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Abstract: The electroencephalogram (EEG) is useful for clinical diagnosis and in biomedical 
research. EEG recordings are distorted by electrooculogram (EOG) artifacts causing serious 
problem for EEG interpretation and analysis.  An often preferable method is to apply 
Independent Component Analysis (ICA) to multichannel EEG recordings and remove a wide 
variety of artifacts from EEG recordings by eliminating the contributions of artifactual 
sources onto the scalp sensors.  The estimated sources should be as independent as possible, 
for better removal of artifacts from EEG.  In this paper, the actual independence of the 
components obtained from various ICA algorithms like OGWE, MS-ICA, SHIBBS, Kernel-
ICA, JADE and RADICAL are assessed and compared  by a recently introduced Mutual 
Information (MI) Estimator based on k-neighbor statistics without using the probability 
density functions. The results show that RADICAL algorithm performs best at separating the 
source signals from the observed (mixed) EEG signals and is recommended for. 
 
Keywords: Electroencephalogram, electrooculogram,, ocular artifacts, blind source 
separation, independent component analysis,  mutual information 
  

  
 

1. Introduction 
The removal of artifacts or noise in 
biomedical signals like electrocardiogram 
(ECG) and electroencephalogram (EEG) is a 
challenging and a crucial task, and their 
wrong interpretation could prove lethal.  
EEG is a recording of the electrical activity 
of the brain from the scalp.  It gives a non-
invasive insight into the intricacy of the 
human brain and is a valuable tool for 
clinicians for numerous applications, from 
the diagnosis of neurological disorders, to the 
clinical monitoring of depth of anesthesia. 
The EEG is susceptible to various artifacts, 
causing problems for analysis and 
interpretation. In current data acquisition, eye 
movement and blink related artifacts are 
often dominant over other 
electrophysiological contaminating signals 
(e.g., heart and muscle activity, head and 
body movements), as well as external 

interference due to power sources. Eye 
movements and blinks produce a large 
electrical signal, known as electrooculogram 
(EOG), which spreads across the scalp and 
contaminates the EEG. These contaminating 
potentials are commonly referred to as ocular 
artifacts (OA). 
 Numerous methods have been proposed by 
researchers to remove ocular artifacts in EEG 
and are reviewed in [1, 2].  A brief write-up 
about the existing techniques for correction 
of OAs in EEG is given below.  Eye fixation 
method  in which the subject is asked not to 
blink or move his eyes, or to keep his eyes 
close, is often unrealistic or inadequate, and 
is a fact that the subject is concentrating on 
fulfilling these requirements might itself 
influence his/her EEG. Another common 
strategy is to reject all EEG epochs 
containing artifacts larger than some 
arbitrarily selected EEG voltage level.  When 
limited data are available, or when blinks and 
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eye movements occur too frequently, as in 
children, the rejection of epochs 
contaminated with OAs usually results in a 
considerable loss of information and may be 
impractical for clinical data. Since EEG and 
EOG occupy the same frequency band, use 
of analog and digital filters is ineffective. 
Use of potentiometers to balance out the 
effect of eye movements, is subjective, since 
the required adjustments were made 
manually by observing the EEG [3]. 

Traditional ocular artifact correction 
procedures use a regression based approach.  
Widely used methods for removing OAs are 
based on regression in time domain [4, 5] or 
frequency domain [6,7] techniques.  
Regression analyses are used to compute 
propagation factors or transmission 
coefficients in order to define the amplitude 
relation between one or more 
electrooculogram (EOG) channels and each 
EEG channel. Correction involves 
subtracting the estimated proportion of the 
EOG from the EEG. One concern often 
raised about the regression approach is 
bidirectional contamination. If ocular 
potentials can contaminate EEG recordings, 
then brain electrical activity can also 
contaminate the EOG recordings. Therefore, 
subtracting a linear combination of the 
recorded EOG from the EEG may not only 
remove ocular artifacts but also interesting 
cerebral activity. In order to reduce the 
cerebral activity in the EOG, Lins et al. [8] 
suggested low-pass filtering the EOG signal 
used to compute regression coefficients. 
However, they recognized that low-pass 
filtering removes all high frequency activity 
from the EOG signal, both of cerebral and 
ocular origin. A new filtering approach for 
regression based correction using Bayesian 
adaptive regression splines [9, 10] uses a 
locally defined nonlinear filter to remove 
high frequency activity when the amplitude 
fluctuations are small and retain high 
frequency activity when the amplitude 
fluctuations are large. Such adaptively 
filtered EOG essentially isolates activity 
typically associated with ocular artifacts and 
removes cerebral activity. The use of such 

