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Abstract

At first it is shown how measuring errors —
both dynamic and statistical ones - are
depending of correcting procedures today
realised without additional hardware using
instrument computers. This leads to the well-
known classical optimal filters with minimal
total errors. Then the limitations due to
parameter variations as well as to systems
containing allpasses were discussed.

In the second part another optimal criterion
given by the information theory is used
leading to new filters: The information flow
should be a maximum. Now the optimum is
shifted to higher values of the degree of
correction than in the first case.

1. Introduction

Today measuring instruments normally
contain an instrument computer to realise a
suitable processing of the measured data. In
these cases it is possible without additional
hardware to realise an algorithm for
minimising the total error consisting of the
two components: The dynamic and the
statistical i.e. noise error. At first these
problems will be treated and then another new
optimisation criterion will be applied leading
to information-optimal systems.

2. Classical optimal system

As well-known from then theory of optimal
filtering the classical optimisation criterion
“minimising the mean-square error” is used.

To show the main ideas as well as to prepare
the new results in the next chapter a special
case with great importance to practice may be
treated: The behaviour of a measuring system
should be corrected by a series-connected

11

computer. If for instance the system is of first
order

Gi(j0) = ¢/ ( 1 +j@Ty) (1)

the ideal frequency response of the correcting
system should be [1;4]

Gaig(jw) =c2 (1 +joTy) 2)

This frequency response cannot be realised.
Therefore the frequency response has to be

G2 (o) =c2 (1 +jwT)/(1+jaTy) 3)
leading to the corrected system
Gges=G1G2 = ¢c1¢a/ (1+j(!)T2) @)

Comparing (4) with (1) one learns that the
new system now has a new time constant T,
and limiting frequency ®x = 1/T,. We
introduce the factor a describing the
improvement of the dynamic behaviour of the
corrected system

a=T/T, 5)

Figure 1 shows both the step-answer function
of an original and a corrected temperature
sensor as an example with great practical
importance of a system of first order.

Dealing with the two components of the
mean-square error € - the dynamic error p*
and the statistical or noise error P, - as a
function of the degree of correction a we get
the results of Figure 2: The decreasing
dynamic error has to be paid by an increasing
statistical or noise error. This fact can be
realised by comparing the Figures la with 1b,
because in 1b the line is due to the greater
noise not so clear than in la.
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Figure 1. a) step-answer (transient) function
of an uncorrected (original) temperature
sensor

Figure 1 b) transient function of the corrected
system, a = 10

The total error €* is given by the sum of the
two error components and leads to a
minimum as shown in Figure 2. This means

the well-known optimal filtering.
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Figure 2. Errors and information flow as a

function of the degree of correction
- - - dynamic error, -.-.- noise error,
---- total error, xxxx information flow

Now the question arises if it is still necessary
to construct an original system with high
quality because it is today possible using the
instrument computer to improve the

~ behaviour. Figure 3 shows the results of

investigations: The better the quality of the
original system the more efficient the
correction!
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Figure 3. Errors of three systems of different
quality as in Figure 2:

———————— High-quality original system

.—~.--.-- Medium-quality original system
----- Bad-quality original system

Last not least another effect should be
mentioned limiting the degree of correction
possible: To get an optimal correction the two
time-constants T; in the equations (1) and (3)
must be exact of the same value. In practice
due to the parameter variations of the systems
this is not possible. In this case the transient
response will have a prolonged trail as shown
in Figure 4 and so the advantage of the
correction will be annihilated. This effect is
called “parameter sensitivity”.
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Figure 4. Influence of a difference between
the time constants of the original and the
correcting system AT = +0.2 (parameter
sensitivity)

Last it may be pointed out that it is not
possible to correct systems containing
allpasses without an additional time delay [4].

3. A new concept: Optimal information
flow

As an introduction Shannon’s well-known
channel capacity C,; will be explained [6]:
With the signal-to-noise ratio Ps / P, and the
number of symbols per second n = 2f; = 1/, -
where f. is the critical frequency and t; the
response time, - the number of bits per
second, the channel capacity is under the
supposition of optimal coding

An intuitive approach explains the number
under the binary logarithm to be the number
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of distinguishable power steps and the square
root the number of amplitude steps [2;3;4;5].
Now we are using the same method to define
an information flow I

’I=fc1b(PS/ez +1) (7)

Here also the system behavior should be
corrected by means of a series-connected
network or computer. Instead of minimizing
the total mean-square error g’ - as shown
before - now an optimal information flow I
should be realized. Figure 2 shows as well the
course of the error components and the total
error as the information flow as a function of
the degree of correction a = f. / f, with the
critical frequency of the corrected system f.
and of the original system f, due to equation
(5). The investigations show that because of
the factor f; in equation (7) the minimal error
does not lay at the same value of the degree of
correction aqp; as with optimal filtering but at
higher values agpp. Furthermore it may be
emphasized that in this case also - as with
optimal filtering - the advantages must be
paid by increasing parameter sensitivity
[3;4;5].

4. Conclusions

The investigations show that today by means
of software using instrument computers it is
possible to correct the behaviour of measuring
systems. In the first part the principles as well
as the limitations due to parameter variations
and allpass-systems were demonstrated.
Practical results of temperature sensors are
given.

These methods leading to the so-called
optimal filters with the criterion of a
minimum total mean-square error then were
expanded using the criterion of channel
capacity or information flow. With an
example it is shown that now the optimum is
shifted to higher degrees of correction.
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