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Abstract: The Electroencephalogram (EEG) is a biological signal that represents the 
electrical activity of the brain. Eye-blinks and movement of the eyeballs produce 
electrical signals that are collectively known as Ocular Artifacts (OA). These are of the 
order of milli-volts and they contaminate the EEG signals which are of the order of 
micro-volts. The frequency range of EEG signal is 0 to 64 Hz and the OA occur within 
the range of 0 to 16 Hz. If the wavelet based EOG correction algorithm is applied to the 
entire length of the EEG signal, it results in thresholding of both low frequency and high 
frequency components even in the non-OA zones. This leads to considerable loss of 
valuable background EEG activity. Though the detection of OA zones can be done by 
visual inspection, the OA time zones need to be given as input to the EOG correction 
procedure, which is a laborious process. Hence there is a need for automatic detection of 
artifact zones. This paper discusses a method to automatically identify slow varying OA 
zones and applying wavelet based adaptive thresholding algorithm only to the identified 
OA zones, which avoids the removal of background EEG information. Adaptive 
thresholding applied only to the OA zone does not affect the low frequency components in 
the non-OA zones and also preserves the shape (waveform) of the EEG signal in non-
artifact zones which is of very much importance in clinical diagnosis.  
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1.  Introduction 
 
Electroencephalogram is a recording of electric fields of signals emerging from neural 
currents within the brain and is measured by placing electrodes on the scalp. The 
electrical dipoles of eyes change by eye movements and blinks, producing a signal known 
as electrooculogram (EOG). A fraction of EOGs contaminate the electrical activity of the 
brain and these contaminating potentials are commonly referred to as ocular artifacts 
(OA). In current data acquisition, these OA are often dominant over other 
electrophysiological contaminating signals (e.g. heart and muscle activity, head and body 
movements), as well as external interferences due to power sources.  Hence, devising a 
method for successful removal of OA from EEG recordings is still is a major challenge.  
Fig 1 shows a segment of EEG signals corrupted with ocular artifacts. Since ocular 
artifacts decrease rapidly with the distance from the eyes, the most severe interference 
occurs in the electrodes placed on the patient’s forehead. Notice the large dips on frontal 
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channels FP1-F3, FP2-F4, FP1-FP7 and FP2-F8. Blink artifacts are so prominent on these 
channels because they are located nearest to the eyes.   

