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Abstract. The formula for uncertainty estimation of the result of a ratio-metric measurement 
is derived. The result uncertainty decisively depends on the knowledge of the statistical 
correlation between the measurements by two measuring chains, assumingly of same kind and 
same metrological quality. A calibration procedure is stipulated and a practical example is 
treated, based on some recently published data. The same approach could be used in other 
ratio-metric measurements and such measurement calibration procedure as well. 
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1. Introduction 
Measurement uncertainty analysis and calculation (older term measurement error analysis) is 
in general governed by the “Guide to the Expression of Uncertainty in Measurement “GUM” 
of 1995 [1] and subsequent standards. This topic is explained in numerous textbooks and 
papers on Measurement Science, e.g. [2–4].  

Some measurement methods are based on determination of the ratio of two measurements of 
the same kind, i.e. measuring some sort of energy transmissibility through a dynamical 
system, for example input and output voltages, two acoustic pressures, two vibratory 
accelerations, etc. Hence for this measurement two measuring chains of the same kind and of 
similar metrological properties are used, consisting of sensor of a specific physical quantity, 
instrumentation and the evaluating instrument or computer system. The result of the 
measurement is a pair Pi of measured values xi, yi as particular realization of random set ξ, η 
of all possible values. The resultant ratio zi = xi/yi is computed and taken into account as the 
single measurement result, i.e. realization of the random variable ζ = ξ/η at the point Pi, with 
absolute uncertainty uζ.  

The measurement system is usually calibrated beforehand – the two sensors mentioned are 
subjected to a stable and reproducible etalon signal, generated by a calibrating device and the 
pair of so obtained values xc, yc is subjected to the division procedure. The required result, due 
to the nature of the calibration process has to be unity; any deviation from this value is due to 
the calibration uncertainty. A major deviation from unity would indicate malfunction. This 
calibration procedure can be independently repeated couple of times under controlled 
conditions and in this way the absolute uncertainty of variable ξ – uξ and of value η – uη 
respectively can be obtained. The calibration procedure is schematically depicted in Fig. 1.  

What concerns the uncertainty influence (both A-type uncertainty due to statistical variance 
of repeated measurements and B-type uncertainty due to influence of the ambient) on each of 
the two measuring chains of the same kind the influence is not independent of each other. So, 
for example, if the ambient temperature increases the value measured by each of the 
measuring chains would be changed in the same manner, albeit with slightly different 
magnitude. Hence the ratio would be influenced by this change. Hence, it can be inferred, that 
the variables ξ, η are not statistically independent, but there is a certain degree of correlation, 
which has to be taken into further account [4, 5]. 
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Fig. 1. Ratiometric calibration procedure (S1, S2 - sensors; MS1, MS2 – measuring systems; x, y – readouts) 

2. Uncertainty analysis 

The absolute uncertainty analysis is based on the standard approach – the ratio ζ of the two 
measurements ξ, η is expanded into a Taylor series around the point Pi and only the linear 
terms are further considered: 
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Then the sum of squares addition is performed, as given by the error propagation law [1–3, 
5]: 
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where the partial derivation values (the so called sensitivity coefficients) are taken for the 
particular paired values at point Pi and variable cov(ξ,η) denotes the statistical correlation 
between the variables ξ and η. When the respective partial derivations are evaluated, then: 
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This can be expressed also as: 
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where ρξ,η is the correlation coefficient between variables ξ and η. 

If relative uncertainties δζ, δξ, δη are introduced, then the expression (4) can be rewritten as: 
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i.e.:  
ηξηξηξξ ,

222 2 ρδδδδδ −+= ,      (5b) 
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wherefrom the definitions of respective relative uncertainties δζ, δξ, δη are obvious.  

