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Abstract

The thermal and kinetic aspects of solid state decomposition reactions can be complex and posses a large
number of parameters to investigate.  The determination of the activation energies for the several
intermediates in the thermal decomposition is particularly sensitive to the overlap in thermal decomposition
traces. To overcome this problem we have undertaken the detailed kinetic analysis of the well-known
thermal decomposition of calcium and strontium oxalates and mixtures of both. Indeed, their small
difference in decomposition temperatures, from oxalate to carbonate, allowed us to simulate overlapping
TGA signals and to use these data to test the validity of the experimental conditions and mathematical
methods used to derive calculated kinetic values.
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1. Introduction

Knowledge of kinetic parameters, such as the reaction rate and activation energy, is one of the keys to
determine the reaction mechanisms in solid phases. When changes in the mechanisms are observed, this
can lead to a unique characteristic and hence a better knowledge of the materials.
Besides this, there are also more practical reasons to know the reaction rates and their temperature
dependence. The industry needs measurements of those parameters for the accurate design of
installations and treatment conditions, because augmentation of temperature or elongation of reaction
time means more costs. Using an appropriate mathematical expression, the TA-experiments can be
applied for the modeling of industrial thermal processes. The results of the kinetic investigation of
thermoanalytical reactions in the solid state can also be applied to problems as useful lifetime of
certain components, oxidative and thermal stability and quality control.

During our prior thermoanalytical studies of the decomposition kinetics of nitrate precursors for the
synthesis of ceramic high temperature superconductors (HTSC) we were confronted with the ubiquitous
presence of consecutive reactions in the solid state. Although spray drying of aqueous nitrate solutions was
demonstrated to result in very reactive precursor materials, the determination of activation energies for the
several intermediates in the thermal decomposition is particularly sensitive to the overlap in thermal
decomposition traces. The thermal and kinetic aspects of these decompositions are complex and possess a
large number of parameters to investigate.
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2. Subject and Methods

To overcome the problems concerning the overlap of consecutive reactions we have undertaken the
detailed kinetic analysis of the well-known thermal decomposition of calcium and strontium oxalates and
mixtures of both. Indeed, their small difference in decomposition temperatures, from oxalate to carbonate,
allowed us to simulate overlapping TGA signals and use these data to test the validity of the experimental
conditions and mathematical methods used to derive calculated kinetic values.

In order to obtain the highest quality values for kinetic parameters from thermal analysis (TA) data, the
combined use of simultaneous thermogravimetric and differential thermal analysis (TGA-DTA), evolved
gas analysis by mass spectrometry (EGA-MS), high temperature X-ray diffractometry (HT-XRD)* and
thermomicroscopy (TM) is advocated.
Thermal analysis is defined as [1]: a group of techniques in which a property of the sample is monitored
against time or temperature while the temperature of the sample, in a specified atmosphere, is programmed.
TGA is a technique in which the mass of the sample is monitored, while DTA monitors the difference in
temperature between the sample and a reference material. EGA is a technique in which the nature and/or
the amount of gas or vapor evolved from the sample is monitored, by MS in our case. An even more
adequate technique is the direct identification of the (intermediate) decomposition products by HT-XRD*.
And last but not least thermomicroscopy (TM), by means of an optical metallurgical polarizing microscope
equipped with heating stage, is indispensable in the study of solid state kinetics. It is essential to interpret
observations with due consideration of the possibility that the material may undergo a loss of structural
order at elevated temperature, i.e. melting [2]. TM observations are also required to supplement
conventional kinetic data in the formulation or determination of a reaction mechanism or reaction model
[3]. Such model is needed in the mathematical model fitting methods to calculate the kinetic parameters
(see below).

Several mathematical methods are compared for calculating the kinetic parameters of solid state reactions:
isothermal and non-isothermal, model fitting and model-free methods.
The kinetic parameters of thermal decomposition reactions of some oxalates, i.e. the activation energy E,
pre-exponential factor A and reaction model f(α), were determined under isothermal and non-isothermal
conditions. The mathematical methods to process the TA data can be divided into model fitting and model-
free methods. The model fitting approach has the advantage that only one TA measurement is needed.
However it suffers from an inability to determine the reaction model uniquely [4]. In spite of this
unreliability, it�s a quick method to become a first indication of possible values for the kinetic parameters.
The alternative model-free methodology is based on the isoconversional principle. The use of these
methods helps to avoid the problems that originate from the ambiguous evaluation of the reaction model.
The model-free methodology allows the determination of the dependence of the activation energy on the
extent of conversion and permits reliable mechanistic conclusions to be drawn [4]. A negative aspect is the
need for at least 3 TA experiments what makes it more time consuming.