adaptive filtering prior to applying regression 
correction may substantially reduce problems 
from bidirectional contamination. Use of 
adaptive digital filters for OA removal [11], 
also requires a suitable EOG reference model 
for training the filter. 

Another class of methods is based on 
decomposing the EEG and EOG signals into 
spatial components, identifying artifactual 
components and reconstructing the EEG 
without the artifactual components. For 
example, Lins et al. [8] and Lagerlund et al. 
[12] used Principal Component Analysis 
(PCA) to identify the artifactual components. 
In addition, the dipole modeling technique of 
Berg and Scherg [13, 14] used PCA to 
compute topographies of eye activity. 
Statistically, PCA decomposes the signals 
into uncorrelated, but not necessarily 
independent components that are spatially 
orthogonal and thus it cannot deal with 
higher-order statistical dependencies. 
However PCA cannot completely separate 
eye artifacts from brain signals especially 
when they both have comparable amplitudes 
[12].  

 A newer approach uses independent 
component analysis (ICA), which was 
developed in the context of blind source 
separation problems to form components that 
are as independent as possible [15,16]. Scott 
Makeig et.al [17] reported the first 
application of ICA for EEG data analysis by 
using the algorithm of Bell and Sejnowski 
[18] for ICA. It is based on a new 
unsupervised neural network learning 
algorithm. They showed that ICA can 
separate neural activity from muscle and 
blink artifacts in spontaneous EEG data.     

Jung et.al, [19] proposed a new and 
generally applicable method for removing a 
wide variety of artifacts from EEG records. 
This method is based on an extended version 
of infomax algorithm [18] and can be used 
for performing blind source separation on 
linear mixtures of independent source signals 
with either sub-Gaussian or super-Gaussian 
distributions. They showed that ICA can 
effectively detect, separate and remove 
activity in EEG records from a wide variety 
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of artifactual sources. Vigario [20] used 
FastICA algorithm [21] for identification of 
artifacts in EEG and MEG. They showed that 
the FastICA algorithm can be used for 
extracting different types of artifacts from 
EEG and MEG data, even when these 
artifacts are smaller than the background 
brain activity. Compared to PCA, ICA 
removes the constraint of orthogonality and 
forces components to be approximately 
independent rather than simply uncorrelated. 
However, the ICA components lack the 
important variance maximization property 
possessed by PCA components.  In addition, 
the ICA algorithms discussed above 
[17,19,and 20] requires the user to manually 
select the artifacts from the estimated 
components for correction, thus creating 
challenges for implementing automated 
correction routines. 
An ICA based method for removing artifacts 
semi automatically was presented by 
Delorme et.al [22]. Although it is automated 
to flag (mark) trials as potentially 
contaminated, these trials are still examined 
and rejected manually via a graphical 
interface. Belouchrani et.al [23], proposed an 
alternative approach for signal source 
separation, the SOBI (Second Order Blind 
Identification) algorithm which uses 
decorrelation across several time points as its 
computational step.  Carrie Joyce et.al  [24] 
used  SOBI algorithm along with correlation 
metrics and   Nicolaou et.al [25] used 
TDSEP [26] along with Support Vector 
Machine (SVM) for automatic removal of 
artifacts. The results of these studies  does 
not imply that SOBI/TDSEP is the overall 
best approach for decomposing EEG sensor 
data into meaningful components, and has 
not been completely validated by the authors. 

