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Abstract. Most state-of-the-art cardiac telemonitoring systems lack the automated process of 
analyzing recorded data for electrode reversal. Although some methods exist to cover a very 
limited number of possible reversal cases like the detection of lead I reversal, these methods 
are totally unaware of any personalized a priori information on the ECG signals of the 
person monitorized and rely solely on lead signal parameters and properties – GRI and 
Marquette criteria inspection or training ANNs [1]. This paper will describe the concepts of 
the method developed to detect and recover incorrectly recorded ECG signals using 
previously recorded data. Some details on system operation and architecture will be also 
included. Results include probability of over 90% of detecting lead reversal. 

Keywords: ECG recording, electrode misplacement/reversal detection, signal recovery 

1. Introduction 
The workflow of the remote monitoring process is shown in figure 1. For each patient, 
baseline measurements and medical diagnosis are made by the monitoring service; 
correspondent risk factors are also recorded [2,3,4]. Baseline measurements are used for the 
basis of comparison with the follow-up measurements. 

 
Fig. 1. The workflow of the remote monitoring process. 
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Home measurements are done via the patient care unit connected with a Bluetooth capable 
mobile phone or computer. Each measurement is transferred to the Intelligent Data Center 
where the collected data is automatically evaluated. The time interval between measurements 
is predefined; however the patient can fire measurements at any time, for example in the case 
of chest pain. The time interval between measurements can be changed remotely from the 
Data Center. There is a need for additional signal processing on the recorded ECG before 
evaluation to correct smaller errors of misplacement or to filter and to generate an average 
period of the quasi-periodic signal. In case of an alert, the evaluated ECG is transmitted to the 
cardiologist at the monitoring service, who can take immediate actions, if necessary. The 
incoming measurements are acknowledged by the monitoring center in form of SMS or e-
mail transferred to the patient. All measured data is stored in the database and General 
Practitioners can access all their patients’ Electric Patient Record (EPR). 

2. Subject and Methods 
The most common mistake regarding to home measurements is the misplacement of the color-
coded electrodes. Our method deals with the problem, when the electrodes are placed 
accurately on the body, but the order of the colors referring to body positions are 
interchanged. The diagnostic procedure of the system will fail if the electrodes are placed in 
wrong order. Because of the electrode reversal, the recorded signal can either show a large 
bias or suggest malignant acute pathological condition from smaller but significant waveform 
alterations. 

A three lead ECG patient unit with four electrodes is used for home measurements. The four 
electrodes have different colors to facilitate correct electrode placements in definite positions 
on the body. Those are the left shoulder, right shoulder, left leg and the V2 lead point on the 
chest. There are 24 different permutation of assigning the four color-coded electrodes to the 
four points of the body. Our aim was to develop an algorithm, which is capable of efficiently 
recognizing electrode reversal while not being computationally expensive on the server-side. 

We have tested how the shape of the signals recorded in the 23 wrong positions correlate to 
the correct ones. 

 

Fig.2.: Correlation matrix in case of electrode reversal on the left leg and right hand 

The investigation involved the generation of the 24 possible signals from 150 previous 
measurements and the calculation of the correspondent correlation matrixes. In most of the 
reversals, the correlation matrixes show significant similarities, thus revealing the reversal 
itself. 

A sample correlation matrix (see Fig.2.) shows the error caused by mixing the positions of the 
electrodes for the right hand and left leg. We defined the 24 correlation matrixes according to 
our test measurements. Whenever a new measurement is taken, a correlation matrix is 
calculated referring to the similarities of the measured and the baseline data. The calculated 
matrix is compared to the 24 pre-defined matrixes and the measurement is classified, by 
statistical methods. 

