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For the ultra-low frequency signals or adjacent Nyquist frequency signals, which exist in the vibration engineering domain, the 

traditional DTFT-based algorithm shows serious bias for phase difference measurement. It is indicated that the spectrum leakage 

and negative frequency contribution are the essential causes of the bias. In order to improve the phase difference measurement 

accuracy of the DTFT-based algorithm, two new sliding DTFT algorithms for phase difference measurement based on a new kind 

of windows are proposed, respectively. Firstly, the new kind of windows developed by convolving conventional rectangular 

windows is introduced, which obtains a stronger inhibition of spectrum leakage. Then, with negative frequency contribution 

considered, two new formulas for phase difference calculation under the new kind of windows are derived in detail. Finally, the 

idea of sliding recursive is proposed to decrease the computational load. The proposed algorithms are easy to be realized and have 

a higher accuracy than the traditional DTFT-based algorithm. Simulations and engineering applications verified the feasibility and 

effectiveness of the proposed algorithms. 
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1.  INTRODUCTION 

HE PROBLEMS of estimating the phase difference 

between signals received at two separated sensors are 

considered in many areas such as fault diagnosis, 

direction finding, and source localization. Many methods 

have been proposed for phase difference measurement in the 

past three decades [1]-[6]. Generalized Cross Correlator 

(GCC) [7]-[9] is a conventional approach to estimate the 

phase difference by locating the cross correlation peak of the 

filtered version of two received signals, and it has been 

proven that optimum performance can be attained when the 

signals and noises are Gaussian distributed. However, the 

method requires a prior statistics of the received signals and 

it fails to work when the noises are impulsive or spatially 

correlated. 

When the source signals are deterministic, a Discrete-time 

Fourier transform (DTFT)-based algorithm is proposed for 

single complex sinusoids [10], while a Quadrature Delay 

Estimator algorithm is developed for real-valued sinusoids 

by utilizing the in-phase and quadrature-phase components 

of one of the received signals [11]. Using the idea of [11], 

two modified methods have been developed for real 

sinusoidal signals [12]. The first method is referred to as 

UQDE, which removes the bias of QDE by utilizing all the 

in-phase and quadrature-phase components of the received 

signals. The second method is referred to as modified DTFT 

algorithm, which calculates the phase difference of DTFTs 

of two complex sinusoids derived from the real signals. The 

key idea of the modified DTFT algorithm is to transform the 

real tone to a complex one with the known frequency 

information, and this is the difference between the modified 

DTFT algorithm and the typical DTFT-based algorithm. 

However, all the algorithms are difficult to achieve in 

practice if the frequency is unknown. 

Among the phase difference measurement methods for 

real signals with unknown frequency, the Discrete–time 

Fourier transform-based algorithm is used as the typical one. 

The DTFT-based algorithm calculates the phase difference 

of DTFTs of two real sinusoids at the estimated signal 

frequency. However, the algorithm neglects the contribution 

of negative frequency for real-valued sinusoids. When the 

signal frequency is quite low or close to the Nyquist 

frequency, the algorithm brings about significant bias or 

even becomes ineffective. The same thing occurs when the 

available sampled data for DTFT calculation are not enough. 

To remove the bias and improve the accuracy of the 

DTFT-based algorithm, two new sliding DTFT algorithms 

are proposed in this paper. In Section 2, the proposed 

algorithms and the process of their application are described 

in detail, which introduce the new kind of windows, the 

windowed DTFT algorithms with negative frequency 

contribution and the idea of sliding recursive, respectively. 

In Section 3, the proposed algorithms are validated by 

simulations and experiments. Finally, Section 4 presents the 

conclusion. 

 

2.  THE PRINCIPLE OF THE PROPOSED ALGORITHMS AND 

THEIR APPLICATION PROCESS 

A.  A new kind of windows and its characteristic. 

A new kind of windows, called convolved-windows, 

which is developed by convolving conventional rectangular 

window, was introduced in [13]. This kind of windows has 

the advantages of simple structure, lower attenuation and 

good inhibition of spectral leakage. The construction of the 

convolved-windows can be expressed as follows. 