The limitation of ICA algorithms is 
that there is no guarantee that any particular 
algorithm can capture the individual source 
signals in its components [24].  The 
estimated source signals (obtained from ICA 
algorithm) should be as independent as 
possible (or least dependent on each other) 
for better removal of artifacts from EEG, 

since, either by visual inspection, or by 
automated procedure, only the estimated 
sources are classified as EEG or artifacts, 
but, the actual independence of the 
components (estimated sources) obtained 
from ICA algorithms used in [17, 19, 20, 22, 
24, 26] are not tested and quantified.   As 
discussed above, a number of ICA/BSS 
based EEG/EOG analyses have been 
published till date, but not with sufficient 
background to enable the EEG practitioner to 
choose the best algorithm [24].    

This paper compares different ICA 
algorithms MS-ICA [27], OGWE [28], JADE 
[29], SHIBBS [30], Kernel-ICA [31] and 
RADICAL [32] for removal of ocular 
artifacts from EEG. For assessing the actual 
independence of the components obtained 
from ICA/BSS, Mutual Information (MI) is 
used. MI leads to basic performance tests for 
any ICA problem and hence different 
ICA/BSS algorithms can be ranked by how 
well they perform i.e. whether they find the 
most independent components. However, MI 
was not extensively used for measuring 
interdependence, mainly because of the 
difficulty in estimating it reliably [33]. In this 
paper, an efficient methodology to estimate 
Mutual Information (MI) between two or 
more signals [33] is used and an efficient 
ICA algorithm for removal of ocular artifacts 
from EEG is found. 

The paper is outlined as follows.  In 
Section II, a theoretical review of various 
ICA/BSS algorithms like MS-ICA, OGWE, 
JADE, SHIBBS, Kernel-ICA and RADICAL 
is described.  In Section III, the algorithm for 
the estimation of mutual information is 
given.  Results are discussed in Section IV 
and the paper is concluded in Section V. 

 
2. Independent Component Analysis   

  Independent Component Analysis (ICA) 
[16] involves the task of computing the 
matrix projection of a set of components onto 
another set of so called independent 
component. Here, the objective is to 
maximize the statistical independence of the 
outputs. If the inputs to the ICA are known to 

69 



MEASUREMENT SCIENCE REVIEW, Volume 5, Section 2, 2005 
 
 

be linear instantaneous mixture of a set of 
sources, the ICA process provides an 
estimate of the original sources. Here, and in 
the context of this paper, neither the original 
sources nor the mixture matrix are known. 
This is the Blind Separation of Sources 
(BSS) [16] where the aim is to obtain a non-
observable set of signals, the so-called 
sources, from another set of observable 
signals regarded as mixtures. The BSS 
problem can be easily tackled by exploiting 
the higher order signal statistics and 
optimization techniques. 

 

 
 

Fig. 1 : Schematic illustration of the 
mathematical model used to perform ICA 

decomposition 
 

 
The original source vector S is of size M x 

N and the mixing matrix A is of size M x M, 
where M is the number of statistical 
independent sources and N is the number of 
samples in each source.   

The result of the separation process is the 
demixing matrix W which can be used to 
obtain the estimated statistical independent 
sources, Ŝ from the mixtures.  This process is 
described by Equation 1 and a schematic 
illustration of the mathematical model in 
shown in Figure 1. 

(1) 

Preprocessing for ICA: 
Some preprocessing is useful before 

attempting to estimate W [34].  
(i)  The observed signals should be centered 

by subtracting their mean value E{x} 

(2) 

(ii)  Then they are whitened, which means 
they are linearly transformed so that the 
components are uncorrelated and has unit 
variance.  

(iii)  Whitening can be performed via 
eigenvalue decomposition of the 
covariance matrix, VΛVT, V is the matrix 
of orthogonal eigenvectors and Λ is a 
diagonal matrix with the corresponding 
eigenvalues. The whitening is done by 
multiplication with the transformation 
matrix P 

(3) -1/2 T = P VΛ V
 

=Z PX% (4) 
This is closely related to principal 
component analysis [35]. The covariance of 
the whitened data E [ZZT] equals the identity 
matrix.  For simplicity, let be the centered 
mixed vector , i.e. 

