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Abstract. A simulation comparison of the Henze test with the extreme quantile test for testing the
hypothesis that the sample is drawn from the Cauchy distribution, is presented. The results suggest
that the extreme quantile test is better for the sample sizes n ≤ 50, while the Henze test is better for
n ≥ 100.

Suppose that x1, . . . , xn is a random sample. By the null hypothesis H0 it is understood throughout the

paper that the sample is drawn from a Cauchy distribution with unknown parameter µ of location and

unknown parameter σ of scale. As usual, by Cauchy distributions we understand the probabilities on real

line, corresponding to the distribution functions

F (x, µ, σ) =
1
2

+
1
π

arctan(
x− µ

σ
) , µ , σ ∈ R , σ > 0 . (1)

Let

Fn(x) =
1
n

card {j; j ≤ n, xj ≤ x } (2)

denote the empirical distribution function. The null hypothesis is in Section 4.14 of [2] recommended to

be tested by means of the Anderson-Darling test statistic

A2 = −n− 1
n

n∑
i=1

(2i− 1) log
(
Z(i)(1 − Z(n+1−i))

)
, (3)

where Z(1) ≤ . . . ≤ Z(n) are order statistics computed from

Zj = F (xj , µ̂, σ̂) , j = 1, . . . , n . (4)

Here F is the function (1) and the estimators

µ̂ =
n∑

i=1

gnix
(i)
n , gni =

1
n
G
( i

n + 1

)
, (5)

G(u) =
sin(4π(u− 0.5))
tan(π(u− 0.5))

= −4 sin2(πu) cos(2πu) ,

σ̂ =
n∑

i=1

cnix
(i)
n , cni =

1
n
J
( i

n + 1

)
, (6)

J(u) =
8 tan(π(u− 0.5))
sec4(π(u− 0.5))

= −8 cos(πu) sin3(πu)
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are the ones proposed in [1], x(i)
n is the ith order statistic computed from x1, . . . , xn. As has already been

mentioned on pp. 72 - 73 of [5], for the constants from (5) the equality
∑

i gni = 1 does not hold and

therefore (5) is not an equivariant estimate of the location parameter. Consequently, the distribution of

(3) depends in this case on the parameter of the sampled Cauchy distribution (simulations show that it

depends on the ratio µ/σ). When the constants c(α, n) from the Table 4.26 on p. 163 of [2] are used,

then according to the simulation results from p. 73 of [5] for µ = 20, σ = 1 and n = 50

P (A2 > c(0.1, 50)) = 0.57 ,

and similarly by simulation one can find out that for µ = 20, σ = 1 and n = 100

P (A2 > c(0.1, 1000)) = 0.41 ,

(where c(α, n) is obtained for sampling from the Cauchy distribution with µ = 0, σ = 1). These values

are far above the nominal level α = 0.1, the same effect can be observed when the asymptotic constants

c(α,+∞) are used.

Another test of the mentioned null hypothesis has been proposed in [3]. This test is based on the

statistic

Dnλ = n

+∞∫
−∞

∣∣∣Ψn(t) − e−|t|
∣∣∣2 e−λ|t| dt , Ψn(t) =

1
n

n∑
j=1

eitYj ,

where

Yj =
Xj − µ̂

σ̂
. (7)

According to the formula (1.4) on p. 268 of [3]

Dn,λ =
2
n

n∑
j=1

n∑
k=1

λ

λ2 + (Yj − Yk)2
− 4

n∑
j=1

1 + λ

(1 + λ)2 + Y 2
j

+
2n

2 + λ
, (8)

and the estimates

µ̂ =




x
(k)
n + x

(k+1)
n

2
n = 2k ,

x
(k+1)
n n = 2k + 1 ,

(9)

σ̂ =
ξ̂0.75n − ξ̂0.25n

2
(10)

are used, where (cf. (2))

ξ̂pn = inf{t; Fn(t) ≥ p } (11)

denotes the sample pth quantile. The Gürtler-Henze test rejects the null hypothesis if Dn,λ > d(n, λ, α),
where under validity of H0

P (Dn,λ > d(n, λ, α)) = α . (12)

Independently of [3] another test for testing H0 was presented in [6]. This test is an inuitive modification

of the quantile test from [5] and the results of [5] are derived by means of the general theory of the

quantile test from [4].

