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Abstract

We consider the problem of measurements made by several laboratories (or methods) on virtually the same
object of interest. In general, the number of measurements made at each laboratory may differ. Moreover, the
laboratories may exhibit the between-laboratory variability caused by the systematic error due to each laboratory,
as well as different within-laboratory variances caused by different within-laboratory precision of the used
measurement method. In this paper we try to describe statistical models and methods that are appropriate for
derivation of the consensus mean of the unknown (measured) value as well as related problems concerning the
statistical inference on the unknown value.

1. Introduction

We consider that the measurements on virtually the same object of interest are made by k ≥ 2 laboratories. The
ith laboratory repeats its measurements ni times, ni ≥ 2. The laboratories may exhibit the between laboratory
variability, as well as different within-laboratory variances (heteroscedasticity). In this paper we will assume that
the measurements follow normal distribution.

The results of a typical interlaboratory study (given in aggregated form) are presented in Table 1: In [2] the data
on Selenium in non-fat milk powder were reported. The measurements are based on four independent measurement
methods.

Table 1. Selenium in non-fat milk powder

Method ni ȳi (mean) s2
i (variance)

A 8 105.00 85.711
B 12 109.75 20.748
C 14 109.50 2.729
D 8 113.25 33.640

As pointed in [7]: A question of fundamental importance in the analysis of such data is how to form the best
consensus mean, and what uncertainty to attach to this estimate. This fundamental question is followed by a series
of other questions regarding the statistical inference on the unknown common mean.

The problem, although not new in statistical literature, see e.g. [1, 4], is not completely solved. Many questions
remain still open and unsolved. The problem of interlaboratory comparisons is of particular interest for applications
that are looking for harmonization of industrial and scientific practice. The general problem covers many aspects of
which the major ones are: (1) the choice of the appropriate model, (2) the choice of associated statistical methods
and (3) the identification and verification of the model.
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2. Subject and methods

Basic tool for analysis of interlaboratory measurements and to form the best consensus mean value will be the
one-way classification (ANOVA) model, which may be both unbalanced and heteroscedastic, that is

yij = µ+ αi + εij , (1)

with mutually independent errors, εij ∼ N(0, σ2
i ), i = 1, . . . , k and j = 1, . . . , ni. The laboratory effects could

be considered to be fixed effects or random effects. If the second case is true then we assume that αi ∼ N(0, σ2)
are mutually independent and independent with all εij . The variance components σ2

i and σ2 are the nuisance
parameters: the within-laboratory and between-laboratory variances. The model could be written in matrix
notation:

y = 1µ+ Zα+ ε, (2)

where y = (y′1, . . . , y
′
k)′ with yi = (yi1, . . . , yini)

′ is the n-vector of all measurements, n =
∑
ni. Further, 1 =

(1′1 . . . , 1
′
k)′ with 1i = (1, . . . , 1)′ (ni-vector of ones); α = (α1, . . . , αk)′ is the (unknown) k-vector of laboratory

effects; Z = Diag{1i} is known n × k-matrix; and ε = (ε′1, . . . , ε
′
k)′ with εi = (εi1, . . . , εini)

′ represents
the n-vector of within-laboratory errors. Moreover, we will use the following notation: ȳi = 1

ni

∑ni
j=1 yij ,

s2
i = 1

ni−1

∑ni
j=1(yij − ȳi)2.

Notice that under given assumptions (random effects model) the following statistical properties hold true:
E(y) = µ, Var(y) = σ2ZZ ′ + Diag{σ2

i Ini}, where Ini denotes ni × ni-identity matrix. If the variance
components σ2 and σ2

i would be known the optimal estimator for the unknown common mean µ would be the
generalized least squares estimator (GLS estimator) which is (under the given assumptions) MVUE — minimum
variance unbiased estimator, that is

µ̂GLS = (1′Var(y)−11)−11′Var(y)−1y =
∑k
i=1 wiȳi∑k
i=1 wi

, (3)

where wi = 1/Var(ȳi) with Var(ȳi) = σ2 + σ2
i

ni
, i.e. the optimal estimator of µ is the weighted average of k

laboratory average values ȳi with the weightswi inversely proportional to the variances of the individual laboratory
averages. Under given assumptions the exact distribution of the estimator is known: µ̂GLS ∼ N(µ, 1/

∑
wi).

From that the standard statistical inference on µ could be performed.
If the variance components are unknown the situation becomes more complicated. Under normality assumptions

the maximum likelihood estimator ofµ is a reasonable choice to form the consensus mean value. The ML estimators
of the (unknown) common mean µ and the between-laboratory variance σ2 have the form

µ̂ML =
∑k
i=1 ŵ

ML
i ȳi∑k

i=1 ŵ
ML
i

=
∑k
i=1 γ̂

ML
i ȳi∑k

i=1 γ̂
ML
i

, (4)