      
Fig 1. EEG recording corrupted by ocular-artifacts 

 
A variety of methods have been proposed for correcting ocular artifacts and are reviewed 
in [1,2]. One common strategy is artifact rejection.  The rejection of epochs contaminated 
with OA is very laborious and time consuming and often result in considerable loss in the 
amount of data available for analysis.   Eye fixation method in which the subject is asked 
to close their eyes or fix it on a target is often unrealistic. Widely used methods for 
removing OAs are based on regression in time domain [3] or frequency domain [4] 
techniques. All regression methods, whether in time or frequency domain depend on 
having one or more regressing (EOG) channels. Also both these methods share an 
inherent weakness, that spread of excitation from eye movements and EEG signal is 
bidirectional. Therefore regression based artifact removal eliminates the neural potentials 
common to reference electrodes and to other frontal electrodes.  
Another class of methods is based on a linear decomposition of the EEG and EOG leads 
into source components, identifying artifactual components, and then reconstructing the 
EEG without the artifactual components. Lagerlund et.al [5] used Principal Component 
Analysis  (PCA) [6] to remove  the artifacts from EEG. It outperformed the regression 
based methods. However, PCA cannot completely separate OA from EEG, when both the 
waveforms have similar voltage magnitudes. PCA decomposes the leads into 
uncorrelated, but not necessarily independent components that are spatially orthogonal 
and thus it cannot deal with higher-order statistical dependencies. 
An alternative approach is to use independent components analysis (ICA), which was 
developed in the context of blind source separation problems to obtain  components that 
are approximately independent [7]. ICA has been used to correct for ocular artifacts, as 
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well as artifacts generated by other sources [8,9,10].   ICA is an extension of PCA which 
not only decorrelates but can also deal with higher order statistical dependencies. 
However, the ICA components lack the important variance maximization property 
possessed by the PCA components. ICA algorithms are superior to PCA, in removing a 
wide variety of artifacts from the EEG, even in the case of comparable amplitudes. The 
component based procedures used for artifact removal [5, 8, 9, 10] are not automated, and 
require visual inspection to select the artifactual components to decide their removal. An 
ICA based method for removing artifacts semi automatically was presented by Delorme 
et.al [11].  It is automated to flag trials as potentially contaminated, but these trials are 
still examined and rejected manually via a graphical interface.    Carrie Joyce et.al [12] 
used SOBI algorithm along with correlation metrics and   Nicolaou et.al [13] used 
TDSEP along with Support Vector Machine (SVM) for automatic removal of artifacts. 
The results of these studies  does not imply that SOBI/TDSEP is the overall best 
approach for decomposing EEG sensor data into meaningful components, and has not 
been completely validated by the authors. The estimated source signals  (obtained from 
any ICA algorithm) should be as independent as possible (or least dependent on each 
other) for better removal of artifacts from EEG. Since, either by visual inspection, or by 
automated procedure, only the estimated sources are classified as EEG or artifacts. But, 
the actual independence of the components (estimated sources) obtained from ICA/BSS 
algorithms used in [8,9,10,11,12,13] are not tested for their independence and 
uniqueness.    
Tatjana Zikov et.al [14] proposed a wavelet based denoising technique for removal of 
ocular artifacts in EEG. This method neither relies upon the reference EOG nor visual 
inspection. However, the threshold limit was estimated from the uncontaminated baseline 
EEG, which is recorded from the same subject.  Krishnaveni et.al [15] proposed various 
non-adaptive thresholding methods using different threshold limit and thresholding 
function for ocular artifact correction. They reported an appropriate threshold limit 
calculated from the statistical averages of the contaminated EEG signal and thresholding 
function for OA removal. This shows that the algorithm is data independent. However, 
the threshold limit is empirically selected and is non-adaptive, and is context sensitive 
and needs further investigation.  In [16] a nonlinear time-scale adaptive denoising system 
based on wavelet shrinkage scheme has been used for removing OAs from EEG. The 
time-scale adaptive algorithm is based on Stein’s Unbiased Risk Estimate (SURE), and 
soft-like thresholding function is used which searches for optimal thresholds using 
gradient based adaptive algorithms. Denoising EEG using this algorithm yields better 
results, in terms of ocular artifact reduction and the retainment of the background EEG 
activity compared to non-adaptive thresholding methods. Since, the wavelet based EOG 
correction algorithm proposed in [16] is applied to the entire length of the EEG signal, it 
results in thresholding of both low frequency and high frequency components even in the 
non-OA zones. This paper discusses a method to automatically identify slow varying OA 
zones and applying wavelet based adaptive thresholding algorithm proposed in [16] only 
to the identified OA zones, which avoids the removal of background EEG information. 
Adaptive thresholding applied only to the OA zone does not affect the low frequency 
components in the non-OA zones and also preserves the shape (waveform) of the EEG 
signal in non-artifact zones which is of very much importance in clinical diagnosis.  
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2 Methodology 
The EEG recordings are contaminated by EOG signal. The EOG signal is a non-cortical 
activity. The eye and brain activities have physiologically separate sources, so the 
recorded EEG is a superposition of the true EEG and some portion of the EOG signal [1]. 
It can be represented as 

)(.)()( tEOGktEEGtEEG truerec +=                                 (1) 
where,  

)(tEEGrec  - Recorded contaminated EEG,  
)(tEEGtrue - EEG due to the cortical activity (i.e., Brain activity)  

)(. tEOGk  - Propagated ocular artifact from eye to the recording site. 
)(tEEGtrue  is to be estimated from  by efficiently removing the  at the 

same time retaining  the EEG activity.  
)(tEEGrec )(. tEOGk

The Algorithm proposed in this paper involves the following steps: 
i)   Apply Discrete Wavelet Transform to the contaminated EEG with Haar wavelet as the 
basis function to detect the Ocular Artifact zone [17]. 
ii)  Apply Stationary Wavelet Transform with Coif 3 as the basis function to the 
contaminated EEG with OA zones  identified for removing Ocular Artifacts. 
iii) For each identified OA zone, select optimal threshold limit at each level of 
decomposition based on minimum Risk value and apply that to the soft-like thresholding 
function [16] which best removes noise. 
iv) Apply inverse stationary wavelet transform to the thresholded wavelet coefficients to 
obtain the de-noised EEG signal. 
  
