MEASURING METHOD AND MAGNETIC FIELD HOMOGENEITY OPTIMISATION FOR MAGNETS USED IN NMR-IMAGING

I. Frollo, P. Andris, I. Strolka

Institute of Measurement Science, SAS, Dúbravská 9, 842 19 Bratislava, Slovak Republic, frollo@savba.sk

Abstract

Description of a simple and fast method for computation of feeding currents of shim coils for stationary magnetic field used in NMR imaging is the scope of this paper. The method needs to perform a magnetic field measurement in selected points of an assigned volume twice: when shim coils are switched off and afterward the measurement of magnetic field changes caused by switching on the feeding current of particular shim coil in each of selected points. A set of linear equations definition, determination of a target function and optimisation computations are procedures that provide optimal values of currents for shim coils. The proposed method because of its simplicity and speed of computation is convenient for basic adjustment of the magnetic field homogeneity by first magnet installation. It is also suitable for periodic testing and magnet inhomogeneities correction for MRI magnets especially in the case when the magnetic properties of the magnet surroundings are changed.

1. Introduction

Methods based on NMR principles (imaging spectroscopy) need a source of and stationary magnetic field with minimal inhomogeneities. No magnet generates an ideal homogeneous magnetic field and a complicated coil therefore system construction fed by separate currents power supplies for compensation (shimming) of magnetic inhomogeneous particular components (x, y, xy, yz, xz, x^2-y^2 , xz^2 , yz^2 , $z, z^2, z^3, z^4, ...$) is needed [1]. For individual shim current setting one needs a complex mathematical computation performed by the magnet producer [2]. Final shim currents are set directly on site after real magnetic field inhomogeneities measurements (inhomogeneities caused by ferromagnetic objects placed near the magnet) using NMR magnetometers or directly by imaging [3].

An open question is the magnet inhomogeneity testing during its operation especially in situations when ferromagnetic objects distribution near the magnet is changed and when the magnet is not equipped with magnetic shielding. Several methods for magnetic field correction and shim coils current calculation have been developed generally based on the spherical harmonic expansions and their By computation derivatives. of the coefficients for every component of the expansion using minimisation methods [1, 2, 4] or least squares method [5] it is possible to correct the magnetic field to achieve a high homogeneity.

In the paper we have designed new, simple and fast method for shim coil currents computation based on magnetic field values measured without shim coils (currents for shim coils are switched off) and magnetic field values after switching on the shim coils testing currents. No complicated expansions The testing currents can be are needed. adjusted generally to any value supposing that the change of magnetic field is measurable with acceptable precision. Naturally, for to do the computation effective we select equal testing currents for all shim coils (e.g. 1 A) or we group the shim coils with equal testing currents (e.g. 1, 5, 10 A).

2. Method

One of the main conditions of the designed method is the selection of points in the centre of the magnet in which we want adjust the required homogeneity of magnetic field in a real range. Obviously we measure and adjust magnetic field on a cylinder surface and in its inside, Fig. 1. We select the measuring points on three or five circular lines (or discs) symmetrical to the magnet centre with equal measuring point distribution on each circle plus points in the circles centres. In selected points the initial field and the field contributions of all shim coils were measured.

In the case of higher claims on homogeneity two or more measuring cylinders symmetrically to the magnet centre can be defined.

Fig. 1. Measuring point distribution example in three planes perpendicular to horizontal axes of an electromagnet.

2.1 Theory

Our task belongs to domains of unknown parameters estimation in a linear regression function in the mathematical statistics. It is a problem where measurement of real values is performed (in our case magnetic field parameters $b_1, b_2, ..., b_n$) where every value is expressed as a linear combination of unknown parameters $I_1, I_2, ..., I_p$, (shim currents).

The determining equation for our task is as follows:

$$b_i = g_{1i}I_1 + g_{2i}I_2 + \dots + g_{pi}I_p$$
(1)

for
$$i = 1, 2, ..., n$$

where

 $g_{1i}, g_{2i}, \dots, g_{pi}$ are known values of magnetic field differences corresponding to known testing currents of particular shim coils.

The matrix $\|g_{ji}\|$ where coefficients $g_{1i}, g_{2i}, \dots, g_{pi}$ in equation (1) are in i-th column can be written in the form:

$$\mathbf{G} = \begin{vmatrix} g_{11}, g_{12}, \dots, g_{1n} \\ g_{21}, g_{22}, \dots, g_{2n} \\ \dots \\ g_{p1}, g_{p2}, \dots, g_{pn} \end{vmatrix}$$
(2)

For the following consideration we will suppose that rows of the matrix **G** are linearly independent.

It is known from the least square theory that values $I_1, I_2, ..., I_p$ are estimated as a minimum of the sum:

$$\mathbf{S} = \sum_{i=1}^{n} \left(b_{i} - g_{1i} I_{1}^{*} - g_{2i} I_{2}^{*} - \dots - g_{pi} I_{p}^{*} \right)^{2}$$
(3)

Than estimates $I_1^*, I_2^*, \dots, I_p^*$ are determined from the equation:

$$\frac{\partial S}{\partial I_h} = 0 \tag{4}$$

For h = 1, 2,, p.

Solution of the equation (4) is matrix :

$$\mathbf{I} = [\mathbf{G}.\mathbf{G}^{`}]^{-1}.\mathbf{G}.\mathbf{b}$$
 (5)

where $[\mathbf{G}.\mathbf{G}^{\cdot}]^{-1}$ is an inversion matrix to the matrix $\mathbf{G}.\mathbf{G}^{\cdot}$, \mathbf{G}^{\cdot} is a transposed matrix to the matrix \mathbf{G} and where

 $\mathbf{b} = (b_1, b_2, \dots, b_n)$ is a vector of initial magnetic field

 $\mathbf{I} = (I_1^*, I_2^*, \dots, I_p^*)$ is a vector of calculated current values of shim coils.