Suppose that µ̂ is the median (9), σ̂ is the trigonometric estimate(6) and

∆n =
(
F (x(1)

n , µ̂, σ̂) − 1
n + 1

, F (x(n)
n , µ̂, σ̂) − n

n + 1

)′
, (13)

50



MEASUREMENT SCIENCE REVIEW, Volume 3, Section 1, 2003

where F is the function (1). Further, put

Σn = An + Gn , (14)

where

An =

(
a11 a12

a21 a22

)
, aij = min{pi, pj} (1 − max{pi, pj}) , p1 = 1

n+1 , p2 = n
n+1 ,

Gn =

(
g11 g12

g21 g22

)
,

gij =
sin2(piπ) sin2(pjπ)

4
− sin2(piπ)

2
min{pj , 1 − pj}−

− sin2(pjπ)
2

min{pi, 1 − pi} − sin(2piπ) sin(2pjπ)
2π2

.

(15)

By means of Theorem 1.2 of [5] for n > 2 one easily finds out that for n > 2 the matrix Σn is regular.

The test statistic presented in [6] is

Qn = n∆′
nΣ

−1
n ∆n (16)

and the null hypothesis H0 is rejected whenever

Qn > q(α, n) . (17)

Here the constant q(α, n) fulfills under the validity of H0 the equality

P (Qn > q(α, n)) = α , (18)

the values of q(α, n) for selected α and n can be found in Table 3 of [6].

The following table contains simulation estimates of the probabilities of rejection (cf. (8)–(11), (12)

and (13)–(16), (18))

rD = P (Dn,λ > d(n, λ, α)) , rQ = P (Qn > q(α, n)) ,

where λ = 5 and α = 0.1 (according to the simulation estimates from [3] the value λ = 5 turns out to

be an optimal choice of λ). All the simulations have been carried out by means of MATLAB, version

4.2c.1 with N = 10000 trials for each particular case, except for the values of rD for n = 100 and

n = 200, which are taken from [3] (and based also on N = 10000 trials). The alternatives considered in

the following table are those defined on pp. 279–280 of [3].
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n 20 50 100 200

rD rQ rD rQ rD rQ rD rQ

N(0,1) 0.46 0.52 0.97 1 1 1 1 1
NC(0.1,0.9) 0.1 0.11 0.09 0.12 0.1 0.11 0.11 0.11
NC(0.3,0.7) 0.09 0.13 0.12 0.17 0.19 0.17 0.32 0.16

NC(0.5,0.5) 0.1 0.17 0.24 0.28 0.48 0.28 0.79 0.28

NC(0.7,0.3) 0.17 0.25 0.53 0.51 0.86 0.51 0.99 0.51

NC(0.9,0.1) 0.33 0.40 0.87 0.88 1 0.88 1 0.87

Student(2) 0.13 0.17 0.36 0.53 0.7 0.8 0.96 0.93

Student(3) 0.20 0.23 0.62 0.81 0.95 0.98 1 1
Student(4) 0.25 0.29 0.77 0.91 0.99 1 1 1
Student(5) 0.28 0.33 0.83 0.95 1 1 1 1
Student(7) 0.34 0.38 0.89 0.98 1 1 1 1
Student(10) 0.38 0.42 0.93 0.99 1 1 1 1
Tukey(1) 0.13 0.09 0.14 0.07 0.18 0.06 0.23 0.05

Tukey(0.2) 0.21 0.25 0.65 0.84 0.96 0.99 1 1
Tukey(0.1) 0.31 0.35 0.86 0.97 1 1 1 1
Tukey(0.05) 0.38 0.43 0.93 0.99 1 1 1 1
Uniform 0.84 0.95 1 1 1 1 1 1
Logistic 0.34 0.38 0.90 0.99 1 1 1 1
Laplace 0.18 0.19 0.55 0.85 0.93 1 1 1
Gumbel 0.39 0.61 0.97 1 1 1 1 1

The table shows that for sample sizes n not larger than 50 the extreme quantile test proposed in [6] gives

for overwhelming majority of the considered alternatives better results than the Henze test and therefore

for these n the extreme quantile test should be used. For n about 100 the number of alternatives for which

the given test is better than the other is approximately the same both for the extreme quantile and for the

Henze test, but since the performance of the later test in the cases when it is more powerfull turns out to

be more striking than the performance of the extreme quantile test in the cases which are in his favour

(for n = 200 the situation is in favour of the Henze test), for n ≥ 100 the Henze test should be used.
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