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A new technique of noise reduction in time series is presented. First, the data are embedded into
higher dimensional state space.Then, the dynamics of the system is approximated and data are adjusted to
satisfy better the approximations to the dynamics. It leads to noise reduction which is more effective than
traditonal filtering, especially for complex time series.

•  Introduction

Experimental time series are a mixture of deterministic component and random noise. If the
noise is predominantly at different frequencies than the frequencies of the signal, then we can
reduce the noise by removing the frequency components of the noise. This is the basic idea of
linear low-, high- or bandpass filters.

Linear filters eliminate additive noise without distorting the signal in periodic or
quasiperiodic cases. They can also be useful for highly oversampled non-linear signals. However,
for nonlinear systems, both the power spectrum of the investigated signal and the noise may be
broadband. Then, classical filtering methods, that are based on frequency separations are
unefficient. They cause distortion because some of the suppressed frequency components are part
of the dynamics.

Recently new methods of noise-reduction have been developed. They are based on the
theory of nonlinear dynamical systems [1].

•  Subject and Methods

In nonlinear noise reduction schemes, the next basic strategy is used. First, from the data an
approximation to the evolution law is obtained either globally or locally. In a second step, the
trajectory is constructed such that it both satisfies the law and is close to the measured trajectory.
The same strategy is behind our method. We briefly introduce the algorithm.

1. The first step in any data analysis based on dynamical systems theory is to reconstruct the state
portrait from the time series xn. Since we measure only one coordinate, it might not be obvious
how  to reconstruct the state portrait. According to the embedding theory, under some
conditions, the state portrait, topologically equivalent to the original one, can be reconstructed
from the signal [2], [3]. A very convenient choice for the reconstruction is a set of delay
coordinates. Let the data xn be embedded in a 2k+1-dimensional phase space with delay and
"advance" coordinates,

xn=(xn-k, xn-k+1, ..., xn, ..., xn+k-1, xn+k) .
The integer 2k+1 is called the embedding dimension. Embedding saves a lot of important
properties of the original attractor [2]. Notice that it is essential that both past and future values
are used in the embedding. Then the filtering algorithm performs better in points where stable
and unstable manifolds are tangent.
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2. The reconstructed state portrait can be treated as an attractor of a map f whose exact form is
unknown. Let us assume that f is approximately linear in a small neighborhood of each attractor
point x:

f(x)≈Ax + b.
The matrix A is the Jacobian of f at x.
For each embedding vector xn we find closest neighbors. They are used to find a local linear
approximation of the dynamics in a neighborhood of xn. To obtain the optimal fit in the least
square sense the singular value decomposition is applied. A different A and b are computed for
each neighborhood.

3. The middle coordinate of xn is corrected such that the result both satisfies better the estimated
dynamics and remains close to the measured value. The adjustment is done for each point on
the attractor.

4. The original time series is replaced by the corrected one and the procedure is repeated until the
noise level does not decrease further.

There are some parameters which can be varied in the procedure as the size of the
neighborhoods, or the parameter k.. Larger neighborhoods give more stable fits but if they are
chosen too large the locality required for the linear approximation is violated. The value of k is
limited from above mainly by the fact that neighbors have to be searched in 2k+1 dimensions. For
large k, points can be very sparse for limited data sets. The easiest way to optimize this choice is to
find the set of parameters for which the average quality of the least squares fits is the best.

To compare our method with a traditonal noise-reduction we applied the general first order
model of linear filter. To find the optimal values of coefficients we used the singular value
decomposition technique. Offline filtering is assumed to enable the involvement of as much
information as possible. Therefore the search for optimal correction of each point in the time series
can use both the values from the past and from the future.

To test the effectiveness of our technique in comparison to traditional linear filtering we
have to estimate how much noise both methods remove from the data. In artificial examples the
original (noiseless) time series yn is known. In these cases we can compute the deviation

E0(x)=√1/N∑(xn-yn)2

of  the noisy signal xn from the clean one and the deviation E0(xf)of the filtered signal xf
n from the

clean one. The corresponding value of r0=E0(x)/E0(xf) estimates the amount of noise reduction. r0
is very useful in the process of comparison of different noise-reduction methods.

However, in a typical experimental situation the noise-free data is unknown. Then it is
difficult to investigate, how much noise is removed from the data. The so called correlation
dimension D2 is one of characteristics which can be helpful in some of these cases. Its value
provides an information about the complexity of the investigated dynamics.
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where N(ε) is the total number of hypercubes of side length ε which cover the attractor, and pi is the
probability of finding a point in the hypercube i. In order to esimate the correlation dimension, we
have to plot ln C2(ε) as a function of ln ε and follow the slope of the obtained curve. This slope
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ν(ε) is called correlation exponent, and the limit of it for vanishing ε represents the correlation
dimension. But the determination of correlation dimension is often a difficult problem [4]. If a flat
part plateau is clearly distinguishable at the graph for correlation dimension estimation, then the
value of the plateau is taken as the searched dimension. But noise in data destroys the scaling
region and makes dimension estimation impossible. On the other hand succesful noise-reduction
makes plateau visible. Therefore, dimension estimation from data before and after noise reduction
provides a very good tool for filtering quality determination.

•  Results and Conclusion

To test the effectiveness of the algorithm, we apply it to a periodic system (noisy sinus
function), to an often studied chaotic system (Lorenz attractor) contaminated by noise and to
experimental signals (ECG, EEG).

In the case of noisy periodic systems both method reduce the noise succesfully. We obtain
approximately the same amount of noise reduction r0 applying either the linear or the nonlinear
filtering.

Lorenz chaotic system,
x = 10 ( y - x )
y = -y -xz + 28x
z = xy - ( 8/3 )z ,

has an attractor with correlation dimension of about 2.07. The figure shows that correlation
dimension cannot be estimated for data with 10% of noise added. After noise reduction a scaling
region is clearly visible and the value of dimension slightly above 2 can be observed. On the other
hand, linear filtering was not able to suppress the noise without destroying the dynamics of the
system.

The same problems were found filtering real data as ECG or EEG. They resemble chaotic
behaviour. Apparent periodicities and also many irregularities are seen in various parts of time
series. The continuous part of the spectrum is due to the noise and also due to the irregular but
possibly deterministic dynamics. The separation of  both parts is impossible with spectral methods.
Therefore, we tried to filter by the nonlinear method which was originally developed for chaotic
signals despite the fact that the investigated systems (heart and brain) were not proved to be
following chaotic behavior. The results are very promising.

Our work demonstrates that linear methods are comparable with our filtering procedure only
in case of periodic systems. For nonperiodic signals traditional filtering techniques are ineffective.
We have found that new nonlinear noise-reduction leads to much better results especially in the
case of complex signals including chaotic and irregular experimental time series.
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