Consider the rectangular window time domain and 

frequency domain expressions as 
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where M  is the length of rectangular window, and ω  is 

the digital signal frequency. A new 2 -1M  data sequence 

can be obtained by convolving 2 rectangular windows. If 1 

zero is added in the front or back of the new sequence, a 

new 2M  data sequence can be obtained, called 2-order 

rectangular self-convolution window (RSCW). Add 1 zero 

in the front of the 2 -1M  data sequence and consider 

2=N M , the time domain and frequency domain 

expressions of 2-order RSCW can be expressed as 
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Similarly, 4 3−M  data sequence can be obtained by 

convolving 4 rectangular windows. A new 4-order RSCW 

can be developed by adding 2 zero in the front of the new 

sequence and 1 zero at the back of the new sequence. 

Consider 4N M= , the time domain and frequency domain 

expressions can be expressed as 
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According to the construction of the RSCW, the m-order 

RSCW can be developed in a similar way. At first, a new 

data sequence can be obtained by convolving m rectangular 

windows, and then, if m is even, the m-order RSCW can be 

developed by adding 2m/  zero in the front of the new 

sequence and ( )2 2−m /  zero at the back of the new 

sequence, while m  is odd, the m-order RSCW can be 

developed by adding ( )1 2−m /  zero in the front of the new 

sequence and ( )1 2−m /  zero at the back of the new 

sequence, and then, the time domain and frequency domain 

expressions of m-order RSCW ( N m M= ⋅ ) can be 

expressed as 
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(7) 

 

It is obviously from formula (7) that the width of the main 

lobe becomes larger with the increase of m, accordingly, the 

order of RSCW is usually less than 4. In addition, in the zero 

points of its amplitude-frequency characteristic, the value of 

m-1 order derivatives is zero. As a result of this character, 

the interferences between the harmonics due to spectrum 

leakage can be reduced furthest by applying the RSCW. 

Consequently, the precision of harmonics estimation can be 

boosted. 

 

B.  The windowed DTFT algorithms. 

1) The measurement principle of DTFT algorithm 

Consider two real sinusoids with the same frequency 
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where 
1A  and 

2A are amplitudes, 
1θ  and 

2θ  are initial 

phases. Mark ω̂  as the estimated value of ω , the DTFT 

of )(2,1 nx  at ω̂  can be computed as [14] 
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According to Euler’s formula, a real sinusoid can be 

formulated as the sum of two exponential signals with 

positive and negative frequencies, respectively. If the 

negative frequencies in (9) are neglected, then 
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The phase of )ˆ(1 ωNX  and )ˆ(2 ωNX  is denoted by 

1ϕ  and 2ϕ , respectively. If the phase difference is defined 

as 2 1= -θ θ θ∆ , it can be calculated as 

 



 

MEASUREMENT SCIENCE REVIEW, Volume 14, No. 6, 2014 

 352 

12 ϕϕθ −=∆                 (11) 

 

This is the typical DTFT-based algorithm. It is obvious 

that the phase difference of two signals approximates the 

subtraction of two DTFT phases at the estimated signal 

frequency. If the negative frequency is neglected in (10), it is 

no longer the DTFT of the real sinusoidal signal but is that 

of the complex one. In other words, the contribution of 

negative frequency components in the spectrum is neglected 

in typical DTFT-based algorithm. When the signal 

frequency is quite low or close to the Nyquist frequency, the 

negative frequency interference in the spectrum becomes 

remarkable, which will bring about significant bias in phase 

difference measurement. The same thing will occur if a 

small number of sampled data are taken in DTFT 

calculation. 

Thus, two new DTFT algorithms with negative frequency 

contribution considered, which aim to remove the bias of the 

DTFT-based algorithm, are presented. Two new formulas for 

phase difference measurement adopting 2-order RSCW and 

4-order RSCW are derived, respectively. 