σ̂2
ML =

1
n

k∑
i=1

γ̂ML
i

(ȳi − µ̂ML)2 +
(ni − 1) s

2
i

ni

1− γ̂ML
i

, (5)

where ŵML
i are the MLEs of the weights wi = 1/(σ2 + σ2

i

ni
), n =

∑k
i=1 ni, γi = σ2/(σ2 + σ2

i

ni
) and according to

[7], the MLEs γ̂ML
i of γi, i = 1, . . . , k, are found by minimizing

n log σ̂2
ML −

k∑
i=1

log γ̂ML
i +

k∑
i=1

(ni − 1) log
1− γ̂ML

i

γ̂ML
i

. (6)
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Based on σ̂2
ML and γ̂ML

i it is possible to derive MLEs of within-laboratory variances σ2
i , i = 1, . . . , k, that is

σ̂2
iML =

niσ̂
2
ML(1− γ̂ML

i )
γ̂ML
i

. (7)

For more details see [7, 8]. Small sample distribution of µ̂ML is in general unknown. Under assumptions given in
[5], the ML estimator is asymptotically normally distributed (as n→∞) with Var(µ̂ML)→ 1/

∑
wi = σ2/

∑
γi.

So, with zα denoting the critical point of standard normal distribution, the interval

µ̂± zα/2

√
σ̂2
ML∑k

i=1 γ̂
ML
i

(8)

provides an approximate (1− α)% confidence interval based on the asymptotic distribution.
Computationally simpler method, the Mandel-Paule estimator, was suggested in [6]. This method is widely

used in applications and experience has shown that it often provides reasonable estimates and is recommended for
use in the preparation of standard reference materials. The Mandel-Paule estimator (MP estimator) has the form

µ̂MP =
∑k
i=1 ŵ

MP
i ȳi∑k

i=1 ŵ
MP
i

, (9)

where ŵMP
i = 1/(σ̂2

MP+ s2i
ni

) are the MP estimators of the weightswi. Here σ̂2
MP estimates the between-laboratory

variance σ2 and could be derived iteratively from the equation

k∑
i=1

(ȳi − µ̂MP )2

σ̂2
MP + s2

i

ni

= k − 1. (10)

Notice, that the MP estimator (9) coincides with the Graybill-Deal estimator (GD estimator), another widely
accepted estimator for the common mean µ, analyzed in [4], if the between-laboratory variance is zero, i.e. if the
submodel yij = µ+ εij of the model (1) is true. The GD estimator has the form

µ̂GD =
∑k
i=1 ŵ

GD
i ȳi∑k

i=1 ŵ
GD
i

=

∑k
i=1

ni
s2
i

ȳi∑k
i=1

ni
s2
i

. (11)

Rukhin and Vangel in [7] suggested the modified MP estimator to be as previously with k instead of k − 1 on the
right hand side of (10). They showed that the MP estimator is well defined and the modified MP estimator is close
to the ML estimator. They also derived the consistent estimator of the asymptotic variance of the consensus mean
estimator µ̂ (as k →∞). So, the interval

µ̂± zα/2

√√√√ k∑
i=1

(ȳi − µ̂)2

(σ̂2 + s2
i

ni
)2

k∑
i=1

1

σ̂2 + s2
i

ni

(12)

provides an approximate (1− α)% confidence interval. Here µ̂ is the MP estimator or the modified MP estimator
of µ and σ̂2 is the MP estimator or the modified MP estimator of σ2.

Table 2 reports the estimated consensus mean values calculated by the four above mentioned methods together
with their (approximate) 95% confidence intervals and together with the estimates of the between-laboratory
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variance. The MLEs of the within-laboratory variances are: σ̂2
1ML = 95.9274, σ̂2

2ML = 19.0497, σ̂2
3ML = 2.5397

and σ̂2
4ML = 42.9409. The confidence interval reported with the GD estimate (denoted by ∗) is the exact 95%

confidence interval estimate suggested by Fairweather in [3] and calculated according to [9]. The MATLAB code
suggested for numerical evaluation of the consensus mean value is available from the authors.

Table 2. The consensus mean value
Selenium in non-fat milk powder

Estimator µ̂ 95% Confidence Interval σ̂2

ML 109.5750 〈108.8010; 110.3490〉 0.0000
MP 109.8214 〈108.0596; 111.5832〉 4.1340
MMP 109.8184 〈108.5439; 111.0928〉 1.5479
GD 109.6021 〈108.5369; 110.7722〉∗ 0

3. Discussion

Many problems concerning statistical inference in the statistical models with common mean are still open. If
we consider one-way classification model (1) as the basic tool for such analysis, one important question is if the
laboratory effects are fixed or random. Balancedness of the data (i.e. the situation when n1 = · · · = nk) has
special consequences for further statistical analysis as e.g.: point and interval estimation of the variance components;
testing for homoscedasticity (i.e. testing the null hypothesis H0 : σ2

1 = · · · = σ2
k, and/or more specifically testing

hypothesis H0 : σ2
i = σ2

j ); testing statistical hypotheses on the laboratory effects (i.e. H0 : α1 = · · · = αk or
H0 : σ2 = 0, i.e. submodel testing, and/or more specifically testing hypothesis H0 : αi = αj or H0 : σ2 ≤ σ2

0);
point estimation and interval estimation of the consensus value under those special situations.
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