 
2.1 Automatic Identification of OA Zones Using Haar Wavelet 
 
By analyzing the frequency spread of the EEG data that contained the Ocular Artifacts, 
researchers found that the difference in the frequency of the spikes caused due to rapid 
eye blink   and the EEG signal could be used along with a simultaneous recording of the 
EOG to detect and remove these artifacts. But correlation of the EEG and EOG is futile, 
especially because of the inherent corruption of EEG data by the restraint on the user’s 
eye movements and blinks. The   accurate detection of these artifacts by singular 
observation of the time or frequency domains fails and hence wavelet transform can be 
used to study the time-frequency maps of the EOG contaminated EEG. In [17] Haar 
wavelet is used to decompose the recorded EEG Signal to detect the exact moment when 
the state of the eye changes from open to closed and vice versa. Decomposition of the 
EEG data with the Haar wavelet results in a step function with a falling edge for a change 
in the state of the eyes from open to close and a step function with a rising edge for a 
change in state of the eyes from close to open. The same technique is used to detect the 
ocular artifacts zones in the contaminated EEG.  
 Consider the 4 second EOG contaminated EEG epoch (sampled at a rate of 128 
samples/second) shown in Fig 2, where there are blink artifacts between 0.5s and 1s and 
between 2s and 2.5s. On decomposing this with a Haar Wavelet (up to 6 levels), the final 
approximation yielded the Step function with rising edges at 0.5s and 2s and falling edges 
at 1s and 2.5s as shown in Fig 3. 
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   Fig 2. EOG contaminated EEG             Fig 3. Reconstructed approximation   
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Fig 4. EOG contaminated EEG signal with Ocular Artifact zones identified 
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The EOG contaminated EEG is decomposed up to 6 levels using Haar wavelet. The 
approximation coefficients at level 6 are reconstructed. The maximum of the rising and 
falling edges are found. The reconstructed signal samples are compared with its 
successive samples to identify the edges. The edges are classified into Artifact Rising 
Edge (ARE), Artifact Falling Edge (AFE), Rising Edge (RE) and Falling Edge (FE) 
depending on whether the edges correspond to eye blinks and those that do not 
correspond to eye blinks, based on their relative amplitude. The identified edges ARE, 
AFE, RE and FE are scaled using four integers 3, 2, 1 and 5 respectively and summed up 
so as to get the edges information in a single array. After scaling, the values of ARE, 
AFE, RE and FE are 4, 7, 1 and 5 respectively. The edges and the instants at which they 
occur are stored in separate arrays. The array containing the edges are traversed 
sequentially to identify unique patterns which correspond to the OA zones. For example, 
47 (which is nothing but a OA rising edge followed by OA falling edge) corresponds to 
OA zone.  Once the patterns are identified, the time instants at which the artifacts occur 
can be obtained and the OA zone can be identified. Fig 4 shows the EOG contaminated 
EEG signal with Ocular Artifact zones identified and Fig 5 shows the flowchart for 
identification of ocular artifacts zones from EEG.  
 
 
EOG Correction Using Adaptive Thresholding of Wavelet Coefficients 
 
A nonlinear time-scale adaptive denoising system proposed in [16] is based on wavelet 
shrinkage scheme and has been used in this paper for removing the identified  OAs from 
EEG. The time-scale adaptive algorithm shown in Fig 6 is based on Stein’s Unbiased 
Risk Estimate (SURE), and soft-like thresholding function is used which searches for 
optimal thresholds using gradient based adaptive algorithms.   
 