X
X% =X X%  

 
 
 
Theoretical review of the ICA Algorithms 

 The algorithms studied in this paper 
are OGWE, MS-ICA, SHIBBS, Kernel-ICA 
JADE and RADICAL.  A brief description of 
various algorithms is given below. 
OGWE Algorithm: 

  In OGWE (Optimized Generalized 
Weighted Estimator) [28], the marginal 
entropy contrast function (ΦME)  is written in 
terms of second-order and fourth-order 
cumulants, and then it is minimized for all 
possible distributions for the sources S [30], 
it follows that 
 

(5) 
 
where, for zero-mean signals, 

are the marginal cumulants 
or autocumulants [9]. 

4[ ] 3 [ ]Y
iiii i iC E Y E Y= − 2

In the two dimensional case, the pair of 
normalized sources [ ( ) ( )]p qls s t s t Τ=  in polar 
coordinates may be written as (r(t),α(t)) so 
that the outputs yield 

 
 

(6) 
 
where Zt=[Zp(t) Zq(t)]T are the whitened 
mixtures, and matrix V performs a rotation of 
θ so that ρ(t) = θ + β(t) is the angle of vector 
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y.  Note that ideally, at separation θ + β(t) = 
α(t). 
 
(i)  The whitening matrix P is computed to 

whiten the vector X and the vector Y = 
PX is formed. 

(ii)  One Sweep.  For all g = m(m-1)/2 pairs, 
i.e., for 1≤p≤q≤m, the following steps 
have to be done: 

 (a) The Given angle θpq = θGWE is 
computed,  

(with [zp zq]T=[yp yq]T) as follows: 
 

(7) 
 
 

(8) 
 

where ∠(.) supplies the principal value of 
the argument. 

 
 
 

(9) 

 (b) If θpq > θmin, the pair (Zp,Zq) is 
rotated by θpq  

according to Eq.(5) and also the 
rotation matrix R is updated.  The 
value of θmin

  is selected in such a 
way that rotations by a smaller angle 
are not statistically significant.  
Typically θmin= 10-2/ N  where N is 
the number of samples. 

(iii) End if the number of iterations nit 
satisfies nit

 ≥ 1 + M  or no angle θpq has 
been updated, stop. Otherwise go to 
step(ii) for another sweep. 

(iv) Then the demixing matrix W = RP and 
the independent sources are estimated as 

 ˆ =S WX
     
 
ICA-MS Algorithm 

Molgedey and Schuster [27] proposed 
an approach based on dynamic decorrelation 
which can be used if the independent source 
signals have different autocorrelation 
functions.  The main advantage of this 

approach is that the solution is simple and 
constructive, and can be implemented in a 
fashion that requires the minimal user 
intervention (parameter tuning). 

Let Xτ be the time shifted version of 
the mixed vector X.  The delayed correlation 
approach is based on solving the 
simultaneous eigenvalue problem for the 
correlation matrices XτXT and XXT [28].  
This is implemented by solving the 
eigenvalue problem for the quotient matrix Q 
≡ XτXT(XXT)-1.  From (1), XXT = ASSTAT 
and XτXT = ASτSTAT are obtained. 

If the sources furthermore are 
independent, the diagonal source cross-
correlation matrix is obtained at lag zero in 
the limit . Similarly, 

 produces the diagonal 

crosscorrelation matrix at lag τ.  Hence, to 
zero

1lim
N

N − Τ

→∞
=SS C(0)

1lim
N

N τ
− Τ

→∞
=S S C(τ)

th order in 1/N, 

$ 1
( , ) ( (1 ) ),4

0 1, 1,
GWE r r r

r

θ ω ω ω ω ξ ω ξξ ξ ξ
ω ω γξ

= ∠ + −

< < ±
η
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7
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2 ( )2 4[ ( ) ]

4[ ( )] 8
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γ

=

=

= −

 
(10) ≈Τ Τ -1 Τ Τ -1 -1 -1

τX X (XX ) AC(τ)A (A ) C(0) A
 
with C(τ)C(0)-1 being a diagonal matrix.  If 
the eigenvalue problem is solved for the 
quotient matrix [36]. 