We also simulated the thermal decomposition reactions with the stochastic simulation package CKS
(Chemical Kinetics Simulator). After the input of the sequence of consecutive reactions in conventional
chemical notation, the calculated kinetic parameters for each step, and the run conditions, CKS simulates
the changes in the system by randomly selecting among the reaction steps and using probabilities derived
from rate laws for each step in the mechanism.
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3. Results

The solid state reactions we have studied are the thermal decomposition reactions of calcium- and
strontium oxalates and their mixtures. The CaC2O4.H2O was synthesized by a precipitation reaction.
Ca(NO3)2.4H2O and (NH4)2C2O4.H2O water based solutions were brought together dropwise under
continuous stirring followed by the CaC2O4.H2O precipitation. The SrC2O4.xH2O, i.e. a mixture of
SrC2O4.H2O and SrC2O4.2,5H2O according to X-ray powder diffractometric characterization, was
synthesized in a similar way with a Sr(NO3)2 solution. We also made mechanical 1/1 and 1/2 mixtures of
the CaC2O4.H2O and SrC2O4.xH2O powders.
Finally, CaxSr1-xC2O4.yH2O solid solutions were synthesized by bringing together the three solutions
dropwise under continuous stirring to co-precipitate. The obtained results were compared with the
mechanical mixtures. Finally we are also planning to spay dry mixtures of CaC2O4.H2O and SrC2O4.xH2O
to achieve an intermediate  situation.

During the thermal decomposition of CaC2O4.H2O there are three reaction steps visible at increasing
temperature, corresponding to the loss of H2O, CO and CO2 , respectively:

step 1:   CaC2O4.H2O (s) → CaC2O4 (s) +  H2O (g)
step 2:   CaC2O4 (s) →  CaCO3 (s) + CO (g)
step 3:   CaCO3 (s)  →  CaO (s)  +  CO2 (g)

The thermal decomposition of SrC2O4.xH2O is similar to that of CaC2O4.H2O with these remarks:
- The dehydration takes places in two consecutive steps.
- The following consecutive decomposition steps of the oxalate and carbonate occur at higher

temperatures.

The small difference in decomposition temperatures (figure 1 left) for the decomposition of these oxalates
to the respective carbonates allowed us to simulate overlapping TGA-signals by mechanically mixing (1/1
mixture) the oxalates of calcium and strontium and to compare the extracted kinetic parameters with those
from the individual oxalates (figure 1 right).
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The dependence of the activation energy on the extent of conversion for the decomposition of the oxalate
mixture (triangles) is not yet fully understood. In the first half of the curve the value of Eα decreases, what
can be understood because the fraction of decomposing strontium oxalate, which has a smaller activation
energy than calcium oxalate, will increase. The second half of the curve, i.e. the decrease of Eα, mixture below
values of Eα, strontium oxalate, can�t be explained up till now.

The more reliable �model-free� kinetic parameters, calculated with the model-free methods, were entered
in the stochastic simulation package CKS and the simulated TGA-traces of the decompositions were in
good agreement with the measured TGA-traces.

4. Discussion / Conclusions

These individual and mixed oxalates allowed us to understand the dependence of the activation energy on
the extent of conversion and to extract reliable kinetic parameters which were in good agreement with the
literature.
In correspondence to [4], the use of slow heating rates allows one to narrow the temperature range of a
non-isothermal experiment and this may help to conduct the isothermal and non-isothermal experiments
over comparable ranges of temperatures and to reduce the quantitative difference between the
dependencies of the activation energy on the extent of conversion derived from isothermal and non-
isothermal experiments.
The overlap in thermal decomposition traces can result in large variations of the activation energy with the
extent of conversion. The degree of overlap and thus, the dependence of the activation energy on the extent
of conversion can be influenced by altering the experimental conditions of the measurements, e.g. heating
rates, partial pressure of reactive atmospheric components.
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