2) The new DTFT algorithm based on 2-order RSCW 

Assuming the length of 2-order RSCW is N, multiply the 

2-order RSCW with signals )(2,1 nx , and the DTFT of the 

signals can be expressed as 
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As is generally known, multiplying in time domain is in 

correspondence with convolving in frequency domain. So 

the equation 12 can be regarded as 
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Assuming that ωω ≠ˆ , (13) can be derived from (12). 
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Making use of the formula  
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can be deduced as: 
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When the signal-to-noise ratio (SNR) of signals is not very 

low, the signal frequency estimated by adaptive notch filter 

or discrete spectrum correction is generally quite close to the 

true value, i.e., ωω ≈ˆ , then, 2/sin/sin 21 Naa ≈  can be 

deduced. And then, equation 15 can approximately be 

expressed as follows. 
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Equation 16 is the new DTFT algorithm based on 2-order 

RSCW for phase difference calculation. When ωω =ˆ , the 

formula for phase difference calculation is just the same as 

(16), so there is no need to estimate if the ω̂  equals ω  or 

not. However, the higher accuracy of frequency estimation, 

the better the phase difference measurement. 

3) The new DTFT algorithm based on 4-order RSCW 

The time domain and frequency domain of 4-order RSCW 

expressions are illustrated in equation 5 and 6, respectively. 

According to the derivation process of the new DTFT 

algorithm based on 2-order RSCW for phase difference 

measurement, the new DTFT algorithm based on 4-order 

RSCW for phase difference calculation can be obtained 

similarly as 
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C.  The sliding recursive DTFT algorithm. 

If the signals are time-varying, the algorithm of DTFT 

cannot be carried out directly. As the width value of window 

N is very small and the frequency varies a bit in the window 

which can be approximately reckoned, the frequency does 

not change in the window, and then, the phase difference of 

each sampled datum can be worked out based on the sliding 

intercepting thought. 

For signal ( )x n , assume that N data have been sampled at 

the time of m, i.e. ( )x m , ( 1)x m + … ( 1)x m N+ − , The DTFT 

of the sampling sequence at ˆmω can be expressed as 
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At the time of m+1, a new datum ( )x m N+ is sampled 

and added to the data, while the ( )x m  is eliminated from 

the data, the DTFT of the sequence with N data at 
1

ˆ +mω  

can be expressed as 
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Fig.1.  The sliding time window for N points. 

Comparing (18) and (19), we observe that ˆ
m

ω  and 
1

ˆ
m

ω +  

delegate the estimated frequency of two adjacent window 

sampling points, respectively. It is obvious from Fig.1. that 

it is inaccurate to use 
1

ˆ
m

ω +  to calculate the 1, 1
ˆ( )m N mX ω+ + , as 

the N-1 points are the same in the two adjacent windows. So, 

(19) can be revised as follows 
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Equation 20 is the sliding recursive DTFT algorithm 

proposed in this paper. It is obvious that there is a recursive 

relationship exit among the new sampling sequence with the 

old one. Besides, only 2 complex additions and 2 complex 

multiplications are required to calculate the new DTFT, and 

the routine DTFT calculation is just needed at the first 

rectangular window in the whole process, which discards the 

redundancy calculations. Note that the equation 20 is quite 

suitable for the signal when the frequency is steady. For 

time-varying signal, if all 
1

ˆ
m

ω +  which exist in the first 

underline part in (20) are displaced by ˆ
m

ω , the dynamic 

characteristic will be weakened, especially if the frequency 

varies in a big range. 

As for the typical DTFT-based algorithm, the routine 

DTFT calculation is needed in every window without 

exception. When a new datum is obtained, N complex 

multiplications and N-1 complex additions are required to 

calculate the new DTFT. Besides, according to Fig.1., the 

conventional DTFT-based algorithm has N-1 redundancy 

calculations. 