Three distinctive cases can be resolved: 

 i. No statistical correlation between the two measuring chains, i.e. ρx,y = 0: 

,22
ηξζ δδδ +=       (6a) 

which is essentially the standard relative uncertainty propagation formula of a result 
obtained as a ratio of two independent measurements. If, as assumed, both measurement 
chains are of the same kind and their measurement uncertainty (obtained by an 
independent approach, or stated by the manufacturer in the documentation) is δm, then 
δζ = √2δm. 

ii. If full statistical correlation between the two measuring chains is assumed, then ρx,y = 1, 
and from formula (5b) follows: 

ηξηξηξζ δδδδδδδ −=−+= 222 .    (6b) 

If, as assumed, δξ = δη = δm, then from formula (6b) follows δζ = 0 and so also uζ = 0. 
This result is true only if the validity of the ρx,y = 1 assumption is reasonably justified.  

iii. A specific case corresponds to ρx,y = 0.5 and δξ = δη = δm. Then from (4b) follows:δζ = δm. 

To conclude - ratiometric measurement with measurement chains of the same kind, having 
same metrological properties (i.e. same relative measurement uncertainty) assuming total 
uncertainty correlation, would be free of any uncertainty. If the value of ρ = 0.5 would be 
stipulated then δξ = δη = δζ = δm. The exact knowledge of the correlation coefficient is hence 
crucial for proper uncertainty assessment.  

The evaluation of the correlation coefficient value ρx,y can be furnished experimentally - by 
repeating independently the calibration procedure N-times, recording the set of measured 
values xi, yi, i = 1, 2, …, N and subjecting these values to analysis, as described e.g. in [2, 5]. 

3. Calibration uncertainty assessment example  
Introduction 

The following example is pertinent to evaluation of vibration influence on the human body, 
seated in an upright position in suspended and cushioned seat, used for various mobile 
working means, e.g. industrial trucks, agricultural and forest tractors, earth moving 
machinery, lorries, busses, on-road trucks, railway engines and carriages, etc. The evaluation 
procedure is specified in the general standards ISO 30326-1 and ISO 30326-2, describing the 
test codes to be followed. Hitherto none of these standards deals directly with uncertainty 
assessment. Only recently some large-scale inter-laboratory comparisons were undertaken, 
resulting in a rather wide spread of results [6]. Also a Standard on instrumentation used (so 
called “Human vibrometers”) – ISO 8041:2005 is in preparation, in which some mandatory 
constraints on the calibrator uncertainty are given. Specifically the Annex A quotes a part of 
the “GUM” [1], to be followed in estimating calibrator uncertainty. In further some, hitherto 
available, data [6] will be used for uncertainty assessment for this class of applications. 

Calibration procedure 

The calibration is furnished by mounting the two, accelerometers of the same kind and similar 
metrological properties onto the calibrator device and subjecting to a calibration run, as 
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depicted in Fig. 1. Due to this nature of calibration it can be assumed, that the measurements 
are correlated and have the same tendency. Alternatively, it could be assumed, that the 
measurements are not correlated at all as the worst case. The calibrator uncertainty influences 
both accelerometers in the same way and is not correlated with either of these. Hence: 

i. For totally un-correlated measurements ρx,y = 0 and measurement uncertainty is governed 
by formula (6a). The calibrator uncertainty has to be excluded, as contributing to both in 
the same manner. If measurement chain relative uncertainties identity is assumed then 
δzp = √2δm. If the value of δm = 4 % as given in [6] is used for the calibration procedure 
follows: δC = √2⋅0.04, i.e.: δC ≈ 5.66 %. 

ii. For fully correlated measurements which posses the same tendency, ρx,y = 1; hence the 
uncertainties of two identical measuring chains would cancel out and: δC = 0.0 %. 

iii. The real measuring system uncertainty would be between the above bounds. To be more 
specific it could be reasonably assumed that the correlation between the two measuring 
chains would be somewhere between 0.5 and 0.8 [7]. Then the calibration relative 
uncertainty estimation would be between 2.5 % and 4 %.  

4. Conclussion  
Formula for relative uncertainty assessment of the result of a ratio-metric measurement has 
been derived. The result uncertainty decisively depends on the knowledge of the statistical 
correlation between the measurements by two measuring chains, assumingly of the same kind 
and of the same metrological properties. A calibration procedure has been stipulated and a 
method on estimating the statistical correlation in a particular case was hinted at. A 
practically important case was treated using some recently published data. The same approach 
could be used in other ratio-metric measurement calibration process as well. 

The author is indebted to Prof. G. Wimmer, DSc of the Mathematical Institute of SAS for his 
valuable suggestions. 
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