 Lead I Lead II Lead V2 

Reversed Lead I 0.89 1.00 0.57 

Reversed Lead II 1.00 0.89 0.51 

Reversed Lead V2 0.51 0.57 1.00 
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The correct I, II, V2 values can be calculated from the measured Ir, IIr, V2r, using equation 
(1), where Mi is the electrode reversal matrix. The Mi matrix is calculated for all reversal 
cases using matrix-inversion methods. 
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Whenever an electrode reversal is made, if it can be classified with confidence, then the 
recorded signals can be corrected. In case of uncertainty about the classification, the patient 
can be ordered to check the placement of the electrodes and repeat the measurement. The 
automatic conversation is done by the endorsement of the cardiologist at the measurement 
center. 

Classification methods were used to set up different group centroids for the different reversal 
groups, then to identify the measured reversal case. Different methods were tested to set up 
classification groups – linear, quadratic, Mahalanobis – resulting in different efficiencies of 
recognition. Separated training and sample groups were also used to cross-validate the 
methods. The total dataset used includes 1500 ECG measurements (60 sec., 600Hz, 3-lead) of 
10 healthy male subjects (aged between 18 and 26) with a single baseline measurement (60 
sec., 1000Hz, 12-lead) for each subject. The 10 subjects were monitored for 6 months. 

3. Results 
A relatively small amount of recordings were available to train and test the methods – 1500 
samples for all the 24 reversal groups – this means an average of 60 in every group. As the 
number of samples assigned to a particular group is very low considering the number of 
groups this implies that the classification methods could not have yet been expected to 
provide an acceptable error rate for cross-validation. Further acquisition of data is expected to 
improve reversal recognition and to lower misrecognition error. 

The three different classification functions used were linear, quadratic and Mahalanobis. The 
scenarios included determining correct/incorrect placement of electrodes, the identification of 
reversal setup, both by using the same training and sample set and by using 80% of the 
samples to train and 20% to test the classification functions. 

Our test included multiple runs of 3 different setups: classifications using linear, quadratic 
and Mahalanobis functions. The averaged results for detection of correct – incorrect 
placement yielded the following (see Fig 3.): 

With cross-validation 
80% training – 20% test Linear Quadratic Mahalanobis 
Specificity 75,25% 83,95% 86,62% 
Sensitivity 100,00% 80,00% 50,00% 
No cross-validation Linear Quadratic Mahalanobis 
Specificity 83,55% 90,64% 94,52% 
Sensitivity 95,08% 98,41% 17,14% 

Fig.3.: Specificity and sensitivity of classification using different test setups, functions 

First results show a promisingly high rate of detection of correct vs. reversed placement of 
electrodes. With the measurements divided into these two groups using 80% of the samples to 
train the classification function and 20% to cross-validate it, the classification space could be 
effectively separated by the linear classification function.  
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The following results (see Fig.4.) show the number of recognized reversal groups at specified 
efficiencies using the full reversal set (24 cases). The classification function had to predict 
which group the actual reversal was of. As expected, the linear classification function could 
not fulfill this task, quadratic and Mahalanobis based functions performed almost identically 
effective.   

With cross-validation 
80% training – 20% test Linear Quadratic Mahalanobis 
Over 80% efficiency 2 10 9 
Over 90% efficiency 1 7 4 
No cross-validation Linear Quadratic Mahalanobis 
Over 80% efficiency 0 17 14 
Over 90% efficiency 0 8 7 

Fig.4.: Number of groups detected at different efficiency rates (24 reversal groups total) 

4. Discussion 
These early stage measurements and classification tests already show a high and promising 
rate of lead reversal detection, an artificial intelligence method of the referred remote 
monitoring system to improve measurement reliability and efficiency. The introduced method 
is independent of the underlying architecture, but using this particular setup it would make it 
possible to reliably detect lead reversal with over 95% probability and advise the patient with 
instructions to take at over 80% probability in almost 50% of the reversal cases. 

The introduced tests used measurements from different reliability (reversal measurements 
performed by non-professionals) what implies that this method could further improve with 
acquisition of proper signal samples. The relatively low efficiency values could be accounted 
to the fact that the 1500 measurements originate from different patients and different points in 
time what implies the error of electrode misplacement is significant. The results will also 
most probably show improvement by the reduction of classification variables what will be 
one of the future tasks. 
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