2 , the 

variance in Eq. 4 turns into the expected 20/2/ 222   MPM . The type A relative standard 

uncertainty of ..my can be expressed via relative standard uncertainties due to mounting, 

mounting-position interaction and random errors as 222
rErMPrM uuu  , where au MrM / , 

)2/( au MPrMP  , see Eq. 4. When the accelerometer is mounted anew, 2
rEu  can be 

determined from the sampling variances of the repeated measurements at the two positions. 
The other two contributions 22

rMPrM uu  must be taken from a (past) long-term experiment.  

3. Results 

For fitting the model in Eq. 1 to our data (Fig. 1), we used function lme in the library nlme of 
R [3] and estimated the parameters with the restricted maximum likelihood method. M was 

estimated as 1.6* 610 , MP  as 0.0075687. Moreover the 95% confidence interval for 

M (obtained with function intervals()) contained 0. This suggests that the effect of mounting 
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is negligible and supports the current practice of mounting an accelerometer applying a torque 
of 2 N.m, which was established in order to prevent any effects on the measured values. Thus, 
refitting the data to a model in Eq. 1 with mA (the mounting effect) omitted (i.e. 2

M  fixed at 

0), yields the final estimates: a=13.014408, MP =0.00757 and all the different mp  between 

0.00062 and 0.00452. Taking the minimum (maximum) of these in place of both the 1m , 

2m  in Eq. 4 and dividing the square root of the resulting variance by a, we obtain that the 

type A relative standard uncertainty of ..my  ranges roughly from 0.0411% to 0.0418%. 

Similarly, using Eq. 3 we can see that the relative standard uncertainty for average over only 
one position ranges from 0.0582% to 0.0592%. Correcting the average for the systematic bias 

pb  and including its uncertainty changes these numbers only slightly. Thus the improvement 

factor due to taking an average of 2 positions is approximately 2/1 : clearly, in the 
variances in Eq. 3 and Eq. 4 with 2

M =0, 2
MP  is the dominant part. However, were 2

M  non-
zero, the improvement factor would be closer to 1 (1 means no improvement). In the extreme 
case of 2

M  being dominant, averaging over two positions would not lead to a real 
improvement.  

4. Discussion 

Functions for fitting random effects models can be found in other statistical software as well. 
If one assumes common variance for random errors, MATLAB and nlmefit can be used. In 
our case, we could then use even textbook formulas from the so called ANOVA table. 
However, more general approaches allow accommodating further features, e.g. a possible 
trend observed within the mounting-position repeated measurements, and one can then verify 
whether the trend is negligible with respect to the overall uncertainty as desired.  

Of course, before drawing conclusions from the estimates, one should check the goodness of 
the fit of the chosen model, see e.g. [3]. In our case, in model with common error variance a 
plot of standardized residuals versus fitted values would suggest going for the more complex 
model (fitted above) with different variances for the mounting-position groups. 

All in all, with the help of statistical software fitting random effects ANOVA models to 
similar long-term experiments is not difficult and does justice to the effort invested in the 
experiment by enabling deeper insights into and verification of different assumptions about 
the measurement process.  
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