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Abstract. Statistical properties of the assessments of the geometric accuracy of the machined profile 
are investigated in this work. The cases when a distribution of the measured deviations differs from 
the normal distribution are especially considered. Among such cases, of fundamental importance is 
the case when the deviations of the profile described in the form of the Fourier series expansion 
represented by a sum of few harmonics. A set of the point positions within the minimum zone is 
considered as a random sampling, and the width of the minimum zone presents the sampling range. 
Additionally, information about the power spectrum of the measured profile is applied for numerical 
estimations of the uncertainty of the measured profile. As an application example, statistical 
properties of the deviations of the 2D machined (milled or ground) profile are considered. This case 
is characterized by an interesting interrelation of the uncertainty components caused by cumulative 
error and cycle error deviations.  
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1. Introduction 

 
Modern international and national standards use the tolerance-zone-based models for assessments of 
geometric accuracy. The assessments are based on a set of real-life measurements on coordinate 
measuring machines and calculated as a range of the measured sample. Since a calculated value of the 
estimated range depends on the number and location of points on the measured part, the standard 
assessment represents a sample-based random variable and must be accompanied by an estimation of 
the uncertainty associated with the sample [1].  
 It is a common knowledge that the normal distribution model is usually used for description of the 
dimensional accuracy. This model is also often applied for assessments of the form accuracy. In a 
number of cases, however, the normal distribution model corresponds poorly to actual measurements 
of geometric accuracy [2]. These data testify that the distribution model calls for further investigation. 
Obviously, alternative models have to be considered for these cases. Since the distribution is 
completely specified by a physical model of the estimated random variable, the investigation is closely 
related to a specific type of geometric accuracy.  
 In this paper, the geometric accuracy assessment of circular profile machined by 2D tracing on 
milling or grinding machine tool is considered. The profile deviations are described in the form of the 
Fourier series expansion. The resulting distributions are studied using the theory of random functions. 
Important practical cases, in which a spectrum of roundness deviation includes few harmonics, need 
special consideration since their distributions differ essentially from the normal distribution. An 
uncertainty-related analysis is based on interpretation of the minimum zone as a sample range, which, 
in turn, depends on the distribution function and the number of measurements.  
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1. Presentation of circular profile deviations  
 
Since locating a set of points of the coordinate measuring machine measurements is fixed 
independently of the phase of profile deviations, the current deviation in the ith point of measurements 
(i = 1,...,N) presents a function of the random phase angle ϕ uniformly distributed between 0 and 2π. 
Therefore, the set may be interpreted as a statistical sample of size N consisting of elements δi. If an 
eccentricity component is eliminated, the roundness deviation may be represented as a centered 
polyharmonic function composed of n random-phase sine waves over the profile angle ϕ:  
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where n is the number of harmonics describing the profile deviations; ak is the magnitude of the kth 
sine wave, pk > 1 is its frequency, and ζk  is the non-random phase angle. The deviation δi presents the 
current value of function (1), i.e., δi = δ(ϕi). 

In the case of equal magnitudes (a1 =…= an = a), an uncertainty estimation for random variable 
(1) may be calculated using a confidence coefficient P{|δ| ≤ λna} corresponding to a condition that the 
random variable δ lies within the interval ±λna with the probability:   

 
                                                                                 (2)    
 
 

where J0(z) is the Bessel function of order zero and λn is the magnitude factor.  
Four curves for estimation of limit 
deviations corresponding to four 
different distribution models vs. the 
number n of harmonics constituting the 
deviation, Eq. (1), are shown in Fig. 1. 
The first curve presents the sum of the 
amplitudes Rex=2Σak, i.e., the physically 
possible boundaries. The second curve 
describes the six-sigma deviation when 
the normal distribution hypothesis is 

applied, Rlim = 6[(∑
=

n

k
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2 )/2]1/2. This case 

may be practically used when the number of 
harmonics in the Eq. (1) is at least more than 8 – 

10. The third and fourth curves show the exact limit deviations of the sum of n harmonics calculated by 
Eq. (2) for two confidence levels P = 0.95 and 0.9973, respectively. The 99.73% confidence level is 
assumed to be the exact tolerance value. A comparison shows that the limit magnitude factor λn,0.9973 

converges to the normal-based limit estimation 3σ when the number n increases. For example, if 
profile is formed by single-harmonic disturbance and the normal distribution model is applied, the limit 
estimation will be overestimated by 110%, furthermore, when n = 2 overestimation is about 50%, and 
for n = 4 it is about 10%. 
 