(11) T T -1 -1 -1  ( )   ≡ ≈Q XX XX AC(τ)C(0) A
 then the direct scheme is obtained to 
estimate A, S.  Let 

(12) QΦ = ΦΛ

and Φ = A and Λ = C(τ)C(0)-1 up to scaling 
factors are identified.  
 Then the demixing matrix W is the inverse 
of the mixing matrix A. The sources can be 
estimated as . ˆ =S WX
 
 
JADE Algorithm 

 Yet another signal source separation 
technique is the Joint Approximation 
Diagonalisation of Eigen matrices (JADE) 
algorithm [29]. This exploits the fourth order 
moments in order to separate the source 
signals from mixed signals. The operation of 
JADE is as given below: 
 
(i) The Whitening matrix P and the set  Z = 

PX are estimated. 
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(ii) The fourth cumulants of the whitened 
mixtures ˆ Z

iQ  are computed. Their m most 
significant eigen values λi and their 
corresponding eigen matrices Vi are 
determined. An estimate of the unitary 
matrix R is obtained by maximizing the 
criteria   λiVi    by means of joint 
diagonalisation. If λiVi cannot be exactly 
jointly diagonalised, the maximization of 
the criteria defines a joint approximate 
diagonalisation.   

(iii) An orthogonal contrast is optimized by 
finding the rotation matrix R such that 
the cumulant matrices are as diagonal as 
possible, that is, the equation  

 
(13) 

 
(iv) The matrix A is estimated as Â = RP-1 

and the components are estimated as Ŝ = 
Â-1X. 

 
SHIBBS Algorithm: 
Another signal separation technique is 
Shifted Block Blind Seperation (SHIBBS) 
[29] to estimate the demixing matrix W. 
 
(i)   A fixed set X = {X1, . . . ,Xm} of m × n 

matrices is selected. A Whitening matrix 
P and set are estimated. =Z PX

(ii) The set of M 
cumulant matrices is estimated and a 
joint diagonalizer R of it is found. 

Z
m

ˆ{ ( )|1  p  M}≤ ≤Q X

(iii) If R is close enough to the identity 
transform, stop. Otherwise, the data is 
rotated using the equation  and 
step (ii) is repeated. 

T=Z R Z

(iv) Then the demixing matrix W = RP is 
used to estimate the independent 
componets   ˆ =S WX

The SHIBBS algorithm is implemented in 
the same way as JADE is done.  But the joint 
diagonalization of the significant eigen 
matrices is done without going through the 
estimation of the whole cumulant set and 
through the computation of its eigen-
matrices. 

 
Kernel-ICA Algorithm: 

 The Kernel-ICA algorithm [31] uses 
the contrast functions based on Canonical 
Correlation Analysis (CCA) [37] in a 
Reproducing Hilbert Kernel Space (RKHS) 
[31,37].  The outline of Kernel Canonical 
Correlation Analysis (KCCA) is given as 
follows: 

 
(i)    Let x1,x2,…..,xm be the data vectors and 

K(xi ,xj) be the kernel. 
(ii) Data is whitened with the help of 

whitening matrix P. 
(iii) The contrast function C(W) is minimized 

with respect to W. 
(iv) The contract function is minimized in the 

following way: 
ˆarg min ( )T Z

i
i

Off= ∑R
R R a) The centered Gram matrices [31] 

K1,K2,….,Km of the estimated 
sources {y1,y2,….,ym}, where yi = 
Wxi are computed. 

Q R

b) The minimal eigenvalue of the 
generalized  eigenvector equation 

1
ˆ ( ,....., )F mK Kκλ  is defined as  

(14) 
c) Then 

1
1 12

ˆˆ( ) ( ,......, ) log ( ,...., )
F m FC I κ

λ λ= = −W K K K Km

WX

 

K Dκ κα λ α=

(v) The demixing matrix W, is then formed 
W = WP.  Then the independent 
components are estimated as S  ˆ =

 
RADICAL Algorithm: 

 The RADICAL (Robust, Accurate, 
Direct Independent Component Analysis 
Algorithm) [32] estimates the independent 
sources using differential entropy estimator 
based on ‘m’-spacing estimator.  The 
contrast function in (15) is to be minimized 
by RADICAL is almost equivalent to 
Vasicek estimator [38], 

 
 

(15) 

1 1 ( ) ( )1ˆ ( ,....., ) log( ( )
1

N m N i m iNH Z Z Z ZRADICAL N m mi

− + +≡ −∑
− =

 
The data vectors X1, X2… XM are assumed 
to be whitened using the whitening matrix P. 