Simple solution of our problem is given by equation:

$$\mathbf{I}.\mathbf{G} = \mathbf{b} \tag{6}$$

where $\mathbf{b} + \mathbf{b}_r = 0$, and \mathbf{b}_r is the real magnetic field without shimming.

It is necessary to remark that \mathbf{b}_{r} and \mathbf{b} in a practical calculation represent magnetic field values after homogeneous component (in a selected range) subtraction. Using shim coils we are able to correct only differences of the magnetic field from its mean value in a selected interval. Computing of the shim coils current according to equations (5) or (6) is exact. But in praxis this method does not always satisfy because the calculated values of shim currents can be higher than power supply possibilities.

2.2. Computing algorithm

In the designed algorithm we are looking for such correcting current values that minimise the magnetic field inhomogeneity respecting technical parameters of the equipment. Naturally in this case it is not possible to use the equation $\mathbf{I}.\mathbf{G} = \mathbf{b}$. It is necessary to find a criterion for the final quality of the magnetic field. The mathematical statistics proposes the following measures of dispersion: width of the span, mean value, mean square deviation. In the described method we have used a minimisation procedure of the mean square deviation of the magnetic field in selected points. The designed algorithm calculates with limited currents in a real range. Computing program using functions like Min(S) is or FindMinimum(S), [6], where S is given by equation (3).

For our task we can use the following sequence:

- 1. Measurement of the magnetic field b_i in all points of selected planes, join data
- 2. Mean value: $(\sum b_i)/n = b_m$, Oscillating component: $b_a = b_i - b_m$

- 3. Primary inhomogeneities estimation: $b_{inhom} = Max[b_i] - Min[b_i]$
- Measurement of magnetic field contributions of every correction coil in all selected points:
 [g_{1i}, g_{2i},....,g_{ni}]
- 5. Basic equation construction

$$S = \sum_{i=1}^{n} (b_i - g_{1i}I_1^* - g_{2i}I_2^* - \dots - g_{pi}I_p^*)^2$$

6. Find minimum of the target function S

7. Output
$$\rightarrow I_1^*, I_2^*, \dots, I_p^*$$

8. Test using equation (3).

The calculated values can be verified by adjustment of calculated currents for each shim coil and by experimental measurement of the resultant magnetic field.

2.3 Experimental results

We have used the designed method for magnetic field correction of a home-made whole-body NMR imager 0.1 Tesla. The initial field and the testing current contributions for all shim coils were measured (using NMR magnetometer Bruker) in 3 planes on circles and their centres, together 3 x 13 points, Fig. 1. For measuring probe positioning a mask was used, Fig. 2.

Fig. 2. Measuring mask with holes for NMR magnetometer probe

In the selected point the initial field and the field contributions of all shim coils were measured in fast sequence to avoid the possible time instability of the basic magnetic field.

On measured data the mean square algorithm using function FindMinimum(S), [6], was applied. The calculation was repeated several times changing the starting value for minimum search. The resultant values $I_1^*, I_2^*, \dots, I_p^*$ were tested substituting to the equation (3) and depicted graphically in Fig. 3.

Fig. 3. Bar graph of sorted relative values of the magnetic field B without correction (high bars) and with energised shim coils (small bars) fed by calculated currents. N is relative position number.

In the case if some of the calculated currents was higher as maximal value of the power supply, the maximal value was substituted to the eqn. (3) as a constant and the calculation was repeated. After adjusting of the resultant shim currents for every coil a final magnetic field measurement was performed. Our results showed excellent correspondence of calculated and measured values.

3. Conclusion

In the paper we have shown how to use the least square method for stationary magnetic field homogeneity calculation. The homogeneous magnetic field is a basic condition for imaging based on nuclear magnetic resonance.

Determining equation (1) was used either for exact solution given by eqn. (5) or (6) or for a minimum search algorithm and procedure for the function (3) based on iterations. Exact procedures in some cases produced unreal high values of correcting currents. Iteration method returns very fast successful results under reasonable physical conditions.

The designed method can be used for regular testing of a basic electromagnet and for shim coil currents adjusting with the goal to create optimal conditions of NMR experiments.

Acknowledgements

The support of Slovak Grant Agency for Grant # 2/6020/99 is gratefully acknowledged.

References

[1] Anderson, W.A. : Electrical current shims for correcting magnetic fields. Rew. Sci. Instr., 32, No. 3, pp. 241-250, 1961.

[2] Rieger, B. - Kummer, J.: Role of image currents on the performance of Anderson-type el. current shims for correcting magn. fields. Rew. Sci. Instr., 48, No. 3, pp. 346-349, 1977.

[3] Maudsley, A.A. - Simon, H.E.- Hilal, S.K.: Magnetic field measurement by NMR imaging. J. Phys. E: Sci. Instrum., 17, pp. 216-220, 1984.

[4] Konzbul, P. - Švéda, K.: Shim coils for NMR and MRI solenoid magnets. Measurement Science and Technology, 6, No. 8, pp 1116 – 1123, 1995.

[5] Yamamoto S. et all. : Field correction of a high-homogeneous field superconducting magnet using a least squares method. IEEE Trans. on Magnetics, MAG-21, No. 2, pp. 698-701, 1985.

[6] Martin E.: Standard Add-on Packages. Mathematica 3.0, Wolfram Research, Wolfram Media, Inc., 1995.