2. 2D Contour machining: the profile error model 
  
Let us consider the profile deviations for the practically important 
case of the 2D profile machining. The machined profile is assumed 
to be formed by two coordinate motions. The issues of the motion 
errors affected on the machined profile deviations are the lead screw 
pitch errors δs. It may be represented as a sum of cumulative error 
δcum and periodical error δper (Fig. 2): 

Fig. 2 Lead screw error model                                
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   Fig. 1 Magnitude factor vs. the number of  
harmonics n . 
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where x is the displacement along the X-axis, ;0 lx ≤≤  l is the interval of machining. The lead screw 
errors are actual along the interval l, i.e. sum Dw + Dg of diameters of wheel and workpiece for external 
machining, and difference Dw - Dg of these diameters for internal machining.    
 Affect of the errors of the lead screw on the machining profile deviations is described by following 
formula: 
 

                   (4)  
 

          +ap cosϕ sin(kπcosϕ + λ1) + bp sinϕ sin(kπsinϕ + λ2)  
 
The cumulative error of the screw results in regular low-frequency harmonics, while the periodical 
error may be presented as double-sine function f (ϕ) = sin(kπsinϕ + λ). 

A comparison of the three density distribution functions is given in Fig.3. The cases when 
deviation function (1) has n = 1 and n = 2 are given in Figs. 3a and 3b, respectively. The density of 
double-sine function f (ϕ) = sin(πsinϕ + λ)(Fig. 3c) is distinguished from the arcsine distribution (Fig. 
3a) by the peak in the center area from the arcsine distribution. 

 
 
 

   
   
 
 
 
 

                                                                                         
                            (a)                                           (b)                                          (c) 

 
Fig. 3 Distribution density functions: (a) arcsine distributions, (b) distribution of sum of two  

harmonics with equal amplitudes, (c) double-sine function  f = sin (π sin ϕ + λ)  
 

 
3. Experimental investigation: accuracy of the 2D machined profile  
 

The results of the standard control tests of contour 
grinding machine (Fig. 4) were used for investigation of real 
deviations distributions. This machine tool grinds two-
dimensional curves by cylindrical grinding wheel of diameter 
Dg = 100 mm. Diameter of the machined cylinders are Dw,e = 
165 mm and  Dw,i = 125 mm, for the external and internal 
machining, correspondingly. The horizontal motions are 
carried out by lead screws with pitch p = 12 mm. The schemes 
of the external and internal profile machining, profiles 
deviations and probability density function of these deviations 
are shown in Fig. 5a and 5b, correspondingly.    
                     Fig. 4 Contour-Grinding Machine [3] 
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Fig. 5 Schemes of the machining, profile deviations and probability density function for 

 (a) external , and (b) internal profile machining 
 

Referring to Fig. 5a, external machining of the circle profile gives the elliptical basic deviation caused 
by cumulative error with periodical error caused waviness. The corresponding density curve is typical 
for profile with about two dominant harmonics (Fig. 5a). In the case of internal grinding (Fig. 5b), 
there is only one dominant harmonic in the profile deviations. The reason is that the active interval of 
table motions is relatively small. For comparison, the basic frequency of periodical error for the 
external machining is 2k = 2(Dw,e+Dg)/p = 2(165+100)/12 = 44.2, while the corresponding frequency 
for the case of internal machining is 2k = 2(Dw,i-Dg)/p = 2(125-100)/12 = 4.2. Note that the simulation 
results (Fig. 3c) are close to the obtained distribution.  
 
 
4. Conclusions 
 
The normal distribution model is valid only when the measured profile consists of wide range of 
harmonics with magnitudes of the same order. However, in many important practical cases, a 
spectrum of roundness deviation includes few harmonics and, therefore, the resulting distribution 
differs essentially from the normal one. Distribution histograms of the deviations of the measurements 
results offer important information about the number of the dominant harmonics, and, therefore, about 
uncertainty of the geometric accuracy assessments. However, a model of assessment uncertainty may 
be formed if the physical model of error issues is known. As an example, the uncertainty model for the 
2D machining of the circular profile is investigated. In this case, the total error includes both regular 
harmonics and double-sine harmonics.     
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