Let m be the size of spacing. The value of 
‘m’ is taken as N  where N is the number of 
samples in each source. 
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Let ℜ be the number of replicated points 
per original data point to eliminate the local 
minima problem [32]. 

 Let σ be the standard deviation of replicated 
points. For N < 1000, σ = 0.35 and for N ≥ 
1000, σ = 0.175, where N is the number of 
samples in each source before replication. 
 Let K be the number of angles for which 
cost function has to be evaluated.  The 
optimum value of K here is 350. 
 
(i)  For each of M-1 sweeps (or until 

convergence), where M is the number of 
sources. 

(ii)  For each of M(M-1)/2 jacobi rotations 
for dimensions (p,q). 
(a)  A pair of whitened mixture is taken 

(Zp,Zq). 
(b)  Create Z’ by replicating ℜ points 

with Gaussian noise for each original 
point. 

(c)  For each θ in K number of angles,  
the augmented data are rotated to this 
angle  

(16) 
  and the contrast function is evaluated. 
(d) The Jacobean matrix for the optimal 
θ is formed and it is incorporated into 
the rotation matrix R.  The optimal θ  
is one which yields the minimum 
Vasicek estimator value [38] for the 
rotated pair.  

(iii)  The final rotational matrix R is the 
accumulation of all the jacobi rotations of 
optimal θ. 

(iv)  The demixing matrix W = RP and the 
estimated sources  are obtained. ˆ =S WX

3. Estimating Mutual Information 
If X  and Y are two random variables 

with joint distribution ),( yxµ and marginal 
distributions )(xxµ and )(yyµ , then Mutual 
Information  between ),( YXI X  and Y is 
defined as   

 

 (17) 

The algorithm proposed by Kraskov et.al 
[33] estimates from the set 

alone without explicit estimation of the 
unknown densities and is outlined below. 

),( YXI
}{ iZ

 For any set of  bivariate 
measurements

N
),( iii yxz = , the  closest 

neighbor of each is found according to the 
metric 

thk

iZ

       (18) |z - z || = max{||x- x ||, ||y - y ||}′ ′ ′
The  nearest neighbor is then projected 

onto the 
thk

X  and Y axes giving the distances 
2/)(ixε and 2/)(iyε . The estimate for MI is 

given by  
 

  (19) 
ˆ( , ) ( ) (1 / ) ( ) ( ) ( )x yI x y k k n n Nψ ψ ψ= − − + +ψ

Where and  be the number of 

points with  

)(inx )(iny

2/)(ixx xji ε≤−  and   

2/)(iyy yji ε≤− and (.)ψ  is the digamma 

function )/)(()()( 1 dxxdxx Γ×Γ= −ψ  

and ∑
=

−=
N

i
iEN

1

1 )][.......(.... . 
= ( )   'θ ×Y R Z

4. Results and Discussion  
ICA is a statistical method for 

transforming an observed multi-component 
data set into independent components that 
are statistically as independent as possible. 
The  components estimated  by an ICA 
algorithm should be least dependent on each 
other,  for better removal of artifacts  from 
EEG and so the  actual dependencies 
between the obtained components is to be 
estimated and it is most often ignored.  
Hence it becomes necessary to estimate the 
actual dependencies between the components 
and to find the best ICA algorithm that 
transforms the observed data set into 
components that are least dependent on each 
other.   There are various measures to 
evaluate the independence among the 
estimated sources.  Some of the measures are 
kurtosis, negentropy, Mutual Information, etc 
[39]. Kurtosis is the fourth-order cumulant.  
In terms of robustness and asymptotic 
variance, the cumulant based estimator tend 
to be far from optimal.  Intuitively there are 