 

D.  The steps of the proposed algorithm. 

To sum up, the steps of the proposed algorithms can be 

illuminated as follows 

(1) Estimate the signal frequency by adaptive notch filter or 

discrete spectrum correction, denoted by ˆiω ; 

(2) Calculate the DTFTs by (9) at the first rectangular 

window at 1ω̂ ; 

(3) Calculate 1tanϕ  and 2tanϕ  by convolving the 

2-order RSCW or 4-order RSCW with DTFT in the 

frequency domain; 

(4) Calculate 1m  to 4m  or 5m  to 8m  by ω̂  and N , 

and then substitute into (16) or (17) for 1tanϕ  and 

2tanϕ  to calculate the phase difference; 

(5) Make use of the sliding recursive DTFT algorithm in 

(20), calculate the DTFT at every frequency point iω̂ ; 

(6) Repeat step (3) and step (4), the phase difference can be 

obtained at any time. 
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3.  SIMULATION AND EXPERIMENTAL RESULTS 

In order to validate the effectiveness of the proposed 

method, computer simulations have been carried out firstly. 

To draw a comparison, the phase difference estimates are 

given at different conditions, such as under noisy or 

noiseless circumstance, under different sampling data 

circumstance, and so on. Then, experimental data under 

different flow rates is gathered through the Coriolis mass 

flowmeter platform designed by our research team, which is 

used for experiments. In simulations, the phase difference 

equals 1.8º, the sampling frequency equals 1000 Hz, the 

number of sampled points equals 1024, and the frequency 

resolution equals 0.9766 Hz. 

 

A.  Simulation results. 

Under noiseless circumstances, the relative errors of phase 

difference which are computed by comparing the estimated 

values of phase difference versus the theoretic values are 

shown in Fig.2. and Fig.3., respectively. The signal 

frequency varies from 1 Hz to 10 Hz in Fig.2., and varies 

from 490 Hz to 499 Hz in Fig.3., with the step length of 

0.1 Hz.  

As shown in Fig.2. and Fig.3., the DTFT-based algorithm 

causes significant errors, while the accuracy of the proposed 

algorithms is quite low, and they are always superior to the 

DTFT-based algorithm in the absence of noise. This is 

because the side lobe of negative frequency components is 

considered in the proposed algorithms. Besides, the 

accuracy of the proposed algorithm with the 4-order RSCW 

is superior to the one with 2-order RSCW, for the 4-order 

RSCW has a lower attenuation and better inhibition of 

spectral leakage than 2-order RSCW. 
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Fig.2.  Relative errors of phase difference in the absence of noise 

when the signal frequency is quite low. 

 
For real-valued signals in the presence of white Gaussian 

noise, extensive computer simulations have been conducted 

to evaluate the performance of the proposed algorithms. The 

white Gaussian noises imposed on two sinusoids are not 

correlative. Comparisons are also made by the DTFT-based 

algorithm with the proposed algorithms. All simulation 

results provided are the average of 100 independent runs. 
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Fig.3.  Relative errors of phase difference in the absence of noise 

when the signal frequency is close to Nyquist frequency. 

 

Fig.4. and Fig.5. show the MSE of the proposed 
algorithms and DTFT-based algorithm versus the signal 
frequency at SNR=20 dB, respectively. It is observed from 
Fig.4. and Fig.5. that the proposed algorithms are almost 
unbiased, while the DTFT-based algorithm results in a 
significant bias when the signal frequency is quite low or 
close to the Nyquist frequency. The bias of DTFT-based 
algorithm varies in the manner of decaying oscillation, 
because the side lobe of negative frequency components in 
the spectrum equals to zero, when signal frequency equals to 
a multiple of half a frequency resolution. In other words, the 
contribution of negative frequency can be ignored at this 
moment. What is more, the MSE of the DTFT-based 
algorithm approach those of the proposed algorithms 
asymptotically when the signal frequency moves away from 
zero and Nyquist frequency. 

0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Signal frequency (Hz)

M
e
a
n
 s
q
u
a
re
 e
rr
o
rs
 o
f 
p
h
a
s
e
 d
if
fe
re
n
c
e
 (
°)

 

 

DTFT-based algorithm

proposed algorithm with 2-order RSCW

proposed algorithm with 4-order RSCW

 
 

Fig.4.  MSE of phase difference under SNR=20 dB when the 

signal frequency is quite low. 