 
3. Results and Discussion 
 
EEG data with ocular artifacts are taken from http://www.sccn.ucsd.edu/~arno/famzdata/ 
publicly_available_EEG_data.html for testing the proposed algorithm. The data is 
sampled at a rate of 128 samples/second. The effect of Ocular Artifacts will be dominant 
in the Frontal and Frontopolar channels. Hence it is sufficient to apply the algorithms to 
these channels. The results obtained using the proposed method is compared with 
adaptive thresholding method proposed in [16], which is applied to the entire length of 
the signal. Fig 7 shows a 10 second epoch of EOG contaminated EEG with its corrected 
version using adaptive algorithm proposed in [16] and the modified adaptive algorithm 
proposed in this paper. The PSD plot for Fig 7 is shown in Fig 8. By visually comparing 
the time domain plots shown in Fig 7, it is clear that the proposed modified adaptive 
algorithm reduces the amplitude of the ocular artifact while preserving the background 
EEG.  Yet another performance metric for validating the noisy data and denoised data is 
correlation in the frequency domain.  The frequency correlation between two signals x 
and y can be calculated using the formula given below [18]: 
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Fig 6 Time-scale adaptive de-noising method [16] 
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where,   
 w1 and w2 are the window limits 
 x%  and  are the Fourier coefficients of x and y.  y%
 *x%  and  are the complex conjugate of  *y% x%  and   y%
 
Here x and y are noisy EEG and denoised EEG signals respectively. It turns out, that the 
definition of the correlation of frequency filtered time series is equivalent to calculating 
the correlation between the (complex) fourier coefficients in the corresponding frequency 
window. Here the window is chosen with 3 Hz that covers 25 fourier transform 
coefficients. The 3Hz window is then moved through the entire spectrum of 64 HZ and 
correlation coefficient at the corresponding centre frequencies (1.5, 2.5…62.5) are found. 
Above mentioned formula calculates 125% correlation coefficient assuming the mean of 
the two signals as zero. So the mean of EEG signal is made zero by subtracting the mean 
of the entire signal with each value of the signal.  The frequency correlation between 
noisy data and the denoised data shown in Fig 7 obtained using modified adaptive 
algorithm and adaptive algorithm is shown in Fig 9 and Fig 10 respectively.  The PSD 
plot and the Frequency correlation plots for both the techniques have shown considerable 
decrease in the power of low frequency components while retaining the power of higher 
frequency components. However, from Fig 10 it is clear that adaptive thresholding 
applied to the entire length of the signal removes the low frequency components to a 
greater extent ie the low frequency components which corresponds to EEG may also be 
removed.  As illustrated in Fig 9 adaptive thresholding applied only to the OA zone does 
not affect the low frequency components in the non-OA zones and also retains the high 
frequency components i.e. preserves the shape of the EEG signal in non-artifact zones 
which is of very much importance in clinical diagnosis.  
Hence from  the time domain plots, PSD’s and frequency correlation plots, it is clear that 
the proposed modified adaptive thresholding method applied to the identified ocular 
artifact zones, minimizes the amplitude of the ocular artifact, and retains the background 
EEG, much better compared to the adaptive thresholding method proposed in [16].  
 
 
 
 
4. Conclusion 
 
In this paper, a method to automatically identify slow varying OA zones is proposed and   
a time-scale adaptive algorithm based on Stein’s Unbiased Risk Estimate (SURE) along 
with soft-like thresholding function is applied to the OA zone.  Adaptive thresholding 
applied only to the OA zone does not affect the low frequency components in the non-
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OA zones and also preserves the shape (waveform) of the EEG signal in non-artifact 
zones which is of very much importance in clinical diagnosis. The proposed method 
minimizes the amplitude of the ocular artifact, while preserving the magnitude and phase 
of the high frequency background EEG activity compared to the method proposed in 
[16].  Efforts should be directed towards   designing Haar and other similar discontinuous 
wavelets for highly artifact selective detection and de-noising. Power Spectral Density 
plots and Frequency correlation plots are used as performance metrics in this paper. But it 
gives only an estimate in providing an inference relating to the relative superiority of the 
algorithms used for removing ocular artifacts from EEG.  Further it is our considered 
opinion that a suitable performance metric for validating the de-noised EEG signals 
should be devised for quantitatively comparing the algorithms for OA removal. 
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Fig 7. Contaminated EEG and Corrected EEG 
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Fig 8. PSD of noisy and denoised data shown in Fig 7 
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Fig 9. Frequency correlation between noisy data and denoised data  
     (obtained using modified adaptive algorithm) shown in Fig 7      
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Fig 10. Frequency correlation between noisy data and denoised data  
     (obtained using adaptive algorithm [16]) shown in Fig 7      
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