( , ) ( , ) log( ( , ) / ( ) ( ))x yI X Y x y x y x y dxdyµ µ µ µ= ×∫∫
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two main reasons for this.  Firstly, higher 
order cumulants measure mainly the tails of 
the distributions, and are largely unaffected 
by structure in the middle of the distribution.  
Secondly, estimators of the higher order 
cumulants are highly sensitive to outliers 
[39].  Their value may depend on only a few 
observations in the tails of distribution which 
may be outliers. Negentropy involves 
estimation of probability density function 
which is very difficult.  Cumulant-based 
approximations of negentropy are inaccurate 
and in many cases too sensitive to outliers.  
Among these measures, Mutual Information 
(MI) is the best choice to measure the 
independence of the estimated sources.  
However, MI was not extensively used for 
measuring interdependence because 
estimating MI from statistical samples is not 
easy.  In the ICA literature very crude 
approximations to MI based on cumulant 
expansions are popular because of their ease 
of use.   In this paper, an efficient 
methodology to estimate MI  [33] based on 
k-nearest neighbor distances without 
estimating the probability densities is used to 
assess the actual independence of the 
components obtained from various ICA 
algorithms like OGWE, ICA-MS, JADE, 
SHIBBS, Kernel-ICA and RADICAL 

In order to find the best ICA algorithm, for 
removal of ocular artifacts from EEG, 17 sets 
of recorded EEG data with ocular artifacts 
are taken for analysis (32 electrodes, 128 Hz, 
5 sec).  The independent components for 
various ICA algorithms   are obtained and MI 
for the mixed signals and for the 
components are estimated by 
using Eq.  (19) choosing k = 6. Practical 
considerations for selecting k are discussed 
in [33].   MI is zero, if two random variables 
are strictly independent.  Hence it is expected 
that will decrease when compared 
to . The mutual information of 
the estimated components are computed for 
all the algorithms and is tabulated in Table 1 
for 17 data sets. Lesser the MI, better the 
algorithm is for separating the original 
sources from mixtures, given the 

assumptions of that algorithm. The results 
show that the RADICAL algorithm performs 
best at separating the source signals from the 
observed EEG signals. Fig 2 shows the 
mixed EEG signals and Fig 3 shows the 
independent components obtained using 
RADICAL algorithm. Ocular artifacts are 
identified visually from the RADICAL 
estimated source components shown in Fig 3, 
and channel 1 corresponds to EOG  and are 
removed from the mixed (observed) signals 
to get clean EEG signal as shown in Fig 4.   
After denoising, the background information 
in each lobe has to be retained.  Otherwise, 
there will be a loss of original EEG data.  
EOG interference will be dominant in the 
EEG recorded from the electrodes (F3, Fz, 
F4, C3, C4, CP2) placed on the patient’s 
forehead.  Hence a frontal channel EEG 
recording (F3) is shown along with the 
corrected EEG data for various algorithms in 
Fig. 5.  In order to check whether the 
background EEG information is retained, the 
contaminated and corrected versions of EEG 
signals are visually inspected.  Since the 
exact amplitude cannot be determined by 
ICA, the data have been centered by 
subtracting their means from them.  

),....XX,(X Î N21

)Ŝ,....Ŝ,Ŝ( Î N21

1 2 N
ˆ ˆ ˆÎ (S ,S ,....S )

),....XX,(X Î N21

From Fig. 2 it is clear that OAs occupy the 
lower frequency range from 0 Hz to 6-7 Hz 
for the eye movement artifacts and typically 
up to the alpha band (8-13 Hz), excluding 
very low frequencies, for the eye blinks. The 
power of EOG in the low frequency band is 
reduced from 44.9204 dB to 25.0952 dB 
ensuring the exact preservation of the high 
frequency content of the original EEG signal, 
while removing the low frequency ocular 
artifacts. Power spectral density  was found 
by periodogram smoothing by applying the 
Blackman window to the autocorrelation 
estimate and then taking Fourier transform.  
The periodogram averaging was done by 
segmenting the data to obtain several records 
followed by windowing spectral leakage and 
finally by averaging the periodogram to 
reduce variances. 
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5. Conclusion and Future Scope  
Ocular artifact correction is a 