 

Fig.6. shows the MSE of the proposed algorithms, and 
DTFT-based algorithm versus the different sampling points 
varies from 100 to 1000 when signal frequency equals 
2.5 Hz. It is seen that the DTFT-based algorithm approaches 
those of the proposed algorithms asymptotically when the 
signal frequency moves away from zero and Nyquist 
frequency, besides, the biases of DTFT-based algorithm vary 
in the manner of decaying oscillation. Both of these reasons 
are illuminated as shown in Fig.4. and Fig.5.  
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Fig.5.  MSE of phase difference under SNR=20 dB when the 

signal frequency is close to Nyquist frequency. 
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Fig.6.  MSE of phase difference under different sampling points. 

 

Fig.7. shows the comparison of phase difference versus the 

sampling points estimated by the DTFT-based algorithm and 

the proposed algorithm with 4-order RSCW. We just present 

the proposed algorithm with 4-order RSCW, for the 

accuracy of the proposed algorithm with 2-order RSCW is 

quite close to the proposed algorithm with 4-order RSCW, 

and the accuracy of the proposed algorithm with the 4-order 

RSCW is superior to the one with 2-order RSCW. As is 

shown in Fig.7., the proposed algorithm can track the phase 

difference continuously,  while the DTFT-based algorithm 

causes significant errors with the increase of sampling 

points, because the proposed algorithm adopts the sliding 

recursive idea, which can eliminate the redundancy 

calculation of DTFT. The proposed algorithm is of less 

computer load and has better dynamic performance. 
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Fig.7.  The comparison curve of phase difference estimated by 

two algorithms. 

 

B.. Experimental results. 

In order to discuss the effectiveness in practice, making 

use of the CMF plant which our group developed to acquire 

large numbers of data, then the DTFT-based algorithm and 

the proposed algorithm with 4-order RSCW are evaluated. 

For CMF, the mass flow rate is calculated by measuring the 

phase difference or time interval between two signals 

detected by electromagnetic sensors. We selected the 

RHEONIK CMF with a RHE08 transmitter in the 

experiments, the range of the mass flow rate varies from 

0.40 kg/min to 16.84 kg/min, and the signal frequency of 

CMF approximates 146 Hz. At each steady flow rate, 20 000 

sampling points of data are sampled each time for each 

sensor.  

Table 1. shows the estimated time delays and relative 

errors under different flow rates. As shown in Table 1., the 

results of the proposed algorithm are much closer to the 

theoretic values of the time delays by comparison, whereas 

the DTFT-based algorithm causes remarkable deviations, 

which also validate the effectiveness of the proposed 

algorithm. 

 
Table 1.  The estimated time delays and relative errors under different flow rates. 

 

The mean of time delay values/µs The relative error of time delay values/% Mass flow 

rate 

/(kg/min) 

The theoretic 

time delay 

values/µs 
DTFT-based 

algorithm 

The proposed algorithm 

with 4-order RSCW 

DTFT-based 

algorithm 

The proposed algorithm 

with 4-order RSCW 

 0.40 2.9146 2.9287 2.9185  0.4838 0.1338 

 1.12 8.0847 8.1243 8.0956  0.4898 0.1348 

 2.28 16.4143 16.4961 16.4365  0.4983 0.1352 

 4.36 31.3502 31.5106 31.3928  0.5116 0.1359 

 8.50 61.0783 61.4098 61.1627  0.5427 0.1382 

16.84 120.9653 121.6971 121.1341  0.6050 0.1395 
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4.  CONCLUSION 

The DTFT-based algorithm for phase difference 

measurement is biased when the frequency is quite low or 

close to the Nyquist frequency. In order to improve the 

accuracy of the DTFT-based algorithm, two new sliding 

DTFT algorithms for phase difference measurement based 

on a new kind of windows have been developed, and the 

phase difference calculation formulas with 2-order RSCW 

and 4-order RSCW are presented, respectively. The 

proposed algorithms considering the negative frequency 

contribution, adopting the RSCW and the sliding recursive 

idea, can remove the bias of the DTFT-based algorithm and 

attain optimum performance all the time, especially for the 

proposed algorithm with 4-order RSCW. Simulations and 

experimental results validate the effectiveness of the 

proposed algorithms. 

For future research, we will focus on extending and 

generalizing this type of algorithms to a more general 

system identification scheme, and further research is under 

discussion. 
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