challenging task. A variety of techniques 
have been proposed in the literature for the 
same. However there is no general consensus 
amongst researchers upon the selection of the 
best, appropriate and feasible technique 
which enables the satisfactory removal of 
ocular artifacts and preservance of EEG 
information intact. In this paper, quantitative 
analysis has been carried out to evaluate six 
ICA algorithms for removal of ocular 
artifacts from EEG by using a reliable 
Mutual Information Estimator, and the 
results show that RADICAL perform best at 
separating the original sources from the 
observed signals.  Once the components are 
as independent as possible, then the 
components can be classified either as 
artifacts or EOG, and can be removed from 
the mixed signals to obtain the artifact free 
EEG data. In [40], it is shown that JADE 
outperforms the well-known ICA/BSS 
algorithms such as Infomax, Extended 
Infomax, FastICA,  SOBI, TDSEP. But in 
this paper, it is shown that RADICAL has 

emerged superior when compared with 
JADE and other ICA algorithms such as, 
OGWE, SHIBBS, MS-ICA and Kernel-ICA 
on the basis of  Mutual Information 
Estimation. In this paper, the inspection of 
artifact channel is done visually, once the 
independent components are separated.  
However as an improvement over the current 
process, this inspection of artifact channel 
can be automated by using Wavelets, 
Kalman Predictor, Neural Networks etc., The 
advantage of automated correction procedure 
is that it eliminates the subjectivity 
associated with non-automated correction 
procedures and can be used during on-line 
EEG monitoring for clinical purposes. Power 
Spectral Density as a performance metric 
gives only a rough estimate in providing an 
inference relating to the relative superiority 
of various ICA algorithms in removing 
ocular artifacts from EEG.  Further it is our 
considered opinion that the usefulness of the 
best separation algorithm for removing 
ocular artifacts from EEG can also be 
justified quantitatively by proposing a 
suitable performance metric for validating 
the de-noised EEG signals. 

 
 
 
 
 

 
  
Fig. 2: Recorded (Mixed) EEG signals Fig. 3: Independent components obtained from 

RADICAL 
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Fig. 4: Denoised EEG components obtained from RADICAL Fig. 5: Contaminated and Corrected EEG for different 

ICA algorithms 

 
 

 

Fig. 2: Power Spectral Density spectrum signal taken from 
Frontal lobe channel (F3) 

 

 
Tab. I:  Mutual information of the estimated independent sources for various ICA Algorithms 
 

MI of Independent Components EEG 
Dataset 

(.set files) 

Origina
l 

MI OGWE ICA-
MS JADE SHIBBS Kernel-

ICA RADICAL 

Cba1ff01a 8.9436 1.2368 2.0677 1.2073 1.2927 1.0548 0.9365 

Cba1ff01b 7.7816 1.0190 1.8554 0.9729 1.0004 0.9051 0.8339 
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Cba1rej 9.3163 1.2149 2.1165 1.2332 1.1866 1.1249 0.9163 

Cba2ff01a 8.4019 0.4093 1.2497 0.4547 0.4300 0.4675 0.3757 

Cba2ff01b 7.5887 0.6253 1.2812 0.6511 0.6582 0.6901 0.5182 

Clm2ff01a 8.8179 1.4946 2.9867 1.4754 1.5071 1.3209 1.1597 

Ega1ff01a 8.4623 1.1700 2.2377 1.1207 1.0594 1.4795 0.9243 

Ega1ff01b 7.0800 0.5814 1.2092 0.5880 0.5757 0.4799 0.4702 

Ega2ff01a 8.3326 1.0428 1.8619 0.9964 1.0016 1.0707 0.8385 

Ega2ff01b 8.4093 0.9175 1.3222 0.8118 0.8346 0.9003 0.7493 

Fsa1ff01a 8.4249 0.5703 1.6082 0.5332 0.5500 0.5375 0.4913 

Fsa1ff01b 9.0367 0.5130 1.6609 0.4638 0.4565 0.4636 0.4064 

Fsa2ff01a 9.7269 0.3527 1.1514 0.4202 0.3970 0.3476 0.2847 

Fsa2ff01b 8.1775 1.0664 1.7065 1.0572 1.0492 0.8094 0.8015 

Gro1ff01a 10.6050 1.8100 3.6184 1.8408 1.8472 1.6607 1.2398 

Gro1ff01b 11.1994 1.7463 2.8006 2.0251 1.9968 1.8256 1.6164 

Gro2ff01a 8.9454 1.4400 2.6700 1.5252 1.4938 1.3810 1.1983 
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